1
|
Hindes MT, McElligott AM, Best OG, Ward MP, Selemidis S, Miles MA, Nturubika BD, Gregory PA, Anderson PH, Logan JM, Butler LM, Waugh DJ, O'Leary JJ, Hickey SM, Thurgood LA, Brooks DA. Metabolic reprogramming, malignant transformation and metastasis: Lessons from chronic lymphocytic leukaemia and prostate cancer. Cancer Lett 2025; 611:217441. [PMID: 39755364 DOI: 10.1016/j.canlet.2025.217441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis. This review considers glucose and lipid metabolism in CLL and prostate cancer, exploring their roles in healthy and malignant states and during disease progression. In CLL, lipid metabolism supports cell survival and migration, with aggressive disease characterised by increased fatty acid oxidation and altered sphingolipids. Richter's transformation and aggressive lymphoma, however, exhibit a metabolic shift towards increased glycolysis. Similarly, prostate cell metabolism is unique, relying on citrate production in the healthy state and undergoing metabolic reprogramming during malignant transformation. Early-stage prostate cancer cells increase lipid synthesis and uptake, and decrease glycolysis, whereas metastatic cells re-adopt glucose metabolism, likely driven by interactions with the tumour microenvironment. Genetic drivers including TP53 and ATM mutations connect metabolic alterations to disease severity in these two malignancies. The bone microenvironment supports the metabolic demands of these malignancies, serving as an initiation niche for CLL and a homing site for prostate cancer metastases. By comparing these malignancies, this review underscores the importance of metabolic plasticity in cancer progression and highlights how CLL and prostate cancer may be models of circulating and solid tumours more broadly. The metabolic phenotypes throughout cancer cell transformation and metastasis, and the microenvironment in which these processes occur, present opportunities for interventions that could disrupt metastatic processes and improve patient outcomes.
Collapse
Affiliation(s)
- Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Anthony M McElligott
- Discipline of Haematology, School of Medicine, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College, Dublin, Ireland
| | - Oliver G Best
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Mark A Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Bukuru D Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Solid Tumour Program, Precision Cancer Medicine theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David J Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Lauren A Thurgood
- Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, Australia
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Ali A, Elumalai T, Venkatesulu B, Hekman L, Mistry H, Sachdeva A, Oliveira P, Clarke N, Baena E, Choudhury A, Bristow RG. Tale of two zones: investigating the clinical outcomes and research gaps in peripheral and transition zone prostate cancer through a systematic review and meta-analysis. BMJ ONCOLOGY 2024; 3:e000193. [PMID: 39886173 PMCID: PMC11234997 DOI: 10.1136/bmjonc-2023-000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/18/2024] [Indexed: 02/01/2025]
Abstract
Objective To assess pathological characteristics, clinical features and outcomes of patients diagnosed with peripheral zone (PZ) and transition zone (TZ) prostate cancer after prostatectomy. Methods and analysis We systematically reviewed PubMed, EMBASE and MEDLINE. Primary endpoints were biochemical relapse-free survival (bRFS) and distant metastases rate; secondary endpoints included clinical and pathological features. Results Ten retrospective cohort studies were identified, six reported HRs for bRFS between PZ and TZ tumours. Patients with TZ tumours had significantly better bRFS (pooled HR 0.57 (0.47, 0.68)) than those with PZ tumours. Two studies reported a lower proportion of distant metastasis in patients diagnosed with TZ tumours compared with PZ tumours (1.5% vs 4.9% (median follow-up 7.0 years) and 0% vs 5% (median follow-up 7.8 years)). PZ tumours presented higher Gleason group and T staging more frequently, while TZ tumours were associated with higher prostate specific antigen levels at diagnosis. Conclusion PZ tumours were associated with poorer prognostic clinical features and outcomes. Despite adjusting for poor prognostic clinical features, PZ tumours consistently showed worse clinical outcomes than TZ tumours. Our systematic review underscores the need for further research comparing PZ and TZ prostate cancer to understand the underlying differences and refine clinical practice.
