1
|
Diawara M, Martin LJ. Regulatory mechanisms of SoxD transcription factors and their influences on male fertility. Reprod Biol 2023; 23:100823. [PMID: 37979495 DOI: 10.1016/j.repbio.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Members of the SRY-related box (SOX) subfamily D (SoxD) of transcription factors are well conserved among vertebrate species and play important roles in different stages of male reproductive development. In mammals, the SoxD subfamily contains three members: SOX5, SOX6 and SOX13. Here, we describe their implications in testicular development and spermatogenesis, contributing to fertility. We also cover the mechanisms of action of SoxD transcription factors in gene regulation throughout male development. The specificity of activation of target genes by SoxD members depends, in part, on their post-translational modifications and interactions with other partners. Sperm production in adult males requires the coordination in the regulation of gene expression by different members of the SoxD subfamily of transcription factors in the testis. Specifically, the regulation of genes promoting adequate spermatogenesis by SoxD members is discussed in comparison between species.
Collapse
Affiliation(s)
- Mariama Diawara
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada.
| |
Collapse
|
2
|
Wang X, Wang L, Shi L, Zhang P, Li Y, Li M, Tian J, Wang L, Zhao F. GWAS of Reproductive Traits in Large White Pigs on Chip and Imputed Whole-Genome Sequencing Data. Int J Mol Sci 2022; 23:13338. [PMID: 36362120 PMCID: PMC9656588 DOI: 10.3390/ijms232113338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/09/2023] Open
Abstract
Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are economically important traits in pig production, and disentangling the molecular mechanisms associated with traits can provide valuable insights into their genetic structure. Genotype imputation can be used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP) chips based on sequence data, thereby dramatically improving the power of genome-wide association studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individuals sequenced by whole-genome resequencing. To avoid population stratification, we identified genetic variants associated with reproductive traits by performing within-population GWAS and cross-population meta-analyses with data before and after imputation. Finally, several genes were detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2, KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1, TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high imputation accuracy will contribute to the identification of causal mutations in pig breeding.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ligang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangyu Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mianyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lixian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuping Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction (Poultry) of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
4
|
Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim 2021; 56:555-576. [PMID: 33438262 DOI: 10.1111/rda.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiankang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuxin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
5
|
Gao N, Chen Y, Liu X, Zhao Y, Zhu L, Liu A, Jiang W, Peng X, Zhang C, Tang Z, Li X, Chen Y. Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population. BMC Genomics 2019; 20:797. [PMID: 31666004 PMCID: PMC6822442 DOI: 10.1186/s12864-019-6164-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the pig production industry, artificial insemination (AI) plays an important role in enlarging the beneficial impact of elite boars. Understanding the genetic architecture and detecting genetic markers associated with semen traits can help in improving genetic selection for such traits and accelerate genetic progress. In this study, we utilized a weighted single-step genome-wide association study (wssGWAS) procedure to detect genetic regions and further candidate genes associated with semen traits in a Duroc boar population. Overall, the full pedigree consists of 5284 pigs (12 generations), of which 2693 boars have semen data (143,113 ejaculations) and 1733 pigs were genotyped with 50 K single nucleotide polymorphism (SNP) array. RESULTS Results show that the most significant genetic regions (0.4 Mb windows) explained approximately 2%~ 6% of the total genetic variances for the studied traits. Totally, the identified significant windows (windows explaining more than 1% of total genetic variances) explained 28.29, 35.31, 41.98, and 20.60% of genetic variances (not phenotypic variance) for number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, respectively. Several genes that have been previously reported to be associated with mammal spermiogenesis, testes functioning, and male fertility were detected and treated as candidate genes for the traits of interest: Number of sperm cells, TDRD5, QSOX1, BLK, TIMP3, THRA, CSF3, and ZPBP1; Sperm motility, PPP2R2B, NEK2, NDRG, ADAM7, SKP2, and RNASET2; Sperm progressive motility, SH2B1, BLK, LAMB1, VPS4A, SPAG9, LCN2, and DNM1; Total morphological abnormalities, GHR, SELENOP, SLC16A5, SLC9A3R1, and DNAI2. CONCLUSIONS In conclusion, candidate genes associated with Duroc boars' semen traits, including the number of sperm cells, sperm motility, sperm progressive motility, and total morphological abnormalities, were identified using wssGWAS. KEGG and GO enrichment analysis indicate that the identified candidate genes were enriched in biological processes and functional terms may be involved into spermiogenesis, testes functioning, and male fertility.
Collapse
Affiliation(s)
- Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yilong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yunxiang Zhao
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Lin Zhu
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Ali Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Jiang
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Xing Peng
- Guangxi Xiubo genetics technology Co., LTD, Guigang, 537100, China
| | - Conglin Zhang
- Guangxi Yangxiang Agriculture and Husbandry Co., LTD, Guigang, 537100, China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Ahmad HI, Ahmad MJ, Adeel MM, Asif AR, Du X. Positive selection drives the evolution of endocrine regulatory bone morphogenetic protein system in mammals. Oncotarget 2018; 9:18435-18445. [PMID: 29719616 PMCID: PMC5915083 DOI: 10.18632/oncotarget.24240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022] Open
Abstract
The rapid evolution of reproductive proteins might be driven by positive Darwinian selection. The bone morphogenetic protein family is the largest within the transforming growth factor (TGF) superfamily. A little have been known about the molecular evolution of bone morphogenetic proteins exhibiting potential role in mammalian reproduction. In this study we investigated mammalian bone morphogenetic proteins using maximum likelihood approaches of codon substitutions to identify positive Darwinian selection in various species. The proportion of positively selected sites was tested by different likelihood models for individual codon, and M8 were found to be the best model. The percentage of positively elected sites under M8 are 2.20% with ω = 1.089 for BMP2, 1.6% with ω = 1.61 for BMP 4 0.53% for BMP15 with ω = 1.56 and 0.78% for GDF9 with ω = 1.93. The percentage of estimated selection sites under M8 is strong statistical confirmation that divergence of bone morphogenetic proteins is driven by Darwinian selection. For the proteins, model M8 was found significant for all proteins with ω > 1. To further test positive selection on particular amino acids, the evolutionary conservation of amino acid were measured based on phylogenetic linkage among sequences. For exploring the impact of these somatic substitution mutations in the selection region on human cancer, we identified one pathogenic mutation in human BMP4 and one in BMP15, possibly causing prostate cancer and six neutral mutations in BMPs. The comprehensive map of selection results allows the researchers to perform systematic approaches to detect the evolutionary footprints of selection on specific gene in specific species.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Muhammad Muzammal Adeel
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Akhtar Rasool Asif
- University of Veterinary and Animal Sciences, Lahore, Sub Campus Jhang, Pakistan
| | - Xiaoyong Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|