1
|
Meng M, Li X, Wang Z, Huo R, Ma N, Chang G, Shen X. A high-concentrate diet induces inflammatory injury via regulating Ca 2+/CaMKKβ-mediated autophagy in mammary gland tissue of dairy cows. Front Immunol 2023; 14:1186170. [PMID: 37197665 PMCID: PMC10183583 DOI: 10.3389/fimmu.2023.1186170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Calmodulin-dependent protein kinase β (CaMKKβ) is closely related to Ca2+ concentration. An increase in Ca2+ concentration in the cytoplasm activates CaMKKβ, and activated CaMKKβ affects the activities of AMPK and mTOR and induces autophagy. A high-concentrate diet leads to Ca2+ disorder in mammary gland tissue. Objectives Therefore, this study mainly investigated the induction of mammary gland tissue autophagy by a high-concentrate diet and the specific mechanism of lipopolysaccharide (LPS)-induced autophagy in bovine mammary epithelial cells (BMECs). Material and Methods Twelve mid-lactation Holstein dairy cows were fed with a 40% concentrate diet (LC) and a 60% concentrate diet (HC) for 3 weeks. At the end of the trial, rumen fluid, lacteal vein blood, and mammary gland tissue were collected. The results showed that the HC diet significantly decreased rumen fluid pH, with a pH lower than 5.6 for more than 3 h, indicating successfully induction of subacute rumen acidosis (SARA). The mechanism of LPS-induced autophagy in BMECs was studied in vitro. First, the cells were divided into a Ctrl group and LPS group to study the effects of LPS on the concentration of Ca2+ and autophagy in BMECs. Then, cells were pretreated with an AMPK inhibitor (compound C) or CaMKKβ inhibitor (STO-609) to investigate whether the CaMKKβ-AMPK signaling pathway is involved in LPS-induced BMEC autophagy. Results The HC diet increased the concentration of Ca2+ in mammary gland tissue and pro-inflammatory factors in plasma. The HC diet also significantly increased the expression of CaMKKβ, AMPK, and autophagy-related proteins, resulting in mammary gland tissue injury. In vitro cell experiments showed that LPS increased intracellular Ca2+ concentration and upregulated protein expression of CaMKKβ, AMPK, and autophagy-related proteins. Compound C pretreatment decreased the expression of proteins related to autophagy and inflammation. In addition, STO-609 pretreatment not only reversed LPS-induced BMECs autophagy but also inhibited the protein expression of AMPK, thereby alleviating the inflammatory response in BMECs. These results suggest that inhibition of the Ca2+/CaMKKβ-AMPK signaling pathway reduces LPS-induced autophagy, thereby alleviating inflammatory injury of BMECs. Conclusion Therefore, SARA may increase the expression of CaMKKβ by increasing Ca2+ levels and activate autophagy through the AMPK signaling pathway, thereby inducing inflammatory injury in mammary gland tissue of dairy cows.
Collapse
|
2
|
Chen Y, Xin H, Peng H, Shi Q, Li M, Yu J, Tian Y, Han X, Chen X, Zheng Y, Li J, Yang Z, Yang L, Hu J, Huang X, Liu Z, Huang X, Zhou H, Cui X, Li F. Hypomethylation-Linked Activation of PLCE1 Impedes Autophagy and Promotes Tumorigenesis through MDM2-Mediated Ubiquitination and Destabilization of p53. Cancer Res 2020; 80:2175-2189. [PMID: 32066565 DOI: 10.1158/0008-5472.can-19-1912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/02/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignant diseases. Multiple studies with large clinic-based cohorts have revealed that variations of phospholipase C epsilon 1 (PLCE1) correlate with esophageal cancer susceptibility. However, the causative role of PLCE1 in ESCC has remained elusive. Here, we observed that hypomethylation-mediated upregulation of PLCE1 expression was implicated in esophageal carcinogenesis and poor prognosis in ESCC cohorts. PLCE1 inhibited cell autophagy and suppressed the protein expression of p53 and various p53-targeted genes in ESCC. Moreover, PLCE1 decreased the half-life of p53 and promoted p53 ubiquitination, whereas it increased the half-life of mouse double minute 2 homolog (MDM2) and inhibited its ubiquitination, leading to MDM2 stabilization. Mechanistically, the function of PLCE1 correlated with its direct binding to both p53 and MDM2, which promoted MDM2-dependent ubiquitination of p53 and subsequent degradation in vitro. Consequently, knockdown of PLCE1 combined with transfection of a recombinant adenoviral vector encoding wild-type p53 resulted in significantly increased levels of autophagy and apoptosis of esophageal cancer in vivo. Clinically, the upregulation of PLCE1 and mutant p53 protein predicted poor overall survival of patients with ESCC, and PLCE1 was positively correlated with p53 in ESCC cohorts. Collectively, this work identified an essential role for PLCE1- and MDM2-mediated ubiquitination and degradation of p53 in inhibiting ESCC autophagy and indicates that targeting the PLCE1-MDM2-p53 axis may provide a novel therapeutic approach for ESCC. SIGNIFICANCE: These findings identify hypomethylation-mediated activation of PLCE1 as a potential oncogene that blocks cellular autophagy of esophageal carcinoma by facilitating the MDM2-dependent ubiquitination of p53 and subsequent degradation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2175/F1.large.jpg.