Collapse
Affiliation(s)
- Amin Ali
- Oncology Department, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Prostate Oncobiology, Cancer Research UK Manchester Centre, The University of Manchester, Manchester, UK
- Translational Oncogenomics, Cancer Research UK Manchester Centre, The University of Manchester, Manchester, UK
| | | | | | - Lauren Hekman
- Department of Urology, Loyola University Chicago, Chicago, Illinois, USA
| | - Hitesh Mistry
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Ashwin Sachdeva
- Department of Surgery, The Christie Hospital NHS Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie Hospital NHS Trust, Manchester, UK
| | - Noel Clarke
- Department of Surgery, The Christie Hospital NHS Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Urology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Esther Baena
- Prostate Oncobiology, Cancer Research UK Manchester Centre, The University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics, Cancer Research UK Manchester Centre, The University of Manchester, Manchester, UK
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Jin S, Wu L, Liang Z, Yan W. The prognostic value of zonal origin in clinically localized prostate cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1248222. [PMID: 38144521 PMCID: PMC10739310 DOI: 10.3389/fonc.2023.1248222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Correlation between zonal origin of clinically localized prostate cancer (PC) and biochemical recurrence (BCR) after treatment is still controversial. Methods We performed a meta-analysis of published articles to investigate the prognostic value of zonal origin in clinically localized PC. Literature was searched from Medline, Embase, Scopus, and Web of Science, from inception to Nov 1st, 2022. The risk of BCR was compared between PC originating from transition zone with peripheral zone. Relative risk (RR) was pooled in a random-effects model. Subgroup analysis and meta-regression were conducted to assess the source of heterogeneity. Results 16 cohorts and 19,365 patients were included. PC originating from transition zone was associated with a lower risk of BCR (RR, 0.79, 95%CI; 0.69-0.92, I2, 76.8%). The association was consistent in studies with median follow-up time ≥60 months (RR, 0.65; 95%CI, 0.48 to 0.88, I2 56.8%), studies with NOS score ≥8 (RR, 0.70; 95%CI, 0.62 to 0.80, I2 32.4%), and studies using multivariate regression model (RR, 0.57; 95%CI, 0.48 to 0.69, I2 23%). Discussion This meta-analysis supported that transition zone origin was an independent prognostic factor of a better biochemical result in clinically localized prostate cancer after treatment. Systematic review registration 10.37766/inplasy2023.11.0100, identifier INPLASY2023110100.
Collapse
Affiliation(s)
| | | | | | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Resurreccion EP, Fong KW. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022; 12:metabo12060488. [PMID: 35736421 PMCID: PMC9230859 DOI: 10.3390/metabo12060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Our understanding of prostate cancer (PCa) has shifted from solely caused by a few genetic aberrations to a combination of complex biochemical dysregulations with the prostate metabolome at its core. The role of metabolomics in analyzing the pathophysiology of PCa is indispensable. However, to fully elucidate real-time complex dysregulation in prostate cells, an integrated approach based on metabolomics and other omics is warranted. Individually, genomics, transcriptomics, and proteomics are robust, but they are not enough to achieve a holistic view of PCa tumorigenesis. This review is the first of its kind to focus solely on the integration of metabolomics with multi-omic platforms in PCa research, including a detailed emphasis on the metabolomic profile of PCa. The authors intend to provide researchers in the field with a comprehensive knowledge base in PCa metabolomics and offer perspectives on overcoming limitations of the tool to guide future point-of-care applications.
