1
|
Balachandra V, Thomas M, Shrestha RL, Sethi SC, Chari R, Lin S, Chih-Chien Cheng K, Karpova TS, Caplen NJ, Basrai MA. Protein Phosphatase 1 Regulatory Subunit PNUTS Prevents CENP-A Mislocalization and Chromosomal Instability. Mol Cell Biol 2025; 45:185-197. [PMID: 40270285 DOI: 10.1080/10985549.2025.2487010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Chromosomal instability (CIN), a major hallmark of cancer, can be driven by defects in the integrity of centromere or kinetochore structure. Coordinated control of phosphorylation and dephosphorylation activities during cell division is critical to ensure chromosomal stability. Overexpression of the centromeric histone H3 variant CENP-A is observed in many cancers, and its mislocalization to noncentromeric regions promotes CIN. We identified protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS) as a top candidate in a genome-wide siRNA screen for gene depletions that lead to increased nuclear CENP-A levels. Here, we define a role for PNUTS in preventing CENP-A mislocalization and CIN. Depletion of PNUTS resulted in high nuclear CENP-A levels throughout the cell cycle in a PP1-dependent manner. Consistent with these results, mislocalization of CENP-A and its interacting partner CENP-C were observed on mitotic chromosomes from PNUTS-depleted cells. Defects in kinetochore integrity and CIN phenotypes were also observed in PNUTS-depleted cells. Mechanistically, we show that depletion of the histone H3.3 chaperone DAXX suppresses the mislocalization of CENP-A and micronuclei incidence in PNUTS-depleted cells. In summary, our studies highlight the importance of phospho-regulation mediated by PNUTS in preventing CENP-A mislocalization and CIN.
Collapse
Affiliation(s)
- Vinutha Balachandra
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Makenzie Thomas
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshan L Shrestha
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhash Chandra Sethi
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raj Chari
- Genome Modification Core (GMC), Frederick National Lab for Cancer Research, Frederick, Maryland, USA
| | - Shinjen Lin
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Ken Chih-Chien Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatiana S Karpova
- Optical Microscopy Core, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Munira A Basrai
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Mahlke MA, Lumerman L, Nath P, Chittenden C, Hoyt S, Koeppel J, Xu Y, Raphael R, Zaffina K, Hook PW, Timp W, Miga KH, Campbell PJ, O'Neill RJ, Altemose N, Nechemia-Arbely Y. Evolution and instability of human centromeres are accelerated by heterochromatin boundary loss and CENP-A overexpression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636285. [PMID: 39975122 PMCID: PMC11838504 DOI: 10.1101/2025.02.03.636285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Centromere location is specified by CENP-A, a centromere-specific histone that epigenetically defines centromere identity. How CENP-A is maintained at one location in rapidly evolving centromeric DNA is unknown. Using single-cell-derived clones of human cell lines, we demonstrate single-cell heterogeneity in CENP-A position within cell populations at neocentromeres and a native centromere. CENP-A heterogeneity is accompanied by unique DNA methylation and H3K9me3 patterns, with DNA methylation shifting according to CENP-A position. We further demonstrate centromere epigenetic evolution over prolonged proliferation, with native centromeres maintaining stable heterochromatin boundaries, but neocentromeres exhibiting DNA methylation instability, H3K9me3 gain, boundary loss and fragility. Lastly, prolonged CENP-A and HJURP overexpression leads to centromere and neocentromere expansion, gradual CENP-A depletion, neocentromere destabilization and CENP-A re-localization that is accompanied by local heterochromatin remodeling. This study reveals the naturally evolving epigenetic plasticity of human centromeres and neocentromeres and highlights the importance of repressive chromatin boundaries in maintaining centromere stability.
Collapse
|
3
|
Ohkuni K, Au WC, Kazi A, Balachandra V, Basrai M. Oncohistone H3 E97K mutation facilitates CENP-A mislocalization and chromosomal instability in budding yeast. Nucleic Acids Res 2025; 53:gkaf083. [PMID: 39945320 PMCID: PMC11822376 DOI: 10.1093/nar/gkaf083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Mislocalization of overexpressed CENP-A (Cse4 in budding yeast) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Overexpression of CENP-A is observed in many cancers and this correlates with poor prognosis. Here, we show that altered stoichiometry of histone H3 and expression of oncohistone mutation H3 E97K contributes to mislocalization of Cse4 and CIN. Oncohistone mutations in the globular domain of histone H3 such as H3 E97K occur in several cancers; however, their functional effects remain unexplored. We demonstrated that strains with reduced gene dosage of histone H3 (hht1Δ and hht2Δ) or oncohistone H3 E97K mutation exhibit enhanced Cse4-H4 interaction, an in vivo change in the conformational state of Cse4, and this contributes to mislocalization of Cse4. Oncohistone H3 E97K mutant protein was unstable and exhibited defects in interaction with histone H4. Notably, mislocalization of Cse4 and CIN phenotypes were observed in hht1Δ and oncohistone H3 E97K mutants expressing endogenous Cse4. In summary, our studies highlight the importance of histone H3 stoichiometry in preventing mislocalization of Cse4 for chromosomal stability and suggest that oncohistone H3 mutations may contribute to CIN in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amira Z Kazi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinutha Balachandra
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Parashara P, Medina-Pritchard B, Abad MA, Sotelo-Parrilla P, Thamkachy R, Grundei D, Zou J, Spanos C, Kumar CN, Basquin C, Das V, Yan Z, Al-Murtadha AA, Kelly DA, McHugh T, Imhof A, Rappsilber J, Jeyaprakash AA. PLK1-mediated phosphorylation cascade activates Mis18 complex to ensure centromere inheritance. Science 2024; 385:1098-1104. [PMID: 39236175 DOI: 10.1126/science.ado8270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
Accurate chromosome segregation requires the attachment of microtubules to centromeres, epigenetically defined by the enrichment of CENP-A nucleosomes. During DNA replication, CENP-A nucleosomes undergo dilution. To preserve centromere identity, correct amounts of CENP-A must be restored in a cell cycle-controlled manner orchestrated by the Mis18 complex (Mis18α-Mis18β-Mis18BP1). We demonstrate here that PLK1 interacts with the Mis18 complex by recognizing self-primed phosphorylations of Mis18α (Ser54) and Mis18BP1 (Thr78 and Ser93) through its Polo-box domain. Disrupting these phosphorylations perturbed both centromere recruitment of the CENP-A chaperone HJURP and new CENP-A loading. Biochemical and functional analyses showed that phosphorylation of Mis18α and PLK1 binding were required to activate Mis18α-Mis18β and promote Mis18 complex-HJURP interaction. Thus, our study reveals key molecular events underpinning the licensing role of PLK1 in ensuring accurate centromere inheritance.
Collapse
Affiliation(s)
- Pragya Parashara
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Reshma Thamkachy
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David Grundei
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chandni Natalia Kumar
- Protein Analysis Unit, Biomedical Centre Munich, Faculty of Medicine, Ludwig-Maximilians-University, 82152 Munich, Germany
| | - Claire Basquin
- Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Vimal Das
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhaoyue Yan
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Toni McHugh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Axel Imhof
- Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
6
|
Zhang T, Au WC, Ohkuni K, Shrestha RL, Kaiser P, Basrai MA. Mck1-mediated proteolysis of CENP-A prevents mislocalization of CENP-A for chromosomal stability in Saccharomyces cerevisiae. Genetics 2024; 228:iyae108. [PMID: 38984710 PMCID: PMC11373516 DOI: 10.1093/genetics/iyae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Centromeric localization of evolutionarily conserved CENP-A (Cse4 in Saccharomyces cerevisiae) is essential for chromosomal stability. Mislocalization of overexpressed CENP-A to noncentromeric regions contributes to chromosomal instability in yeasts, flies, and humans. Overexpression and mislocalization of CENP-A observed in many cancers are associated with poor prognosis. Previous studies have shown that F-box proteins, Cdc4 and Met30 of the Skp, Cullin, F-box ubiquitin ligase cooperatively regulate proteolysis of Cse4 to prevent Cse4 mislocalization and chromosomal instability under normal physiological conditions. Mck1-mediated phosphorylation of Skp, Cullin, F-box-Cdc4 substrates such as Cdc6 and Rcn1 enhances the interaction of the substrates with Cdc4. Here, we report that Mck1 interacts with Cse4, and Mck1-mediated proteolysis of Cse4 prevents Cse4 mislocalization for chromosomal stability. Our results showed that mck1Δ strain overexpressing CSE4 (GAL-CSE4) exhibits lethality, defects in ubiquitin-mediated proteolysis of Cse4, mislocalization of Cse4, and reduced Cse4-Cdc4 interaction. Strain expressing GAL-cse4-3A with mutations in three potential Mck1 phosphorylation consensus sites (S10, S16, and T166) also exhibits growth defects, increased stability with mislocalization of Cse4-3A, chromosomal instability, and reduced interaction with Cdc4. Constitutive expression of histone H3 (Δ16H3) suppresses the chromosomal instability phenotype of GAL-cse4-3A strain, suggesting that the chromosomal instability phenotype is linked to Cse4-3A mislocalization. We conclude that Mck1 and its three potential phosphorylation sites on Cse4 promote Cse4-Cdc4 interaction and this contributes to ubiquitin-mediated proteolysis of Cse4 preventing its mislocalization and chromosomal instability. These studies advance our understanding of pathways that regulate cellular levels of CENP-A to prevent mislocalization of CENP-A in human cancers.
