1
|
Aktar S, Baghaie H, Islam F, Gopalan V, Lam AKY. Current Status of Circulating Tumor Cells in Head and Neck Squamous Cell Carcinoma: A Review. Otolaryngol Head Neck Surg 2023; 168:988-1005. [PMID: 36939466 DOI: 10.1002/ohn.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Circulating tumor cells (CTCs) are found in the blood of patients with cancer, including head and neck squamous cell carcinomas (HNSCCs). The aim is to review the most up-to-date status of CTCs for applications in patients with HNSCC. DATA SOURCES English articles in PubMed. REVIEW METHODS All the studies on CTCs in HNSCCs in the literature were reviewed. CONCLUSIONS There is emerging information on the diagnostic and prognostic value of CTCs in HNSCCs. Evidence also highlights the advantages of various downstream analysis approaches over circulating tumor DNA (ctDNA), such as single-CTC analysis, ex vivo, and in vivo expansion of CTCs. Multiple phenotypic surface markers (cytokeratins, EpCAM, vimentin, etc.), used for CTCs characterization using different immunoassays, could predict disease progression as well as patients' response to treatment efficacy. Immune checkpoint inhibitors' status in CTCs could also provide better insight into treatment. Clonal expansion of CTCs and single-cell analysis of CTCs are the most emerging fields nowadays which may offer an understanding of the mechanism of tumor evolution as well as therapeutic efficacy. Although several clinical trials are ongoing, limitations still exist in the detection and characterization of CTCs. Due to the lack of a gold standard protocol, the sensitivity and specificity of CTC enumeration methods vary. IMPLICATIONS FOR PRACTICE Prospective clinical trials are still needed before CTCs can be employed as diagnostic and prognostic markers in the clinical management of patients with HNSCC.
Collapse
Affiliation(s)
- Sharmin Aktar
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Hooman Baghaie
- School of Dentistry, University of Queensland, Herston, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Pathology Queensland, Gold Coast University Hospital, Southport, Australia
| |
Collapse
|
2
|
Diez-Fraile A, De Ceulaer J, Derpoorter C, Spaas C, De Backer T, Lamoral P, Abeloos J, Lammens T. Tracking the Molecular Fingerprint of Head and Neck Cancer for Recurrence Detection in Liquid Biopsies. Int J Mol Sci 2022; 23:ijms23052403. [PMID: 35269544 PMCID: PMC8910330 DOI: 10.3390/ijms23052403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
The 5-year relative survival for patients with head and neck cancer, the seventh most common form of cancer worldwide, was reported as 67% in developed countries in the second decade of the new millennium. Although surgery, radiotherapy, chemotherapy, or combined treatment often elicits an initial satisfactory response, relapses are frequently observed within two years. Current surveillance methods, including clinical exams and imaging evaluations, have not unambiguously demonstrated a survival benefit, most probably due to a lack of sensitivity in detecting very early recurrence. Recently, liquid biopsy monitoring of the molecular fingerprint of head and neck squamous cell carcinoma has been proposed and investigated as a strategy for longitudinal patient care. These innovative methods offer rapid, safe, and highly informative genetic analysis that can identify small tumors not yet visible by advanced imaging techniques, thus potentially shortening the time to treatment and improving survival outcomes. In this review, we provide insights into the available evidence that the molecular tumor fingerprint can be used in the surveillance of head and neck squamous cell carcinoma. Challenges to overcome, prior to clinical implementation, are also discussed.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Joke De Ceulaer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
| | - Christophe Spaas
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tom De Backer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Philippe Lamoral
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Johan Abeloos
- Division of Oral and Maxillofacial Surgery, Department of Surgery, General Hospital Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-2480
| |
Collapse
|
3
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
4
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
5
|
Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Front Oncol 2021; 11:676948. [PMID: 34490084 PMCID: PMC8418074 DOI: 10.3389/fonc.2021.676948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.