Collapse
Affiliation(s)
- Eleazer P. Resurreccion
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Ka-wing Fong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- Correspondence: ; Tel.: +1-859-562-3455
| |
Collapse
|
5
|
Ali A, Du Feu A, Oliveira P, Choudhury A, Bristow RG, Baena E. Prostate zones and cancer: lost in transition? Nat Rev Urol 2022; 19:101-115. [PMID: 34667303 DOI: 10.1038/s41585-021-00524-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Localized prostate cancer shows great clinical, genetic and environmental heterogeneity; however, prostate cancer treatment is currently guided solely by clinical staging, serum PSA levels and histology. Increasingly, the roles of differential genomics, multifocality and spatial distribution in tumorigenesis are being considered to further personalize treatment. The human prostate is divided into three zones based on its histological features: the peripheral zone (PZ), the transition zone (TZ) and the central zone (CZ). Each zone has variable prostate cancer incidence, prognosis and outcomes, with TZ prostate tumours having better clinical outcomes than PZ and CZ tumours. Molecular and cell biological studies can improve understanding of the unique molecular, genomic and zonal cell type features that underlie the differences in tumour progression and aggression between the zones. The unique biology of each zonal tumour type could help to guide individualized treatment and patient risk stratification.
Collapse
Affiliation(s)
- Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Alexander Du Feu
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Pedro Oliveira
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Robert G Bristow
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK.,The University of Manchester, Manchester Cancer Research Centre, Manchester, UK.,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK. .,Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Nakamura N, Pence LM, Cao Z, Beger RD. Distinct lipid signatures are identified in the plasma of rats with chronic inflammation induced by estradiol benzoate and sex hormones. Metabolomics 2020; 16:95. [PMID: 32895772 DOI: 10.1007/s11306-020-01715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Prostatitis is likely to occur in younger or middle-aged men, while prostate cancer is likely to occur in older men. Although amino acids and lipids as biomarkers of prostate cancer have been examined using prostate cancer cell lines/tissues, no previous studies have evaluated amino acids or lipids as potential chronic prostatitis biomarkers. OBJECTIVES The study's aim was to identify amino acids and lipids that could serve as potential biomarkers of chronic prostatitis. METHODS We profiled the amino acids and lipids found in plasma from rats collected in a previous study. In brief, a total of 148 Sprague-Dawley rats (offspring) were dosed with estradiol benzoate (EB) on postnatal days (PNDs) 1, 3 and 5, and subsequently dosed with testosterone (T)/estradiol (E) tubes via subcutaneous implants from PND 90 to 200. Plasma was collected on PNDs 30, 90, 100, 145 and 200. Analysis was conducted with a Xevo TQ-S triple-quadrupole mass spectrometer using a Biocrates AbsoluteIDQ p180 kit. RESULTS Plasma acylcarnitines [(C2, C16:1, C18, C18:1, C18:1-OH, and C18:2)], glycerophospholipids (lysophosphatidylcholine-acyl, -di-acyl, and -di-acyl acyl-alkyl) and sphingomyelins [SM (OH) C16:1, SM C18:0, SM C18:1, and SM C20:2] significantly increased on PND 145, when chronic inflammation was observed in the dorsolateral prostate of rats dosed with EB, T, and E. No statistical significances of amino acid levels were observed in the EB + T + E group on PND 145. CONCLUSION Exposure to EB, T, and E altered lipid levels in rat plasma with chronic prostate inflammation. These findings suggest that the identified lipids may be predictive chronic prostatitis biomarkers. The results require confirmation through additional nonclinical and human studies.