Collapse
Affiliation(s)
- Tianyi Zhang
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute. National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Sethi SC, Shrestha RL, Balachandra V, Durairaj G, Au WC, Nirula M, Karpova TS, Kaiser P, Basrai MA. β-TrCP-Mediated Proteolysis of Mis18β Prevents Mislocalization of CENP-A and Chromosomal Instability. Mol Cell Biol 2024; 44:429-442. [PMID: 39135477 PMCID: PMC11486186 DOI: 10.1080/10985549.2024.2382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 10/15/2024] Open
Abstract
Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18β with CENP-A specific chaperone HJURP. Cellular levels of Mis18β are regulated by β-transducin repeat containing protein (β-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in β-TrCP-mediated proteolysis of Mis18β contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in β-TrCP depleted cells is dependent on high levels of Mis18β as depletion of Mis18β suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18β alone. In summary, our results show that β-TrCP-mediated degradation of Mis18β prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18β may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roshan Lal Shrestha
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vinutha Balachandra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Geetha Durairaj
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Nirula
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatiana S. Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Peng Y, Zhang Y, Fang R, Jiang H, Lan G, Xu Z, Liu Y, Nie Z, Ren L, Wang F, Zhang S, Ma Y, Yang P, Ge H, Zhang W, Luo C, Li A, He W. Target Identification and Mechanistic Characterization of Indole Terpenoid Mimics: Proper Spindle Microtubule Assembly Is Essential for Cdh1-Mediated Proteolysis of CENP-A. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305593. [PMID: 38873820 PMCID: PMC11304278 DOI: 10.1002/advs.202305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Indexed: 06/15/2024]
Abstract
Centromere protein A (CENP-A), a centromere-specific histone H3 variant, is crucial for kinetochore positioning and chromosome segregation. However, its regulatory mechanism in human cells remains incompletely understood. A structure-activity relationship (SAR) study of the cell-cycle-arresting indole terpenoid mimic JP18 leads to the discovery of two more potent analogs, (+)-6-Br-JP18 and (+)-6-Cl-JP18. Tubulin is identified as a potential cellular target of these halogenated analogs by using the drug affinity responsive target stability (DARTS) based method. X-ray crystallography analysis reveals that both molecules bind to the colchicine-binding site of β-tubulin. Treatment of human cells with microtubule-targeting agents (MTAs), including these two compounds, results in CENP-A accumulation by destabilizing Cdh1, a co-activator of the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. This study establishes a link between microtubule dynamics and CENP-A accumulation using small-molecule tools and highlights the role of Cdh1 in CENP-A proteolysis.
Collapse
Affiliation(s)
- Yan Peng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Yumeng Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Ruan Fang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Hao Jiang
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Gongcai Lan
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhou Xu
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Yajie Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Zhaoyang Nie
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Lu Ren
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Fengcan Wang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| | - Shou‐De Zhang
- State Key Laboratory of Plateau Ecology and AgricultureQinghai UniversityXining810016China
| | - Yuyong Ma
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
| | - Peng Yang
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Hong‐Hua Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Wei‐Dong Zhang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghai200433China
| | - Cheng Luo
- Drug Discovery and Design CenterState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Ang Li
- State Key Laboratory of Chemical BiologyShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200032China
- Henan Institute of Advanced Technology and College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Weiwei He
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
9
|
Dabin J, Giacomini G, Petit E, Polo SE. New facets in the chromatin-based regulation of genome maintenance. DNA Repair (Amst) 2024; 140:103702. [PMID: 38878564 DOI: 10.1016/j.dnarep.2024.103702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024]
Abstract
The maintenance of genome integrity by DNA damage response machineries is key to protect cells against pathological development. In cell nuclei, these genome maintenance machineries operate in the context of chromatin, where the DNA wraps around histone proteins. Here, we review recent findings illustrating how the chromatin substrate modulates genome maintenance mechanisms, focusing on the regulatory role of histone variants and post-translational modifications. In particular, we discuss how the pre-existing chromatin landscape impacts DNA damage formation and guides DNA repair pathway choice, and how DNA damage-induced chromatin alterations control DNA damage signaling and repair, and DNA damage segregation through cell divisions. We also highlight that pathological alterations of histone proteins may trigger genome instability by impairing chromosome segregation and DNA repair, thus defining new oncogenic mechanisms and opening up therapeutic options.
Collapse
Affiliation(s)
- Juliette Dabin
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Giulia Giacomini
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Eliane Petit
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS Université Paris Cité, Paris, France.
| |
Collapse
|
10
|
Gao J, Li F. Heterochromatin repeat organization at an individual level: Rex1BD and the 14-3-3 protein coordinate to shape the epigenetic landscape within heterochromatin repeats. Bioessays 2024; 46:e2400030. [PMID: 38679759 DOI: 10.1002/bies.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
In eukaryotic cells, heterochromatin is typically composed of tandem DNA repeats and plays crucial roles in gene expression and genome stability. It has been reported that silencing at individual units within tandem heterochromatin repeats exhibits a position-dependent variation. However, how the heterochromatin is organized at an individual repeat level remains poorly understood. Using a novel genetic approach, our recent study identified a conserved protein Rex1BD required for position-dependent silencing within heterochromatin repeats. We further revealed that Rex1BD interacts with the 14-3-3 protein to regulate heterochromatin silencing by linking RNAi and HDAC pathways. In this review, we discuss how Rex1BD and the 14-3-3 protein coordinate to modulate heterochromatin organization at the individual repeat level, and comment on the biological significance of the position-dependent effect in heterochromatin repeats. We also identify the knowledge gaps that still need to be unveiled in the field.
Collapse
Affiliation(s)
- Jinxin Gao
- Department of Biology, New York University, New York, New York, USA
| | - Fei Li
- Department of Biology, New York University, New York, New York, USA
| |
Collapse
|
11
|
Valsakumar D, Voigt P. Nucleosomal asymmetry: a novel mechanism to regulate nucleosome function. Biochem Soc Trans 2024; 52:1219-1232. [PMID: 38778762 PMCID: PMC11346421 DOI: 10.1042/bst20230877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Nucleosomes constitute the fundamental building blocks of chromatin. They are comprised of DNA wrapped around a histone octamer formed of two copies each of the four core histones H2A, H2B, H3, and H4. Nucleosomal histones undergo a plethora of posttranslational modifications that regulate gene expression and other chromatin-templated processes by altering chromatin structure or by recruiting effector proteins. Given their symmetric arrangement, the sister histones within a nucleosome have commonly been considered to be equivalent and to carry the same modifications. However, it is now clear that nucleosomes can exhibit asymmetry, combining differentially modified sister histones or different variants of the same histone within a single nucleosome. Enabled by the development of novel tools that allow generating asymmetrically modified nucleosomes, recent biochemical and cell-based studies have begun to shed light on the origins and functional consequences of nucleosomal asymmetry. These studies indicate that nucleosomal asymmetry represents a novel regulatory mechanism in the establishment and functional readout of chromatin states. Asymmetry expands the combinatorial space available for setting up complex sets of histone marks at individual nucleosomes, regulating multivalent interactions with histone modifiers and readers. The resulting functional consequences of asymmetry regulate transcription, poising of developmental gene expression by bivalent chromatin, and the mechanisms by which oncohistones deregulate chromatin states in cancer. Here, we review recent progress and current challenges in uncovering the mechanisms and biological functions of nucleosomal asymmetry.