Collapse
Affiliation(s)
- Yashika Jawa
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V. Mathan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashu B. Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A. Oral Cancer: Genetics and the Role of Precision Medicine. Surg Oncol Clin N Am 2021; 29:127-144. [PMID: 31757309 DOI: 10.1016/j.soc.2019.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
Affiliation(s)
- Chia-Cheng Li
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhen Shen
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Roxanne Bavarian
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Division of Oral Medicine and Dentistry, Brigham and Women's Hospital, Francis Street, Boston, MA 02115, USA
| | - Fan Yang
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Aditi Bhattacharya
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, East 24th Street, New York, NY 10010, USA
| |
Collapse
|
7
|
Zhang C, Zhong JF, Zhang X. Revealing the molecular mechanism of central nervous system leukemia with single-cell technology. Crit Rev Oncol Hematol 2020; 153:103046. [PMID: 32650214 DOI: 10.1016/j.critrevonc.2020.103046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2019] [Accepted: 06/29/2020] [Indexed: 01/31/2023] Open
Abstract
Central nervous system leukemia (CNSL) is a severe complication of acute leukemia, with serious consequences for life quality and expectancy. The molecular mechanism of CNSL is unclear at present. Thus, determining appropriate prevention and therapeutic strategies for CNSL remain challenging. Currently, inferences regarding gene functions are based on the measurement of average gene expression in a bulk lysate. However, leukemia cells are a heterogeneous population in which the expression of critical genes may be masked by many unrelated genes. Single-cell sequencing may therefore be the best way to explore the development of CNSL in the bone marrow and peripheral blood at diagnosis and subsequent time points, in order to detect potential targets and prevent the development of CNSL. In this review, we first discuss the possible mechanism of CNSL, then describe the heterogeneity of leukemia cells. Finally, we focus on the role of single-cell technology in preventing and treating CNSL.
Collapse
Affiliation(s)
- Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China; Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiang F Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China; Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Zhang C, Tan X, Yao H, Liu Y, Gao L, Gao L, Kong PY, Zhang X. Successful Treatment of Veno-occlusive Disease, Transplantation-Associated Thrombotic Microangiopathy, and Acute Graft-vs-Host Disease in a Patient with Relapsed Epstein-Barr Hemophagocytic Lymphohistiocytosis After Haploidentical Hematopoietic Stem Cell Transplantation: A Case Report. Transplant Proc 2019; 51:3159-3162. [PMID: 31711585 DOI: 10.1016/j.transproceed.2019.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/07/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allogenic hematopoietic stem cell transplantation may be the best currently available method to treat relapsed hemophagocytic lymphohistiocytosis (HLH) related to Epstein-Barr virus. The high rate of transplantation-related complications was initially the main obstacle preventing the wider adoption of this protocol; however, the previously more common complications, such as infection and graft failure, have fallen to very low levels with the development of new drugs and methods. Some other complications, such as veno-occlusive disease and transplantation associated thrombotic microangiopathy, are rare after allogenic hematopoietic stem cell transplantation, but the morbidity and mortality associated with them are very high. CASE PRESENTATION A patient with relapsed HLH related to Epstein-Barr virus showed the sequential severe complications of veno-occlusive disease, transplantation-associated thrombotic microangiopathy, and acute graft-vs-host disease after haploidentical transplantation. This patient was successfully treated by stopping administration of calcineurin inhibitors and instead treating with defibrotide, rituximab, CD25 monoclonal antibody, atorvastatin calcium tablets, methylprednisolone, budesonide, continuous plasma exchange, and bedside ultrafiltration. At the last follow-up, the patient had been living disease free for 2 years without any other complications. CONCLUSION Epstein-Barr virus related-HLH patients have severe clinical features and currently poor prognosis. Allogenic hematopoietic stem cell transplantation may be the best way to treat this disease; however, the management of related complications is vital in the improvement of long-term survival.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Han Yao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yao Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Pei-Yan Kong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
9
|
Loo JFC, Ho HP, Kong SK, Wang TH, Ho YP. Technological Advances in Multiscale Analysis of Single Cells in Biomedicine. ACTA ACUST UNITED AC 2019; 3:e1900138. [PMID: 32648696 DOI: 10.1002/adbi.201900138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Indexed: 12/20/2022]
Abstract
Single-cell analysis has recently received significant attention in biomedicine. With the advances in super-resolution microscopy, fluorescence labeling, and nanoscale biosensing, new information may be obtained for the design of cancer diagnosis and therapeutic interventions. The discovery of cellular heterogeneity further stresses the importance of single-cell analysis to improve our understanding of disease mechanism and to develop new strategies for disease treatment. To this end, many studies are exploited at the single-cell level for high throughput, highly parallel, and quantitative analysis. Technically, microfluidics are also designed to facilitate single-cell isolation and enrichment for downstream detection and manipulation in a robust, sensitive, and automated manner. Further achievements are made possible by consolidating optically label-free, electrical, and molecular sensing techniques. Moreover, these technologies are coupled with computing algorithms for high throughput and automated quantitative analysis with a short turnaround time. To reflect on how the technological developments have advanced single-cell analysis, this mini-review is aimed to offer readers an introduction to single-cell analysis with a brief historical development and the recent progresses that have enabled multiscale analysis of single-cells in the last decade. The challenges and future trends are also discussed with the view to inspire forthcoming technical developments.