Collapse
Affiliation(s)
- Noriko Nakamura
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Lisa M Pence
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
7
|
Weaver PE, Smith LA, Sharma P, Keesari R, Al Mekdash H, de Riese WT. Quantitative measurements of prostate capsule and gland density and their correlation to prostate size: possible clinical implications in prostate cancer. Int Urol Nephrol 2020; 52:1829-1837. [PMID: 32506207 DOI: 10.1007/s11255-020-02527-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To study histo-anatomical imaging features and possible association between prostate volume, capsule thickness and glandular density within the peripheral zone (PZ) of prostates of different sizes. METHODS Patients were selected who had undergone radical prostatectomy. Specimen selection was based on two factors: first, easy reconstruction of prostate anatomy by the histological slides; and second, based on prostate size. Specimens were chosen with small (< 35 cc) and also with large size (> 80 cc). A total of 20 patients were selected. None of these patients had undergone previous treatment. Computer-based imaging for quantitative measurements of capsule thickness and glandular density within the PZ were performed. Multiple regression analysis was performed to determine the relationship between these measured parameters and the clinical characteristics of these patients. RESULTS Multiple regression analysis revealed a strong, positive association between prostate size and average capsule thickness; on the contrary, we found a negative correlation between prostate volume and average glandular density. Fibrotic thickness of the capsule was associated with gland atrophy and decreased gland density within the PZ. CONCLUSIONS The results suggest that BPH may be associated with the development of fibrosis and gland atrophy within the peripheral zone. As 80% of prostate cancer originates from the glandular epithelium within the peripheral zone, this observed phenomenon may explain the inverse relationship between BPH and incidence of prostate cancer well documented in the literature.
Collapse
Affiliation(s)
| | - Lisa A Smith
- Department of Pathology, Texas Tech University Health Sciences Center, 3601 4th Street, MS7260, Lubbock, TX, 79430-7260, USA
| | - Pranav Sharma
- Department of Urology, Texas Tech University Health Sciences Center, 3601 4th Street, MS7260, Lubbock, TX, 79430-7260, USA
| | - Rohali Keesari
- Clinical Research Institute, Texas Tech University Health Sciences Center, 3601 4th Street, MS7260, Lubbock, TX, 79430-7260, USA
| | - Hasan Al Mekdash
- Clinical Research Institute, Texas Tech University Health Sciences Center, 3601 4th Street, MS7260, Lubbock, TX, 79430-7260, USA
| | - Werner T de Riese
- Department of Urology, Texas Tech University Health Sciences Center, 3601 4th Street, MS7260, Lubbock, TX, 79430-7260, USA.
| |
Collapse
|
8
|
Roelands J, Garand M, Hinchcliff E, Ma Y, Shah P, Toufiq M, Alfaki M, Hendrickx W, Boughorbel S, Rinchai D, Jazaeri A, Bedognetti D, Chaussabel D. Long-Chain Acyl-CoA Synthetase 1 Role in Sepsis and Immunity: Perspectives From a Parallel Review of Public Transcriptome Datasets and of the Literature. Front Immunol 2019; 10:2410. [PMID: 31681299 PMCID: PMC6813721 DOI: 10.3389/fimmu.2019.02410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
A potential role for the long-chain acyl-CoA synthetase family member 1 (ACSL1) in the immunobiology of sepsis was explored during a hands-on training workshop. Participants first assessed the robustness of the potential gap in biomedical knowledge identified via an initial screen of public transcriptome data and of the literature associated with ACSL1. Increase in ACSL1 transcript abundance during sepsis was confirmed in several independent datasets. Querying the ACSL1 literature also confirmed the absence of reports associating ACSL1 with sepsis. Inferences drawn from both the literature (via indirect associations) and public transcriptome data (via correlation) point to the likely participation of ACSL1 and ACSL4, another family member, in inflammasome activation in neutrophils during sepsis. Furthermore, available clinical data indicate that levels of ACSL1 and ACSL4 induction was significantly higher in fatal cases of sepsis. This denotes potential translational relevance and is consistent with involvement in pathways driving potentially deleterious systemic inflammation. Finally, while ACSL1 expression was induced in blood in vitro by a wide range of pathogen-derived factors as well as TNF, induction of ACSL4 appeared restricted to flagellated bacteria and pathogen-derived TLR5 agonists and IFNG. Taken together, this joint review of public literature and omics data records points to two members of the acyl-CoA synthetase family potentially playing a role in inflammasome activation in neutrophils. Translational relevance of these observations in the context of sepsis and other inflammatory conditions remain to be investigated.