Collapse
Affiliation(s)
- Devisree Valsakumar
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Philipp Voigt
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, U.K
| |
Collapse
|
12
|
Bui M, Baek S, Bentahar RS, Melters DP, Dalal Y. Native and tagged CENP-A histones are functionally inequivalent. Epigenetics Chromatin 2024; 17:19. [PMID: 38825690 PMCID: PMC11145777 DOI: 10.1186/s13072-024-00543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. RESULTS We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. CONCLUSIONS These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.
Collapse
Affiliation(s)
- Minh Bui
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| | - Songjoon Baek
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Reda S Bentahar
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Daniël P Melters
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA
| | - Yamini Dalal
- Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, 41 Medlars Drive, Bldg 41/Rm B1300, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Balachandra V, Shrestha RL, Hammond CM, Lin S, Hendriks IA, Sethi SC, Chen L, Sevilla S, Caplen NJ, Chari R, Karpova TS, McKinnon K, Todd MA, Koparde V, Cheng KCC, Nielsen ML, Groth A, Basrai MA. DNAJC9 prevents CENP-A mislocalization and chromosomal instability by maintaining the fidelity of histone supply chains. EMBO J 2024; 43:2166-2197. [PMID: 38600242 PMCID: PMC11148058 DOI: 10.1038/s44318-024-00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
The centromeric histone H3 variant CENP-A is overexpressed in many cancers. The mislocalization of CENP-A to noncentromeric regions contributes to chromosomal instability (CIN), a hallmark of cancer. However, pathways that promote or prevent CENP-A mislocalization remain poorly defined. Here, we performed a genome-wide RNAi screen for regulators of CENP-A localization which identified DNAJC9, a J-domain protein implicated in histone H3-H4 protein folding, as a factor restricting CENP-A mislocalization. Cells lacking DNAJC9 exhibit mislocalization of CENP-A throughout the genome, and CIN phenotypes. Global interactome analysis showed that DNAJC9 depletion promotes the interaction of CENP-A with the DNA-replication-associated histone chaperone MCM2. CENP-A mislocalization upon DNAJC9 depletion was dependent on MCM2, defining MCM2 as a driver of CENP-A deposition at ectopic sites when H3-H4 supply chains are disrupted. Cells depleted for histone H3.3, also exhibit CENP-A mislocalization. In summary, we have defined novel factors that prevent mislocalization of CENP-A, and demonstrated that the integrity of H3-H4 supply chains regulated by histone chaperones such as DNAJC9 restrict CENP-A mislocalization and CIN.
Collapse
Grants
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- ZIA BC 010822 HHS | NIH | NCI | Center for Cancer Research (CCR)
- ZIA BC 011704 HHS | NIH | NCI | Center for Cancer Research (CCR)
- 75N91019D00024 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- 0135-00096B and 8020-00220B,EPIC-XS-823839,R146-A9159-16-S2 Independent Research Fund Denmark, European Union's Horizon 2020 research and innovation program, Danish Cancer Society
- ERC CoG 724436,R198-2015-269 and R313-2019-448,7016-00042B,NNF21OC0067425,NNF14CC0001 European Research Council, Lund-beck Foundation, Independent Research Fund Denmark, Novo Nordisk Foundation
- HHS | NIH | National Cancer Institute (NCI)
- Independent Research Fund Denmark, European Union’s Horizon 2020 research and innovation program, Danish Cancer Society
- NIH Intramural Research Program, Intramural Research Program of the National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Vinutha Balachandra
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roshan L Shrestha
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colin M Hammond
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Shinjen Lin
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Subhash Chandra Sethi
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lu Chen
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Sevilla
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core (GMC), Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Tatiana S Karpova
- Optical Microscopy Core, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine McKinnon
- Flow Cytometry Core, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Am Todd
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vishal Koparde
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ken Chih-Chien Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Munira A Basrai
- Yeast Genome Stability Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Renaud-Pageot C, Almouzni G. Tipping the balance in histone supply puts genome stability at stake. EMBO J 2024; 43:2091-2093. [PMID: 38698217 PMCID: PMC11148134 DOI: 10.1038/s44318-024-00112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
New work identifying an H3-H4 chaperone as factor restricting localization of CENP-A underscores the importance of balanced histone levels for maintaining proper chromosome segregation.
Collapse
Affiliation(s)
- Charlène Renaud-Pageot
- Institut Curie, CNRS, PSL Research University, Sorbonne University, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Geneviève Almouzni
- Institut Curie, CNRS, PSL Research University, Sorbonne University, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
15
|
Khurana S, Varma D, Foltz DR. Contribution of CENP-F to FOXM1-Mediated Discordant Centromere and Kinetochore Transcriptional Regulation. Mol Cell Biol 2024; 44:209-225. [PMID: 38779933 PMCID: PMC11204039 DOI: 10.1080/10985549.2024.2350543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Proper chromosome segregation is required to ensure chromosomal stability. The centromere (CEN) is a unique chromatin domain defined by CENP-A and is responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating microtubule spindle attachment and mitotic checkpoint function. Upregulation of many CEN/KT genes is commonly observed in cancer. Here, we show that although FOXM1 occupies promoters of many CEN/KT genes with MYBL2, FOXM1 overexpression alone is insufficient to drive the FOXM1-correlated transcriptional program. CENP-F is canonically an outer kinetochore component; however, it functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in altered chromatin accessibility at G2/M genes and reduced FOXM1-MBB complex formation. We show that coordinated CENP-FFOXM1 transcriptional regulation is a cancer-specific function. We observe a small subset of CEN/KT genes including CENP-C, that are not regulated by FOXM1. Upregulation of CENP-C in the context of CENP-A overexpression leads to increased chromosome missegregation and cell death suggesting that escape of CENP-C from FOXM1 regulation is a cancer survival mechanism. Together, we show that FOXM1 and CENP-F coordinately regulate G2/M genes, and this coordination is specific to a subset of genes to allow for maintenance of chromosome instability levels and subsequent cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dileep Varma
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Cellular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Lim KK, Lam UTF, Li Y, Zeng YB, Yang H, Chen ES. Set2 regulates Ccp1 and Swc2 to ensure centromeric stability by retargeting CENP-A. Nucleic Acids Res 2024; 52:4198-4214. [PMID: 38442274 PMCID: PMC11077061 DOI: 10.1093/nar/gkae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Precise positioning of the histone-H3 variant, CENP-A, ensures centromere stability and faithful chromosomal segregation. Mislocalization of CENP-A to extra-centromeric loci results in aneuploidy and compromised cell viability associated with formation of ectopic kinetochores. The mechanism that retargets mislocalized CENP-A back to the centromere is unclarified. We show here that the downregulation of the histone H3 lysine 36 (H3K36) methyltransferase Set2 can preserve centromere localization of a temperature-sensitive mutant cnp1-1 Schizosaccharomyces pombe CENP-A (SpCENP-A) protein and reverse aneuploidy by redirecting mislocalized SpCENP-A back to centromere from ribosomal DNA (rDNA) loci, which serves as a sink for the delocalized SpCENP-A. Downregulation of set2 augments Swc2 (SWR1 complex DNA-binding module) expression and releases histone chaperone Ccp1 from the centromeric reservoir. Swc2 and Ccp1 are directed to the rDNA locus to excavate the SpCENP-Acnp1-1, which is relocalized to the centromere in a manner dependent on canonical SpCENP-A loaders, including Mis16, Mis17 and Mis18, thereby conferring cell survival and safeguarding chromosome segregation fidelity. Chromosome missegregation is a severe genetic instability event that compromises cell viability. This mechanism thus promotes CENP-A presence at the centromere to maintain genomic stability.