Collapse
Affiliation(s)
- Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Siu Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR.,Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
10
|
Payne K, Brooks J, Spruce R, Batis N, Taylor G, Nankivell P, Mehanna H. Circulating Tumour Cell Biomarkers in Head and Neck Cancer: Current Progress and Future Prospects. Cancers (Basel) 2019; 11:E1115. [PMID: 31387228 PMCID: PMC6721520 DOI: 10.3390/cancers11081115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) continues to carry a significant burden of disease both for patients and health services. Facilitating biomarker-led treatment decisions is critical to improve outcomes in this group and deliver therapy tailored to the individual tumour biological profile. One solution to develop such biomarkers is a liquid biopsy analysing circulating tumour cells (CTCs)-providing a non-invasive and dynamic assessment of tumour specific alterations in 'real-time'. A major obstacle to implementing such a test is the standardisation of CTC isolation methods and subsequent down-stream analysis. Several options are available, with a recent shift in vogue from positive-selection marker-dependent isolation systems to marker-independent negative-selection techniques. HNC single-CTC characterisation, including single-cell sequencing, to identify actionable mutations and gene-expression signatures has the potential to both guide the understanding of patient tumour heterogeneity and support the adoption of personalised medicine strategies. Microfluidic approaches for isolating CTCs and cell clusters are emerging as novel technologies which can be incorporated with computational platforms to complement current diagnostic and prognostic strategies. We review the current literature to assess progress regarding CTC biomarkers in HNC and potential avenues for future translational research and clinical implementation.
Collapse
Affiliation(s)
- Karl Payne
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jill Brooks
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel Spruce
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Nankivell
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
12
|
Hsing EW, Shiah SG, Peng HY, Chen YW, Chuu CP, Hsiao JR, Lyu PC, Chang JY. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility. PLoS One 2019; 14:e0213463. [PMID: 30893332 PMCID: PMC6426234 DOI: 10.1371/journal.pone.0213463] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Distant metastasis leads oral cancer patients into a poor survival rate and a high recurrence stage. During tumor progression, dysregulated microRNAs (miRNAs) have been reported to involve tumor initiation and modulate oral cancer malignancy. MiR-450a was significantly upregulated in oral squamous cell carcinoma (OSCC) patients without functional reports. This study was attempted to uncover the molecular mechanism of novel miR-450a in OSCC. Mir-450a expression was examined by quantitative RT-PCR, both in OSCC cell lines and patients. Specific target of miR-450a was determined by software prediction, luciferase reporter assay, and correlation with target protein expression. The functions of miR-450a and TMEM182 were accessed by adhesion and transwell invasion analyses. Determination of the expression and cellular localization of TMEM182 was examined by RT-PCR and by immunofluorescence staining. The signaling pathways involved in regulation of miR-450a were investigated using the kinase inhibitors. Overexpression of miR-450a in OSCC cells impaired cell adhesion ability and induced invasiveness, which demonstrated the functional role of miR-450a as an onco-miRNA. Interestingly, tumor necrosis factor alpha (TNF-α)-mediated expression of TMEM182 was regulated by miR-450a induction. MiR-450a-reduced cellular adhesion was abolished by TMEM182 restoration. Furthermore, the oncogenic activity of TNF-α/miR-450a/TMEM182 axis was primarily through activating extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. ERK1/2 inhibitor prevented the TNF-α-induced miR-450a expression and enhanced adhesion ability. Our data suggested that TNF-α-induced ERK1/2-dependent miR-450a against TMEM182 expression exerted a great influence on increasing OSCC motility. Overall, our results provide novel molecular insights into how TNF-α contributes to oral carcinogenesis through miR-450a that targets TMEM182.