Collapse
Affiliation(s)
- Jessica Roelands
- Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Parin Shah
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | | | | | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | |
Collapse
|
9
|
Coode‐Bate J, Sivapalan T, Melchini A, Saha S, Needs PW, Dainty JR, Maicha J, Beasy G, Traka MH, Mills RD, Ball RY, Mithen RF. Accumulation of Dietary S-Methyl Cysteine Sulfoxide in Human Prostate Tissue. Mol Nutr Food Res 2019; 63:e1900461. [PMID: 31410992 PMCID: PMC6856681 DOI: 10.1002/mnfr.201900461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Indexed: 12/22/2022]
Abstract
SCOPE Observational studies have associated consumption of cruciferous vegetables with reduced risk of prostate cancer. This effect has been associated with the degradation products of glucosinolates-thioglycosides that accumulate within crucifers. The possible role of S-methyl cysteine sulfoxide, a metabolite that also accumulates in cruciferous vegetables, and its derivatives, in cancer prevention is relatively unexplored compared to glucosinolate derivatives. The hypothesis that consuming a broccoli soup results in the accumulation of sulfate (a SMCSO derivative) and other broccoli-derived metabolites in prostate tissue is tested. METHODS AND RESULTS Eighteen men scheduled for transperineal prostate biopsy were recruited into a 4-week parallel single blinded diet supplementation study (NCT02821728). Nine men supplemented their diet with three 300 mL portions of a broccoli soup each week for four weeks prior to surgery. Analyses of prostate biopsy tissues reveal no detectable levels of glucosinolates and derivatives. In contrast, SMCSO is detected in prostate tissues of the participants, with significantly higher levels in tissue of men in the supplementation arm. SMCSO was also found in blood and urine samples from a previous intervention study with the identical broccoli soup. CONCLUSION The consequences of SMCSO accumulation in prostate tissues and its potential role in prevention of prostate cancer remains to be investigated.
Collapse
Affiliation(s)
| | | | | | - Shikha Saha
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | - Paul W. Needs
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | | | - Gemma Beasy
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
| | | | - Robert D. Mills
- Department of UrologyNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard Y. Ball
- Norfolk and Waveney Cellular Pathology ServiceNorfolk and Norwich University Hospitals NHS Foundation TrustNorwichUK
| | - Richard F. Mithen
- Quadram Institute BioscienceColney LaneNorwichNR4 7UQUK
- The Liggins InstituteUniversity of AucklandNew Zealand
| |
Collapse
|
10
|
Morse N, Jamaspishvili T, Simon D, Patel PG, Ren KYM, Wang J, Oleschuk R, Kaufmann M, Gooding RJ, Berman DM. Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies. J Transl Med 2019; 99:1561-1571. [PMID: 31160688 DOI: 10.1038/s41374-019-0265-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/06/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Metabolomic profiling can aid in understanding crucial biological processes in cancer development and progression and can also yield diagnostic biomarkers. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) has been proposed as a potential adjunct to diagnostic surgical pathology, particularly for prostate cancer. However, due to low resolution sampling, small numbers of mass spectra, and little validation, published studies have yet to test whether this method is sufficiently robust to merit clinical translation. We used over 900 spatially resolved DESI-MSI spectra to establish an accurate, high-resolution metabolic profile of prostate cancer. We identified 25 differentially abundant metabolites, with cancer tissue showing increased fatty acids (FAs) and phospholipids, along with utilization of the Krebs cycle, and benign tissue showing increased levels of lyso-phosphatidylethanolamine (PE). Additionally, we identified, for the first time, two lyso-PEs with abundance that decreased with cancer grade and two phosphatidylcholines (PChs) with increased abundance with increasing cancer grade. Importantly, we developed and internally validated a multivariate metabolomic classifier for prostate cancer using 534 spatial regions of interest (ROIs) in the training cohort and 430 ROIs in the test cohort. With excellent statistical power, the training cohort achieved a balanced accuracy of 97% and validation on testing data set demonstrated 85% balanced accuracy. Given the validated accuracy of this classifier and the correlation of differentially abundant metabolites with established patterns of prostate cancer cell metabolism, we conclude that DESI-MSI is an effective tool for characterizing prostate cancer metabolism with the potential for clinical translation.