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ying Li
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Bing Zeng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Henry Yang
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University Health System, Singapore
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore
| |
Collapse
|
17
|
Ohkuni K, Au WC, Kazi A, Villamil M, Kaiser P, Basrai M. Interaction of histone H4 with Cse4 facilitates conformational changes in Cse4 for its sumoylation and mislocalization. Nucleic Acids Res 2024; 52:643-659. [PMID: 38038247 PMCID: PMC10810195 DOI: 10.1093/nar/gkad1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Mislocalization of overexpressed CENP-A (Cse4 in budding yeast, Cnp1 in fission yeast, CID in flies) contributes to chromosomal instability (CIN) in yeasts, flies, and human cells. Mislocalization of CENP-A is observed in many cancers and this correlates with poor prognosis. Structural mechanisms that contribute to mislocalization of CENP-A are poorly defined. Here, we show that interaction of histone H4 with Cse4 facilitates an in vivo conformational change in Cse4 promoting its mislocalization in budding yeast. We determined that Cse4 Y193A mutant exhibits reduced sumoylation, mislocalization, interaction with histone H4, and lethality in psh1Δ and cdc48-3 strains; all these phenotypes are suppressed by increased gene dosage of histone H4. We developed a new in vivo approach, antibody accessibility (AA) assay, to examine the conformation of Cse4. AA assay showed that wild-type Cse4 with histone H4 is in an 'open' state, while Cse4 Y193A predominantly exhibits a 'closed' state. Increased gene dosage of histone H4 contributes to a shift of Cse4 Y193A to an 'open' state with enhanced sumoylation and mislocalization. We provide molecular insights into how Cse4-H4 interaction changes the conformational state of Cse4 in vivo. These studies advance our understanding for mechanisms that promote mislocalization of CENP-A in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amira Z Kazi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Villamil
- Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697-1700, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697-1700, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Ólafsson G, Haase MAB, Boeke JD. Humanization reveals pervasive incompatibility of yeast and human kinetochore components. G3 (BETHESDA, MD.) 2023; 14:jkad260. [PMID: 37962556 PMCID: PMC10755175 DOI: 10.1093/g3journal/jkad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Kinetochores assemble on centromeres to drive chromosome segregation in eukaryotic cells. Humans and budding yeast share most of the structural subunits of the kinetochore, whereas protein sequences have diverged considerably. The conserved centromeric histone H3 variant, CenH3 (CENP-A in humans and Cse4 in budding yeast), marks the site for kinetochore assembly in most species. A previous effort to complement Cse4 in yeast with human CENP-A was unsuccessful; however, co-complementation with the human core nucleosome was not attempted. Previously, our lab successfully humanized the core nucleosome in yeast; however, this severely affected cellular growth. We hypothesized that yeast Cse4 is incompatible with humanized nucleosomes and that the kinetochore represented a limiting factor for efficient histone humanization. Thus, we argued that including the human CENP-A or a Cse4-CENP-A chimera might improve histone humanization and facilitate kinetochore function in humanized yeast. The opposite was true: CENP-A expression reduced histone humanization efficiency, was toxic to yeast, and disrupted cell cycle progression and kinetochore function in wild-type (WT) cells. Suppressors of CENP-A toxicity included gene deletions of subunits of 3 conserved chromatin remodeling complexes, highlighting their role in CenH3 chromatin positioning. Finally, we attempted to complement the subunits of the NDC80 kinetochore complex, individually and in combination, without success, in contrast to a previous study indicating complementation by the human NDC80/HEC1 gene. Our results suggest that limited protein sequence similarity between yeast and human components in this very complex structure leads to failure of complementation.
Collapse
Affiliation(s)
- Guðjón Ólafsson
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 14 11201, USA
| |
Collapse
|
19
|
Khurana S, Foltz DR. Contribution of CENP-F to FOXM1-mediated discordant centromere and kinetochore transcriptional regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573453. [PMID: 38234763 PMCID: PMC10793414 DOI: 10.1101/2023.12.27.573453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Proper chromosome segregation is required to ensure genomic and chromosomal stability. The centromere is a unique chromatin domain present throughout the cell cycle on each chromosome defined by the CENP-A nucleosome. Centromeres (CEN) are responsible for recruiting the kinetochore (KT) during mitosis, ultimately regulating spindle attachment and mitotic checkpoint function. Upregulation of many genes that encode the CEN/KT proteins is commonly observed in cancer. Here, we show although that FOXM1 occupies the promoters of many CEN/KT genes with MYBL2, occupancy is insufficient alone to drive the FOXM1 correlated transcriptional program. We show that CENP-F, a component of the outer kinetochore, functions with FOXM1 to coregulate G2/M transcription and proper chromosome segregation. Loss of CENP-F results in alteration of chromatin accessibility at G2/M genes, including CENP-A, and leads to reduced FOXM1-MBB complex formation. The FOXM1-CENP-F transcriptional coordination is a cancer-specific function. We observed that a few CEN/KT genes escape FOXM1 regulation such as CENP-C which when upregulated with CENP-A, leads to increased chromosome misegregation and cell death. Together, we show that the FOXM1 and CENP-F coordinately regulate G2/M gene expression, and this coordination is specific to a subset of genes to allow for proliferation and maintenance of chromosome stability for cancer cell survival.
Collapse
Affiliation(s)
- Sakshi Khurana
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Daniel R. Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Simpsom Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
20
|
Yang Z, Wu H, Dai D, Yuan Y, Shao X. ZNF692 Promotes the Progression of Colon Adenocarcinoma by Regulating HSF4 Expression. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:2601-2610. [PMID: 38435777 PMCID: PMC10903307 DOI: 10.18502/ijph.v52i12.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 03/05/2024]
Abstract
Background Colon adenocarcinoma (COAD) is one of the most common cancer happened in gastrointestinal tract, with the overall incidence rate of 4%-5% among human beings. Like most malignancies, we uncovered the exact mechanisms of the pathogenesis of colorectal cancer yet. Therefore, there is an urgent need to explore the molecules that can be used as diagnostic maker at early stage. In addition, we also need to define the essential factors that related to the prognosis and treatment of the colon carcinoma. Methods The study was conducted at the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China in September 2020. The R language was used to identify the differentially expressed genes. We performed receiver operating characteristic curve analysis to determine the diagnostic markers for COAD. The machine learning strategy was used to assess the effectiveness of genes in the diagnosis of COAD. The molecular mechanism and prognostic value of genes were explored by bioinformatics analysis and molecular experiments. Results The expression level of heat shock factor 4 (HSF4) was significantly elevated in COAD patients (P=1.89×10-29), according to The Cancer Genome Atlas (TCGA) database. Additionally, survival analysis showed the higher expression level of the HSF4 was correlated with the poor prognosis in COAD. Conclusion The HSF4 was the target gene of zinc finger protein 692(ZNF692). HSF4 might promote the progression of COAD through the apoptosis pathway. It was diagnostic and prognosis maker of COAD. Furthermore, the upstream gene of HSF4, ZNF692, promotes the progression of colorectal cancer by regulating HSF4 expression.