Collapse
Affiliation(s)
- En-Wei Hsing
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Structural Biology Program, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsuan-Yu Peng
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Chiang Lyu
- Structural Biology Program, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Paolillo C, Londin E, Fortina P. Single-Cell Genomics. Clin Chem 2019; 65:972-985. [PMID: 30872376 DOI: 10.1373/clinchem.2017.283895] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Single-cell genomics is an approach to investigate cell heterogeneity and to identify new molecular features correlated with clinical outcomes. This approach allows identification of the complexity of cell diversity in a sample without the loss of information that occurs when multicellular or bulk tissue samples are analyzed. CONTENT The first single-cell RNA-sequencing study was published in 2009, and since then many more studies and single-cell sequencing methods have been published. These studies have had a major impact on several fields, including microbiology, neurobiology, cancer, and developmental biology. Recently, improvements in reliability and the development of commercial single-cell isolation platforms are opening the potential of this technology to the clinical laboratory. SUMMARY In this review we provide an overview of the current state of single-cell genomics. We describe opportunities in clinical research and medical applications.
Collapse
Affiliation(s)
- Carmela Paolillo
- Division of Precision and Computational Diagnostics, Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA; .,Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Zhou H, Cao T, Li WP, Wu G. Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma. Mol Biol Rep 2019; 46:2693-2701. [PMID: 30805892 DOI: 10.1007/s11033-019-04712-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
PPFIA family members and ALG3 play important roles in tumorigenesis and tumor progression. However, the exact roles of distinct PPFIA family members and ALG3 in head and neck squamous cell carcinoma (HNSCC) remain unclear. We studied the mRNA expressions of PPFIA family members and ALG3 in a variety of tumor types compared with the normal controls using the Oncomine database along with meta-analyses of their expressions in HNSCC cancer cell line. The mRNA expressions of PPFIA family members and ALG3 in laryngeal squamous cell carcinoma cell line and normal laryngeal cell line were detected by quantitative real-time polymerase chain reaction. Based on the cBioportal database, we further studied mRNA expression alterations and co-occurrence relationships of the PPFIA family members and ALG3 in HNSCC. The relationship between PPFIA1 and ALG3 mRNA expression alterations and prognoses in patients with HNSCC was explored. We found that PPFIA1 and ALG3 were distinctively overexpressed at the mRNA level in HNSCC tissues compared with normal tissues, they had a significant co-occurrence relationship, their mRNA expressions were significantly higher than other PPFIA family members in laryngeal squamous cell carcinoma cell line, and their mRNA expressions were also significantly higher in laryngeal carcinoma cell line than in normal laryngeal cell line. Patients without both PPFIA1 and ALG3 mRNA expression alterations had better overall survival and disease/progression-free survival compared with patients with both PPFIA1 and ALG3 alterations. Based on these findings, PPFIA1 and ALG3 may play roles in oncogene expression in HNSCC. Their combined overexpression is significantly associated with poor survival outcomes. The relationship between them and the mechanism of action in head and neck cancers deserve further investigation.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wen Ping Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Gang Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
15
|
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading cancers in the world. OSCC patients are managed with surgery and/or chemoradiation. Prognoses and survival rates are dismal, however, and have not improved for more than 20 years. Recently, the concept of precision medicine was introduced, and the introduction of targeted therapeutics demonstrated promising outcomes. This article reviews the current understanding of initiation, progression, and metastasis of OSCC from both genetic and epigenetic perspectives. In addition, the applications and integration of omics technologies in biomarker discovery and drug development for treating OSCC are reviewed.
Collapse
|
16
|
Abstract
Tumor endothelial cells (TEC) play an indispensible role in tumor growth and metastasis although much of the detailed mechanism still remains elusive. In this study we characterized and compared the global gene expression profiles of TECs and control ECs isolated from human breast cancerous tissues and reduction mammoplasty tissues respectively by single cell RNA sequencing (scRNA-seq). Based on the qualified scRNA-seq libraries that we made, we found that 1302 genes were differentially expressed between these two EC phenotypes. Both principal component analysis (PCA) and heat map-based hierarchical clustering separated the cancerous versus control ECs as two distinctive clusters, and MetaCore disease biomarker analysis indicated that these differentially expressed genes are highly correlated with breast neoplasm diseases. Gene Set Enrichment Analysis software (GSEA) enriched these genes to extracellular matrix (ECM) signal pathways and highlighted 127 ECM-associated genes. External validation verified some of these ECM-associated genes are not only generally overexpressed in various cancer tissues but also specifically overexpressed in colorectal cancer ECs and lymphoma ECs. In conclusion, our data demonstrated that ECM-associated genes play pivotal roles in breast cancer EC biology and some of them could serve as potential TEC biomarkers for various cancers.
Collapse
|