Collapse
Affiliation(s)
- Nicole Morse
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Tamara Jamaspishvili
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - David Simon
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Palak G Patel
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kevin Yi Mi Ren
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jenny Wang
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Richard Oleschuk
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Martin Kaufmann
- Department of Surgery, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Robert J Gooding
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - David M Berman
- Cancer Biology & Genetics, Queen's Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada. .,Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
11
|
Randall EC, Zadra G, Chetta P, Lopez BGC, Syamala S, Basu SS, Agar JN, Loda M, Tempany CM, Fennessy FM, Agar NYR. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Mol Cancer Res 2019; 17:1155-1165. [PMID: 30745465 PMCID: PMC6497547 DOI: 10.1158/1541-7786.mcr-18-1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.
Collapse
Affiliation(s)
- Elizabeth C Randall
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giorgia Zadra
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Paolo Chetta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- University of Milan, Milan, Italy
| | - Begona G C Lopez
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sudeepa Syamala
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey N Agar
- Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Y R Agar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Turanli B, Zhang C, Kim W, Benfeitas R, Uhlen M, Arga KY, Mardinoglu A. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 2019; 42:386-396. [PMID: 30905848 PMCID: PMC6491384 DOI: 10.1016/j.ebiom.2019.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Genome-scale metabolic models (GEMs) offer insights into cancer metabolism and have been used to identify potential biomarkers and drug targets. Drug repositioning is a time- and cost-effective method of drug discovery that can be applied together with GEMs for effective cancer treatment. METHODS In this study, we reconstruct a prostate cancer (PRAD)-specific GEM for exploring prostate cancer metabolism and also repurposing new therapeutic agents that can be used in development of effective cancer treatment. We integrate global gene expression profiling of cell lines with >1000 different drugs through the use of prostate cancer GEM and predict possible drug-gene interactions. FINDINGS We identify the key reactions with altered fluxes based on the gene expression changes and predict the potential drug effect in prostate cancer treatment. We find that sulfamethoxypyridazine, azlocillin, hydroflumethiazide, and ifenprodil can be repurposed for the treatment of prostate cancer based on an in silico cell viability assay. Finally, we validate the effect of ifenprodil using an in vitro cell assay and show its inhibitory effect on a prostate cancer cell line. INTERPRETATION Our approach demonstate how GEMs can be used to predict therapeutic agents for cancer treatment based on drug repositioning. Besides, it paved a way and shed a light on the applicability of computational models to real-world biomedical or pharmaceutical problems.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Department of Bioengineering, Marmara University, Istanbul, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Rui Benfeitas
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden
| | | | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm SE-17121, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
13
|
Poulose N, Mills IG, Steele RE. The impact of transcription on metabolism in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R435-R452. [PMID: 29760165 DOI: 10.1530/erc-18-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Metabolic dysregulation is regarded as an important driver in cancer development and progression. The impact of transcriptional changes on metabolism has been intensively studied in hormone-dependent cancers, and in particular, in prostate and breast cancer. These cancers have strong similarities in the function of important transcriptional drivers, such as the oestrogen and androgen receptors, at the level of dietary risk and epidemiology, genetics and therapeutically. In this review, we will focus on the function of these nuclear hormone receptors and their downstream impact on metabolism, with a particular focus on lipid metabolism. We go on to discuss how lipid metabolism remains dysregulated as the cancers progress. We conclude by discussing the opportunities that this presents for drug repurposing, imaging and the development and testing of new therapeutics and treatment combinations.
Collapse
Affiliation(s)
- Ninu Poulose
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| | - Ian G Mills
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
- Nuffield Department of Surgical SciencesJohn Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rebecca E Steele
- Centre for Cancer Research and Cell BiologyQueen's University of Belfast, Belfast, UK
| |
Collapse
|