Collapse
Affiliation(s)
- Zhengpeng Yang
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Hao Wu
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Defu Dai
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Yufeng Yuan
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| | - Xueqian Shao
- Department of General Surgery, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161002, China
| |
Collapse
|
21
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
22
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 2023; 42:e114534. [PMID: 37469281 PMCID: PMC10476280 DOI: 10.15252/embj.2023114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R Popchock
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| | - Joshua D Larson
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | | | - Charles L Asbury
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sue Biggins
- Basic Sciences Division, Howard Hughes Medical InstituteFred Hutchinson Cancer CenterSeattleWAUSA
| |
Collapse
|
23
|
Aldwaik RK, Shian D, Thapa R, Vasudevan S, Ashqar MAA, Reich E, Kravchenko-Balasha N, Klutstein M. Overexpressed kinetochore genes are used by cancer cells as genome destabilizers and transformation catalysts. Transl Oncol 2023; 34:101703. [PMID: 37295219 DOI: 10.1016/j.tranon.2023.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer cells have an altered transcriptome, which contributes to their abnormal behavior. Many tumors have high levels of kinetochore genes, which play important roles in genome stability. This overexpression could be utilized to destabilize cancer cell genomes, however this has not been proven specifically. We investigated the link between kinetochore gene overexpression, chromosomal number variations (CNVs) and genomic instability. Data on RNA expression and CNV from 12 different cancer types were evaluated using information theory. In all cancer types, we looked at the relationship between RNA expression and CNVs. Kinetochore gene expression was found to be substantially linked with CNV levels. In all cancer types, with the exception of thyroid cancer, highly expressed kinetochore genes were enriched in the most dominant cancer-specific co-expression subnetworks characterizing the largest patient subgroups. Except for thyroid cancer, kinetochore inner protein CENPA was among the transcripts most strongly associated with CNV values in all cancer types studied, with significantly higher expression levels in patients with high CNVs than in patients with low CNVs. CENPA function was investigated further in cell models by transfecting genomically stable (HCT116) and unstable (MCF7 and HT29) cancer cell lines using CENPA overexpression vectors. This overexpression increased the number of abnormal cell divisions in the stable cancer cell line HCT116 and, to a lesser extent, in the unstable cell lines MCF7 and HT29. Overexpression improved anchorage-independent growth properties of all cell lines. Our findings suggest that overexpression of kinetochore genes in general, and CENPA in particular, can cause genomic instability and cancer progression.
Collapse
Affiliation(s)
- Reem Kamal Aldwaik
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Denen Shian
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Roshina Thapa
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Swetha Vasudevan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Mimi Abo-Ayoub Ashqar
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Eli Reich
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| | - Michael Klutstein
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
24
|
Popchock AR, Larson JD, Dubrulle J, Asbury CL, Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524981. [PMID: 36711558 PMCID: PMC9882320 DOI: 10.1101/2023.01.20.524981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Eukaryotic chromosome segregation requires the kinetochore, a megadalton-sized machine that forms on specialized centromeric chromatin containing CENP-A, a histone H3 variant. CENP-A deposition requires a chaperone protein HJURP that targets it to the centromere, but it has remained unclear whether HJURP has additional functions beyond CENP-A targeting and why high AT DNA content, which disfavors nucleosome assembly, is widely conserved at centromeres. To overcome the difficulties of studying nucleosome formation in vivo, we developed a microscopy assay that enables direct observation of de novo centromeric nucleosome recruitment and maintenance with single molecule resolution. Using this assay, we discover that CENP-A can arrive at centromeres without its dedicated centromere-specific chaperone HJURP, but stable incorporation depends on HJURP and additional DNA-binding proteins of the inner kinetochore. We also show that homopolymer AT runs in the yeast centromeres are essential for efficient CENP-A deposition. Together, our findings reveal requirements for stable nucleosome formation and provide a foundation for further studies of the assembly and dynamics of native kinetochore complexes.
Collapse
Affiliation(s)
- Andrew R. Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Joshua D. Larson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Charles L. Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Wang Y, Chen J, Meng W, Zhao R, Lin W, Mei P, Xiao H, Liao Y. A five-gene expression signature of centromeric proteins with prognostic value in lung adenocarcinoma. Transl Cancer Res 2023; 12:273-286. [PMID: 36915596 PMCID: PMC10007894 DOI: 10.21037/tcr-22-2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 02/08/2023]
Abstract
Background Centromere proteins (CENPs) form a large protein family. Sixteen proteins in this family are positioned at the centromere throughout the cell cycle. The overexpression of CENPs is common in many cancers and predicts a poor prognosis. However, a comprehensive analysis of CENPs expression has not been conducted, and their clinical significance in lung adenocarcinoma (LUAD) is unclear. Methods We investigated the expression differences of the CENP family in LUAD using The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) cohorts. Kaplan-Meier curve survival analysis was performed to assess their independent prognostic values. We then tested 5 clinical LUAD specimens by quantitative real time polymerase chain reaction (qRT-PCR). The risk model was constructed with least absolute shrinkage and selection operator (LASSO). Cox regression analyses were carried out to determine independent prognostic indicators. Weighted gene coexpression network analysis (WGCNA) was employed to define the coexpression networks. Results The messenger RNA (mRNA) expression of 15 differential CENP proteins was higher in LUAD than in normal lung tissues. Among them, 10 CENP proteins had significant prognostic value. The risk model comprising CENPF, CENPU, CENPM, CENPH, and CENPW showed a significant correlation [hazard ratio (HR) 1.75, 95% confidence interval (CI): 1.3-2.35; P=2e-04]. However, the prognostic accuracy was not strong [1-year survival: area under curve (AUC) 0.63; 3-year survival: AUC 0.62; 5-year survival: AUC 0.6]. The qRT-PCR results showed that the 5 CENPs were upregulated in LUAD tissues compared to in normal lung tissues. A total of 441 hub genes coexpressed with the 5 CENPs were identified. Conclusions CENPF, CENPU, CENPM, CENPH, and CENPW have prognostic values and may be potential targets for LUAD treatment.
Collapse
Affiliation(s)
- Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Mohapatra S, Winkle M, Ton AN, Nguyen D, Calin GA. The Role of Non-Coding RNAs in Chromosomal Instability in Cancer. J Pharmacol Exp Ther 2023; 384:10-19. [PMID: 36167417 PMCID: PMC9827503 DOI: 10.1124/jpet.122.001357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
Chromosomal instability (CIN) is characterized by an increased frequency of changes in chromosome structure or number and is regarded as a hallmark of cancer. CIN plays a prevalent role in tumorigenesis and cancer progression by assisting the cancer cells' phenotypic adaptation to stress, which have been tightly linked to therapy resistance and metastasis. Both CIN-inducing and CIN-repressing agents are being clinically tested for the treatment of cancer to increase CIN levels to unsustainable levels leading to cell death or to decrease CIN levels to limit the development of drug resistance, respectively. Non-coding RNAs (ncRNAs) including microRNAs and long ncRNAs (lncRNAs) have been fundamentally implicated in CIN. The miR-22, miR-26a, miR-28, and miR-186 target important checkpoint proteins involved in mediating chromosomal stability and their expression modulation has been directly related to CIN occurrence. lncRNAs derived from telomeric, centrosomal, and enhancer regions play an important role in mediating genome stability, while specific lncRNA transcripts including genomic instability inducing RNA called Ginir, P53-responsive lncRNA termed as GUARDIN, colon cancer-associated transcript 2, PCAT2, and ncRNA activated by DNA damage called NORAD have been shown to act within CIN-associated pathways. In this review, we discuss how these ncRNAs either maintain or disrupt the stability of chromosomes and how these mechanisms could be exploited for novel therapeutic approaches targeting CIN in cancer patients. SIGNIFICANCE STATEMENT: Chromosomal instability increases tumor heterogeneity and thereby assists the phenotypic adaptation of cancer cells, causing therapy resistance and metastasis. Several microRNAs and long non-coding RNAs that have been causally linked to chromosomal instability could represent novel therapeutic targets. Understanding the role of non-coding RNAs in regulating different genes involved in driving chromosomal instability will give insights into how non-coding RNAs can be utilized toward modifying chemotherapeutic regimens in different cancers.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Melanie Winkle
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Anh N Ton
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - Dien Nguyen
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| | - George A Calin
- Department of Translational Molecular Pathology (S.M., M.W., A.N.T., G.A.C.), UT Health Graduate School of Biomedical Sciences (S.M.), Program in Molecular Genetic Technology, School of Health Professions (A.N.T.), and Center for RNA Interference and Non-Coding RNAs (G.A.C.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (D.N.)
| |
Collapse
|
27
|
Sokolova V, Sarkar S, Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J 2022; 21:299-311. [PMID: 36582440 PMCID: PMC9764139 DOI: 10.1016/j.csbj.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Histone proteins are highly conserved among all eukaryotes. They have two important functions in the cell: to package the genomic DNA and to regulate gene accessibility. Fundamental to these functions is the ability of histone proteins to interact with DNA and to form the nucleoprotein complex called chromatin. One of the mechanisms the cells use to regulate chromatin and gene expression is through replacing canonical histones with their variants at specific loci to achieve functional consequence. Recent cryo-electron microscope (cryo-EM) studies of chromatin containing histone variants reveal new details that shed light on how variant-specific features influence the structures and functions of chromatin. In this article, we review the current state of knowledge on histone variants biochemistry and discuss the implication of these new structural information on histone variant biology and their functions in transcription.