Collapse
Affiliation(s)
- Yunzhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Huahua Xin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Qi Shi
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Menglu Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jie Yu
- The People's Hospital of Suzhou National Hi-Tech District, Suzhou, China
| | - Yanxia Tian
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xi Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Yi Zheng
- Department of Gastroenterology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jun Li
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Zhihao Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Xuan Huang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhu L, Sun Y, Zhang S, Wang L. Rap2B knockdown suppresses malignant progression of hepatocellular carcinoma by inactivating the PTEN/PI3K/Akt and ERK1/2 pathways. Mol Cell Biochem 2020; 466:55-63. [PMID: 32052247 DOI: 10.1007/s11010-020-03687-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/18/2020] [Indexed: 01/06/2023]
Abstract
Rap2B, belonging to the Ras superfamily of small guanosine triphosphate-binding proteins, is upregulated and contributes to the progression of several tumors by acting as an oncogene, including hepatocellular carcinoma (HCC). However, the mechanism underlying the functional roles of Rap2B in HCC remains unclear. In this study, the evaluation of Rap2B expression in HCC cells and tissues was achieved by qRT-PCR and western blot assays. The effects of Rap2B on the malignant biological behaviors in HCC were explored by means of MTT assay, flow cytometry analysis, and Transwell invasion assay, respectively. Protein levels of Ki67, matrix metalloproteinase (MMP)-2, MMP-9, and cleaved caspase-3, together with the alternations of the ERK1/2 and PTEN/PI3K/Akt pathways were qualified by western blot assay. Further verification of the Rap2B function on HCC tumorigenesis was attained by performing in vivo assays. We found that Rap2B levels were upregulated in HCC tissues and cells. Rap2B silencing led to a reduction of cell-proliferative and invasive abilities, and an increase of apoptosis in HCC cells. In addition, xenograft tumor assay demonstrated that Rap2B silencing repressed HCC xenograft tumor growth in vivo. In addition, we found that Rap2B knockdown significantly inhibited the ERK1/2 and PTEN/PI3K/Akt cascades in HCC cells and xenograft tumor tissues. Together, Rap2B knockdown inhibited HCC-malignant progression, which was involved in inhibiting the ERK1/2 and PTEN/PI3K/Akt pathways. Our findings contribute to understanding of the molecular mechanism of Rap2B in HCC progression.
Collapse
Affiliation(s)
- Linchao Zhu
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China.
| | - Ying Sun
- Department of Clinical Laboratory, Third People's Hospital of Henan Province, Zhengzhou, Henan, People's Republic of China
| | - Shufeng Zhang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Lin Wang
- Department of Pediatric Surgery, Henan Provincial People's Hospital, No.7, Wei Wu Road, Zhengzhou, 450003, Henan, People's Republic of China
| |
Collapse
|
4
|
Rap2B promotes cell adhesion, proliferation, migration and invasion of human glioma. J Neurooncol 2019; 143:221-229. [PMID: 30997639 DOI: 10.1007/s11060-019-03163-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Rap2B, a member of the GTP-binding proteins, is generally up-regulated in numerous types of tumors. Nevertheless, the influence and regulatory mechanisms of Rap2B in gliomas are still not corroborated. Therefore, we analyzed the expression of Rap2B in glioma tissues and cells, and researched its significance in adhesion, proliferation, migration and invasion of the glioma cell line. METHODS We analyzed the expression of Rap2B in different pathologic grades of glioma tissues by tissue microarray and immunohistochemistry. We assessed the expression of Rap2B in glioma tissue and non-tumor tissue by Western blot. And the expression of Rap2b protein in glioma cells and normal human astrocytes (NHA) was detected by Western blot. In addition, we disclosed the effect of Rap2B knockdown on cell adhesion, proliferation, migration and invasion by using cell attachment assay, CCK-8 assay, cell migration assay and Wound Healing assay, cell invasion assay, respectively. Western blot was used to detect the changes of expression level of NF-kB, MMP-2 and MMP-9 protein when downregulated the expression of Rap2B. RESULTS The tissue microarray immunohistochemical results of glioma showed that the expression of Rap2B had no significant correlations between Rap2B expression and the clinicopathologic variables, including patient age (P = 0.352), gender (P = 0.858), WHO Grade (P = 0.693) and histology type (P = 0.877). Western blot analysis showed that the glioma tissue had a dramatically increase of Rap2B expression compared with the non-tumor tissues (P < 0.01). And the expression of Rap2B was markedly up-regulated in all 5 glioma cell lines compared with that in normal human astrocytes (NHA) (P < 0.01). We found that the ability of adhesion, proliferation, migration and invasion of glioma cells were significantly decreased after downregulated Rap2B expression compared with the control group (P < 0.05). In addition, Western blot results showed that the expression levels of NF-kB, MMP-2 and MMP-9 in the interference group were significantly lower than those in the negative control group (P < 0.05). CONCLUSIONS Rap2B expression is up-regulated in glioma tissues and glioma cell lines. Knockdown of Rap2B inhibits glioma cells' adhesion and proliferation in vitro. Knockdown of Rap2B inhibits glioma cells' migration in vitro. Knockdown of Rap2B inhibits glioma cells' invasion and MMPs activity through NF-kB pathway.