Collapse
|
28
|
Centromere Chromatin Dynamics at a Glance. EPIGENOMES 2022; 6:epigenomes6040039. [PMID: 36412794 PMCID: PMC9680212 DOI: 10.3390/epigenomes6040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The centromere is a specialized DNA locus that ensures the faithful segregation of chromosomes during cell division. It does so by directing the assembly of an essential proteinaceous structure called the kinetochore. The centromere identity is primarily epigenetically defined by a nucleosome containing an H3 variant called CENP-A as well as by the interplay of several factors such as differential chromatin organization driven by CENP-A and H2A.Z, centromere-associated proteins, and post-translational modifications. At the centromere, CENP-A is not just a driving force for kinetochore assembly but also modifies the structural and dynamic properties of the centromeric chromatin, resulting in a distinctive chromatin organization. An additional level of regulation of the centromeric chromatin conformation is provided by post-translational modifications of the histones in the CENP-A nucleosomes. Further, H2A.Z is present in the regions flanking the centromere for heterochromatinization. In this review, we focus on the above-mentioned factors to describe how they contribute to the organization of the centromeric chromatin: CENP-A at the core centromere, post-translational modifications that decorate CENP-A, and the variant H2A.Z.
Collapse
|
29
|
Yang Y, Duan M, Zha Y, Wu Z. CENP-A is a potential prognostic biomarker and correlated with immune infiltration levels in glioma patients. Front Genet 2022; 13:931222. [PMID: 36105094 PMCID: PMC9465177 DOI: 10.3389/fgene.2022.931222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Centromeric protein A (CENP-A), an essential protein involved in chromosomal segregation during cell division, is associated with several cancer types. However, its role in gliomas remains unclear. This study examined the clinical and prognostic significance of CENP-A in gliomas. Methods: Data of patients with glioma were collected from the Cancer Genome Atlas. Logistic regression, the Kruskal–Wallis test, and the Wilcoxon signed-rank test were performed to assess the relationship between CENP-A expression and clinicopathological parameters. The Cox regression model and Kaplan–Meier curve were used to analyze the association between CENP-A and survival outcomes. A prognostic nomogram was constructed based on Cox multivariate analysis. Gene set enrichment analysis (GSEA) was conducted to identify key CENP-A-related pathways and biological processes. Results:CENP-A was upregulated in glioma samples. Increased CENP-A levels were significantly associated with the world health organization (WHO) grade [Odds ratio (OR) = 49.88 (23.52–129.06) for grade 4 vs. grades 2 and 3], primary therapy outcome [OR = 2.44 (1.64–3.68) for progressive disease (PD) and stable disease (SD) vs. partial response (PR) and complete response (CR)], isocitrate dehydrogenase (IDH) status [OR = 13.76 (9.25–20.96) for wild-type vs. mutant], 1p/19q co-deletion [OR = 5.91 (3.95–9.06) for no codeletion vs. co-deletion], and age [OR = 4.02 (2.68–6.18) for > 60 vs. ≤ 60]. Elevated CENP-A expression was correlated with shorter overall survival in both univariate [hazard ratio (HR): 5.422; 95% confidence interval (CI): 4.044–7.271; p < 0.001] and multivariate analyses (HR: 1.967; 95% CI: 1.280–3.025; p < 0.002). GSEA showed enrichment of numerous cell cycle-and tumor-related pathways in the CENP-A high expression phenotype. The calibration plot and C-index indicated the favorable performance of our nomogram for prognostic prediction in patients with glioma. Conclusion: We propose a role for CENP-A in glioma progression and its potential as a biomarker for glioma diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyun Duan
- Health Science Center, Department of Medical Imaging, Yangtze University, Jingzhou, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| | - Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| |
Collapse
|
30
|
Guo X, Hintzsche H, Xu W, Ni J, Xue J, Wang X. Interplay of cGAS with micronuclei: Regulation and diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108440. [PMID: 35970331 DOI: 10.1016/j.mrrev.2022.108440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/01/2023]
Abstract
In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating cGAS and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN immunogenicity regulation and immunogenic MN pathophysiology.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| | - Henning Hintzsche
- Department of Food Safety, Institute of Nutrition and Food Sciences, University of Bonn, Germany.
| | - Weijiang Xu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
31
|
Renaud-Pageot C, Quivy JP, Lochhead M, Almouzni G. CENP-A Regulation and Cancer. Front Cell Dev Biol 2022; 10:907120. [PMID: 35721491 PMCID: PMC9201071 DOI: 10.3389/fcell.2022.907120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, CENP-A, a histone H3 variant found in the centromeric chromatin, is critical for faithful chromosome segregation and genome integrity maintenance through cell divisions. Specifically, it has dual functions, enabling to define epigenetically the centromere position and providing the foundation for building up the kinetochore. Regulation of its dynamics of synthesis and deposition ensures to propagate proper centromeres on each chromosome across mitosis and meiosis. However, CENP-A overexpression is a feature identified in many cancers. Importantly, high levels of CENP-A lead to its mislocalization outside the centromere. Recent studies in mammals have begun to uncover how CENP-A overexpression can affect genome integrity, reprogram cell fate and impact 3D nuclear organization in cancer. Here, we summarize the mechanisms that orchestrate CENP-A regulation. Then we review how, beyond its centromeric function, CENP-A overexpression is linked to cancer state in mammalian cells, with a focus on the perturbations that ensue at the level of chromatin organization. Finally, we review the clinical interest for CENP-A in cancer treatment.
Collapse
|
32
|
The ins and outs of CENP-A: Chromatin dynamics of the centromere-specific histone. Semin Cell Dev Biol 2022; 135:24-34. [PMID: 35422390 DOI: 10.1016/j.semcdb.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
Centromeres are highly specialised chromosome domains defined by the presence of an epigenetic mark, the specific histone H3 variant called CENP-A (centromere protein A). They constitute the genomic regions on which kinetochores form and when defective cause segregation defects that can lead to aneuploidy and cancer. Here, we discuss how CENP-A is established and maintained to propagate centromere identity while subjected to dynamic chromatin remodelling during essential cellular processes like DNA repair, replication, and transcription. We highlight parallels and identify conserved mechanisms between different model organism with a particular focus on 1) the establishment of CENP-A at centromeres, 2) CENP-A maintenance during transcription and replication, and 3) the mechanisms that help preventing CENP-A localization at non-centromeric sites. We then give examples of how timely loading of new CENP-A to the centromere, maintenance of old CENP-A during S-phase and transcription, and removal of CENP-A at non-centromeric sites are coordinated and controlled by an intricate network of factors whose identity is slowly being unravelled.
Collapse
|
33
|
Molecular Dynamics and Evolution of Centromeres in the Genus Equus. Int J Mol Sci 2022; 23:ijms23084183. [PMID: 35457002 PMCID: PMC9024551 DOI: 10.3390/ijms23084183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
The centromere is the chromosomal locus essential for proper chromosome segregation. While the centromeric function is well conserved and epigenetically specified, centromeric DNA sequences are typically composed of satellite DNA and represent the most rapidly evolving sequences in eukaryotic genomes. The presence of satellite sequences at centromeres hampered the comprehensive molecular analysis of these enigmatic loci. The discovery of functional centromeres completely devoid of satellite repetitions and fixed in some animal and plant species represented a turning point in centromere biology, definitively proving the epigenetic nature of the centromere. The first satellite-free centromere, fixed in a vertebrate species, was discovered in the horse. Later, an extraordinary number of satellite-free neocentromeres had been discovered in other species of the genus Equus, which remains the only mammalian genus with numerous satellite-free centromeres described thus far. These neocentromeres arose recently during evolution and are caught in a stage of incomplete maturation. Their presence made the equids a unique model for investigating, at molecular level, the minimal requirements for centromere seeding and evolution. This model system provided new insights on how centromeres are established and transmitted to the progeny and on the role of satellite DNA in different aspects of centromere biology.
Collapse
|
34
|
Ohkuni K, Gliford L, Au WC, Suva E, Kaiser P, Basrai M. Cdc48Ufd1/Npl4 segregase removes mislocalized centromeric histone H3 variant CENP-A from non-centromeric chromatin. Nucleic Acids Res 2022; 50:3276-3291. [PMID: 35234920 PMCID: PMC8989521 DOI: 10.1093/nar/gkac135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2023] Open
Abstract
Restricting the localization of CENP-A (Cse4 in Saccharomyces cerevisiae) to centromeres prevents chromosomal instability (CIN). Mislocalization of overexpressed CENP-A to non-centromeric chromatin contributes to CIN in budding and fission yeasts, flies, and humans. Overexpression and mislocalization of CENP-A is observed in cancers and is associated with increased invasiveness. Mechanisms that remove mislocalized CENP-A and target it for degradation have not been defined. Here, we report that Cdc48 and its cofactors Ufd1 and Npl4 facilitate the removal of mislocalized Cse4 from non-centromeric chromatin. Defects in removal of mislocalized Cse4 contribute to lethality of overexpressed Cse4 in cdc48,ufd1 andnpl4 mutants. High levels of polyubiquitinated Cse4 and mislocalization of Cse4 are observed in cdc48-3, ufd1-2 and npl4-1mutants even under normal physiological conditions, thereby defining polyubiquitinated Cse4 as the substrate of the ubiquitin directed segregase Cdc48Ufd1/Npl4. Accordingly, Npl4, the ubiquitin binding receptor, associates with mislocalized Cse4, and this interaction is dependent on Psh1-mediated polyubiquitination of Cse4. In summary, we provide the first evidence for a mechanism that facilitates the removal of polyubiquitinated and mislocalized Cse4 from non-centromeric chromatin. Given the conservation of Cdc48Ufd1/Npl4 in humans, it is likely that defects in such pathways may contribute to CIN in human cancers.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loran Gliford
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Arunkumar G, Baek S, Sturgill D, Bui M, Dalal Y. Oncogenic lncRNAs alter epigenetic memory at a fragile chromosomal site in human cancer cells. SCIENCE ADVANCES 2022; 8:eabl5621. [PMID: 35235361 PMCID: PMC8890707 DOI: 10.1126/sciadv.abl5621] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chromosome instability is a critical event in cancer progression. Histone H3 variant CENP-A plays a fundamental role in defining centromere identity, structure, and function but is innately overexpressed in several types of solid cancers. In the cancer background, excess CENP-A is deposited ectopically on chromosome arms, including 8q24/cMYC locus, by invading transcription-coupled H3.3 chaperone pathways. Up-regulation of lncRNAs in many cancers correlates with poor prognosis and recurrence in patients. We report that transcription of 8q24-derived oncogenic lncRNAs plays an unanticipated role in altering the 8q24 chromatin landscape by H3.3 chaperone-mediated deposition of CENP-A-associated complexes. Furthermore, a transgene cassette carrying specific 8q24-derived lncRNA integrated into a naïve chromosome locus recruits CENP-A to the new location in a cis-acting manner. These data provide a plausible mechanistic link between locus-specific oncogenic lncRNAs, aberrant local chromatin structure, and the generation of new epigenetic memory at a fragile site in human cancer cells.
Collapse
|
36
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
37
|
Wang K, Liu Y, Yu Z, Gu B, Hu J, Huang L, Ge X, Xu L, Zhang M, Zhao J, Hu M, Le R, Wu Q, Ye S, Gao S, Zhang X, Xu RM, Li G. Phosphorylation at Ser68 facilitates DCAF11-mediated ubiquitination and degradation of CENP-A during the cell cycle. Cell Rep 2021; 37:109987. [PMID: 34758320 DOI: 10.1016/j.celrep.2021.109987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/11/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
CENP-A (centromeric protein A), a histone H3 variant, specifies centromere identity and is essential to centromere maintenance. Little is known about how protein levels of CENP-A are controlled in mammalian cells. Here, we report that the phosphorylation of CENP-A Ser68 primes the ubiquitin-proteasome-mediated proteolysis of CENP-A during mitotic phase in human cultured cells. We identify two major polyubiquitination sites that are responsible for this phosphorylation-dependent degradation. Substituting the two residues, Lys49 and Lys124, with arginines abrogates proper CENP-A degradation and results in CENP-A mislocalization to non-centromeric regions. Furthermore, we find that DCAF11 (DDB1 and CUL4 associated factor 11/WDR23) is the E3 ligase that specifically mediates the observed polyubiquitination. Deletion of DCAF11 hampers CENP-A degradation and causes its mislocalization. We conclude that the Ser68 phosphorylation plays an important role in regulating cellular CENP-A homeostasis via DCAF11-mediated degradation to prevent ectopic localization of CENP-A during the cell cycle.
Collapse
Affiliation(s)
- Kehui Wang
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Yuting Liu
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouliang Yu
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Gu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Hu
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Xiao Ge
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyi Xu
- Department of Biophysics, Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengyu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jicheng Zhao
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Mingli Hu
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Le
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rui-Ming Xu
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohong Li
- National Laboratory of Bio-macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Dong Q, Yang J, Gao J, Li F. Recent insights into mechanisms preventing ectopic centromere formation. Open Biol 2021; 11:210189. [PMID: 34493071 PMCID: PMC8424319 DOI: 10.1098/rsob.210189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is a specialized chromosomal structure essential for chromosome segregation. Centromere dysfunction leads to chromosome segregation errors and genome instability. In most eukaryotes, centromere identity is specified epigenetically by CENP-A, a centromere-specific histone H3 variant. CENP-A replaces histone H3 in centromeres, and nucleates the assembly of the kinetochore complex. Mislocalization of CENP-A to non-centromeric regions causes ectopic assembly of CENP-A chromatin, which has a devastating impact on chromosome segregation and has been linked to a variety of human cancers. How non-centromeric regions are protected from CENP-A misincorporation in normal cells is largely unexplored. Here, we review the most recent advances on the mechanisms underlying the prevention of ectopic centromere formation, and discuss the implications in human disease.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinpu Yang
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Jinxin Gao
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003-6688, USA
| |
Collapse
|
39
|
Liu X, Wang H, Zhao G. Centromere Protein A Goes Far Beyond the Centromere in Cancers. Mol Cancer Res 2021; 20:3-10. [PMID: 34465586 DOI: 10.1158/1541-7786.mcr-21-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Centromere dysfunctions leading to numerical chromosome alterations are believed to be closely related to human cancers. As a centromere-specific protein, centromere protein A (CENP-A) replaces the histone H3 in centromeres and is therefore considered a key factor of centromere identity. Researches have shown that CENP-A is overexpressed in many types of human cancers. However, the behavior and function of CENP-A in tumorigenesis have not yet been systematically summarized. In this article, we describe the pleiotropic roles of CENP-A in human cells. Moreover, we provide a comprehensive review of the current knowledge on the relationship between aberrant expression and ectopic localization of CENP-A and tumorigenesis, and the mechanism of the ectopic deposition of CENP-A in cancers. Furthermore, we note that some oncogenic viruses can modulate the expression and localization of this centromere protein along with its chaperone. At last, we also discuss the therapeutic potential of targeting CENP-A for cancer therapy.
Collapse
Affiliation(s)
- Xiaolan Liu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei, China. .,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Haiping Wang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Guojun Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Leo L, Colonna Romano N. Emerging Single-Cell Technological Approaches to Investigate Chromatin Dynamics and Centromere Regulation in Human Health and Disease. Int J Mol Sci 2021; 22:ijms22168809. [PMID: 34445507 PMCID: PMC8395756 DOI: 10.3390/ijms22168809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulators play a crucial role in establishing and maintaining gene expression states. To date, the main efforts to study cellular heterogeneity have focused on elucidating the variable nature of the chromatin landscape. Specific chromatin organisation is fundamental for normal organogenesis and developmental homeostasis and can be affected by different environmental factors. The latter can lead to detrimental alterations in gene transcription, as well as pathological conditions such as cancer. Epigenetic marks regulate the transcriptional output of cells. Centromeres are chromosome structures that are epigenetically regulated and are crucial for accurate segregation. The advent of single-cell epigenetic profiling has provided finer analytical resolution, exposing the intrinsic peculiarities of different cells within an apparently homogenous population. In this review, we discuss recent advances in methodologies applied to epigenetics, such as CUT&RUN and CUT&TAG. Then, we compare standard and emerging single-cell techniques and their relevance for investigating human diseases. Finally, we describe emerging methodologies that investigate centromeric chromatin specification and neocentromere formation.