Collapse
|
5
|
Djuzenova CS, Fiedler V, Memmel S, Katzer A, Sisario D, Brosch PK, Göhrung A, Frister S, Zimmermann H, Flentje M, Sukhorukov VL. Differential effects of the Akt inhibitor MK-2206 on migration and radiation sensitivity of glioblastoma cells. BMC Cancer 2019; 19:299. [PMID: 30943918 PMCID: PMC6446411 DOI: 10.1186/s12885-019-5517-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/25/2019] [Indexed: 01/29/2023] Open
Abstract
Background Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. Methods Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. Results We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. Conclusions Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered. Electronic supplementary material The online version of this article (10.1186/s12885-019-5517-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Simon Memmel
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Dmitri Sisario
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| | - Philippa K Brosch
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| | - Alexander Göhrung
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Svenja Frister
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer-Institut für Biomedizinische Technik, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Professur für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Campus Saarbrücken, 66123, Saarbrücken, Germany.,Marine Sciences, Universidad Católica del Norte, Casa Central, Angamos 0610, Antafogasta/Coquimbo, Chile
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Liu L, Yan X, Wu D, Yang Y, Li M, Su Y, Yang W, Shan Z, Gao Y, Jin Z. High expression of Ras-related protein 1A promotes an aggressive phenotype in colorectal cancer via PTEN/FOXO3/CCND1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:178. [PMID: 30064475 PMCID: PMC6069867 DOI: 10.1186/s13046-018-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Background Colorectal cancer (CRC) is a commonly diagnosed digestive malignancy worldwide. Ras-related protein 1A (RAP1A) is a member of the Ras superfamily of small GTPases and has been recently identified as a novel oncoprotein in several human malignancies. However, its specific role in CRC remains unclear. Method In this study, we firstly analyzed its expression and clinical significance in a retrospective cohort of 144 CRC patients. Then, cellular assays in vitro and in vivo were performed to clarify its biological role in CRC cells. Finally, microarray analysis was utilized to investigate the molecular mechanisms regulated by RAP1A in CRC progression. Results Firstly, RAP1A expression was abnormally higher in CRC tissues as compared with adjacent normal tissues, and significantly correlated tumor invasion. High RAP1A expression was an independent unfavourable prognostic factor for CRC patients. Combining RAP1A expression and preoperative CEA level contributed to a more accurate prognostic stratification in CRC patients. Secondly, knockdown of RAP1A dramatically inhibited the growth of CRC cells, while it was opposite for RAP1A overexpression. Finally, the microarray analysis revealed RAP1A promoted CRC growth partly through phosphatase and tensin homolog (PTEN)/forkhead box O3(FOXO3)/cyclin D1(CCND1) signaling pathway. FOXO3 overexpression could partly mimic the inhibitory effect of RAP1A knockdown in CRC growth. Moreover, FOXO3 overexpression inhibited CCND1 expression, but had no impact on RAP1A and PTEN expression. Conclusion RAP1A promotes CRC development partly through PTEN/FOXO3 /CCND1 signaling pathway. It has a great potential to be an effective clinical biomarker and therapeutic target for CRC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0827-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Dapeng Wu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yi Yang
- Department of Oncological Surgery, Kunshan Traditional Chinese Medicine, Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Mengcheng Li
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Yang Su
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Wenchao Yang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China
| | - Zezhi Shan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| | - Yuping Gao
- Department of Assisted Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, People's Republic of China.
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi-shan Road, Shanghai, 200233, China.
| |
Collapse
|