Collapse
|
41
|
Ryu HY, Hochstrasser M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res 2021; 49:6043-6052. [PMID: 33885816 PMCID: PMC8216275 DOI: 10.1093/nar/gkab280] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Chromatin structure and gene expression are dynamically controlled by post-translational modifications (PTMs) on histone proteins, including ubiquitylation, methylation, acetylation and small ubiquitin-like modifier (SUMO) conjugation. It was initially thought that histone sumoylation exclusively suppressed gene transcription, but recent advances in proteomics and genomics have uncovered its diverse functions in cotranscriptional processes, including chromatin remodeling, transcript elongation, and blocking cryptic initiation. Histone sumoylation is integral to complex signaling codes that prime additional histone PTMs as well as modifications of the RNA polymerase II carboxy-terminal domain (RNAPII-CTD) during transcription. In addition, sumoylation of histone variants is critical for the DNA double-strand break (DSB) response and for chromosome segregation during mitosis. This review describes recent findings on histone sumoylation and its coordination with other histone and RNAPII-CTD modifications in the regulation of chromatin dynamics.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
42
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
43
|
Cai G, Yang Q, Sun W. RSF1 in cancer: interactions and functions. Cancer Cell Int 2021; 21:315. [PMID: 34147108 PMCID: PMC8214769 DOI: 10.1186/s12935-021-02012-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
RSF1, remodelling and spacing factor 1, is an important interphase centromere protein and is overexpressed in many types of cancers and correlated with poor overall survival. RSF1 has functions mainly in maintaining chromosome stability, facilitating DNA repair, maintaining the protein homeostasis of RSF1 and suppressing the transcription of some oncogenes when RSF1 protein is expressed at an optimal level; however, RSF1 overexpression facilitates drug resistance and cell cycle checkpoint inhibition to prompt cancer proliferation and survival. The RSF1 expression level and gene background are crucial for RSF1 functions, which may explain why RSF1 has different functions in different cancer types. This review summarizes the functional domains of RSF1, the overexpression status of RSF1 and SNF2H in cancer based on the TCGA and GTEX databases, the cancer-related functions of RSF1 in interacting with H2Aub, HDAC1, CENP-A, PLK1, ATM, CENP-S, SNF2H, HBX, BubR1, cyclin E1, CBP and NF-κB and the potential clinical value of RSF1, which will lay a theoretical foundation for the structural biology study of RSF1 and application of RSF1 inhibitors, truncated RSF1 proteins and SNF2H inhibitors in the treatment of RSF1-overexpressing tumours.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Reduce, Retain, Recycle: Mechanisms for Promoting Histone Protein Degradation versus Stability and Retention. Mol Cell Biol 2021; 41:e0000721. [PMID: 33753462 DOI: 10.1128/mcb.00007-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin. The nucleosome, the basic unit of chromatin, is composed of DNA coiled around a histone octamer. Histones are among the longest-lived protein species in mammalian cells due to their thermodynamic stability and their associations with DNA and histone chaperones. Histone metabolism plays an integral role in homeostasis. While histones are largely stable, the degradation of histone proteins is necessary under specific conditions. Here, we review the physiological and cellular contexts that promote histone degradation. We describe specific known mechanisms that drive histone proteolysis. Finally, we discuss the importance of histone degradation and regulation of histone supply for organismal and cellular fitness.
Collapse
|
45
|
Su Y, Zhou W, Zhang Y, Wang X, Han B. Identification And validation of transcription factor genes involved in prostate cancer metastasis. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1915394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yiming Su
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wenhao Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaohai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Wang N, Liu J, Ricci WA, Gent JI, Dawe RK. Maize centromeric chromatin scales with changes in genome size. Genetics 2021; 217:iyab020. [PMID: 33857306 PMCID: PMC8049547 DOI: 10.1093/genetics/iyab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/30/2021] [Indexed: 11/14/2022] Open
Abstract
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.
Collapse
Affiliation(s)
- Na Wang
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jianing Liu
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| | - William A Ricci
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
| | - R Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens GA 30602, USA
- Department of Genetics, University of Georgia, Athens GA 30602, USA
| |
Collapse
|
47
|
Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line. Molecules 2021; 26:molecules26082151. [PMID: 33917969 PMCID: PMC8068389 DOI: 10.3390/molecules26082151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.
Collapse
|
48
|
Shrestha RL, Rossi A, Wangsa D, Hogan AK, Zaldana KS, Suva E, Chung YJ, Sanders CL, Difilippantonio S, Karpova TS, Karim B, Foltz DR, Fachinetti D, Aplan PD, Ried T, Basrai MA. CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. J Cell Biol 2021; 220:211820. [PMID: 33620383 PMCID: PMC7905998 DOI: 10.1083/jcb.202007195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Austin Rossi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ann K Hogan
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Kimberly S Zaldana
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chelsea L Sanders
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Baktiar Karim
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
49
|
Jeffery D, Gatto A, Podsypanina K, Renaud-Pageot C, Ponce Landete R, Bonneville L, Dumont M, Fachinetti D, Almouzni G. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun Biol 2021; 4:417. [PMID: 33772115 PMCID: PMC7997993 DOI: 10.1038/s42003-021-01941-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Tumour evolution is driven by both genetic and epigenetic changes. CENP-A, the centromeric histone H3 variant, is an epigenetic mark that directly perturbs genetic stability and chromatin when overexpressed. Although CENP-A overexpression is a common feature of many cancers, how this impacts cell fate and response to therapy remains unclear. Here, we established a tunable system of inducible and reversible CENP-A overexpression combined with a switch in p53 status in human cell lines. Through clonogenic survival assays, single-cell RNA-sequencing and cell trajectory analysis, we uncover the tumour suppressor p53 as a key determinant of how CENP-A impacts cell state, cell identity and therapeutic response. If p53 is functional, CENP-A overexpression promotes senescence and radiosensitivity. Surprisingly, when we inactivate p53, CENP-A overexpression instead promotes epithelial-mesenchymal transition, an essential process in mammalian development but also a precursor for tumour cell invasion and metastasis. Thus, we uncover an unanticipated function of CENP-A overexpression to promote cell fate reprogramming, with important implications for development and tumour evolution.
Collapse
Grants
- Ligue Contre le Cancer
- Agence Nationale de la Recherche (French National Research Agency)
- Université de Recherche Paris Sciences et Lettres (PSL Research University)
- Centre National de la Recherche Scientifique (National Center for Scientific Research)
- Institut Curie
- AG, CRP, DJ, KP, LB, RPL and GA were supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), Labex DEEP (ANR-11-LABX-0044_DEEP, ANR-10-IDEX-0001-02), PSL, ERC-2015-ADG-694694 ChromADICT and ANR-16-CE12-0024 CHIFT. Funding for RPL provided by Horizon 2020 Marie Skłodowska-Curie Actions Initial Training Network “EpiSyStem” (grant number 765966). Individual funding was also provided to DJ from la Fondation ARC pour la recherche sur le cancer (“Aides individuelles” 3 years, post-doc), and to AG from the Horizon 2020 Framework Programme for Research and Innovation (H2020 Marie Skłodowska-Curie Actions grant agreement 798106 “REPLICHROM4D”). DF receives salary support from the Centre Nationale de Recherche Scientifique (CNRS). MD receives salary support from the City of Paris via Emergence(s) 2018 of DF.
Collapse
Affiliation(s)
- Daniel Jeffery
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Katrina Podsypanina
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlène Renaud-Pageot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Rebeca Ponce Landete
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lorraine Bonneville
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
50
|
Chen J, Ünal E. Meiotic regulation of the Ndc80 complex composition and function. Curr Genet 2021; 67:511-518. [PMID: 33745061 PMCID: PMC8254699 DOI: 10.1007/s00294-021-01174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
This review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation in human health and disease.
Collapse
Affiliation(s)
- Jingxun Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|