1
|
Zhang W, Zhang L, Wen Z, Liang J, Wang Y, Wang Z, Yin Z, Fan L. Clear-cell papillary renal cell tumour: New insights into clinicopathological features and molecular landscape after renaming by 5th WHO classification. Pathol Res Pract 2024; 255:155167. [PMID: 38324963 DOI: 10.1016/j.prp.2024.155167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Clear cell papillary renal cell tumour (CCPRCT) is a kind of renal epithelial cell tumor, and was renamed by the 5th WHO due to its specific epidemiology and clinicopathological characteristics. However, the biological mechanism and molecular basis of CCPRCT still need to be further clarified. This study aims to comprehensively evaluate clinicopathologic and molecular characteristics of CCPRCC, and particularly compare it with other more prevalent subtypes of renal cell carcinoma. METHODS 12 cases of CCPRCT were collected for analyzing the clinicopathological characteristics. Then, whole-exome sequencing (WES) was employed to reveal the genetic profiles, followed by comparison with the molecular genetic alterations identified in ccRCC (341) and pRCC (200) datasets obtained from the TCGA database. RESULTS Of the 12 CCPRCT cases, the male-to-female ratio was 4:1 with a mean age of 49.5 years (48.5 ± 10.5) at diagnosis. All patients were diagnosed accidentally during routine physical examinations. All tumors (12/12, 100%)had a solid-cystic appearance with a well-defined fibrous capsule. The median size of the tumors was 3 cm (2.98 ± 1.2). Histologically, the cystic papillary structures were considered to be prominent, lined with cuboidal tumor cells away from basement membrane. The tumor cells were moderately atypia equivalent to grade 1 or grade 2 according to the ISUP nuclear grading system. Typically, the tumor cell diffusely positive for CK7 and CAIX in a "cup-like" pattern. The results of WES revealed recurrent gene alterations (mainly missense mutation) of TTN and FLT in 4 cases (4/12, 33.3%), respectively, of which, the alteration of FLT was not observed in ccRCC and pRCC of the TCGA database. Other gene alterations including POTEC (1 cases), PRADC1 (1 cases), ZZZ3 (1 case) and PTPRZ1 (1 case), etc. Moreover, all of the CCPRCT cases displayed a lower tumor mutation burden (TMB) compared to ccRCC and pRCC with median TMB of 1.04 (range: 1.94 ± 2.74). None of the patients experienced tumor metastasis, recurrence, or tumor-related deaths. CONCLUSION CCPRCT is a renal epithelial cell tumor characterized by specific clinical and pathological features. Our study provides additional evidence supporting the favorable prognosis of CCPRCT. Furthermore, the potential molecular alterations were uncovered by this study in CCPRCT such as the FLT family and TTN. However, due to the limited sample size, larger studies are required to validate these findings.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Pathology, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Zhu Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiayi Liang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingmei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Zhiyong Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
DA Silva Prade J, DE Souza RS, DA Silva D'Αvila CM, DA Silva TC, Livinalli IC, Bertoncelli ACZ, Saccol FK, DE Oliveira Mendes T, Wenning LG, DA Rosa Salles T, Rhoden CRB, Cadona FC. An Overview of Renal Cell Carcinoma Hallmarks, Drug Resistance, and Adjuvant Therapies. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:616-634. [PMID: 37927802 PMCID: PMC10619564 DOI: 10.21873/cdp.10264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Renal neoplasms are highlighted as one of the 10 most common types of cancer. Renal cell carcinoma (RCC) is the most common type of renal cancer, considered the seventh most common type of cancer in the Western world. The most frequently altered genes described as altered are VHL, PBRM1, SETD2, KDM5C, PTEN, BAP1, mTOR, TP53, TCEB1 (ELOC), SMARCA4, ARID1A, and PIK3CA. RCC therapies can be classified in three groups: monoclonal antibodies, tyrosine kinase inhibitors, and mTOR inhibitors. Besides, there are targeted agents to treat RCC. However, frequently patients present side effects and resistance. Even though many multidrug resistance mechanisms already have been reported to RCC, studies focused on revealing new biomarkers as well as more effective antitumor therapies with no or low side effects are very important. Some studies reported that natural products, such as honey, epigallocatechin-3-gallate (EGCG), curcumin, resveratrol, and englerin A showed antitumor activity against RCC. Moreover, nanoscience is another strategy to improve RCC treatment and reduce the side effects due to the improvement in pharmacokinetics and reduction of toxicities of chemotherapies. Taking this into account, we conducted a systemic review of recent research findings on RCC hallmarks, drug resistance, and adjuvant therapies. In conclusion, a range of studies reported that RCC is characterized by high incidence and increased mortality rates because of the development of resistance to standard therapies. Given the importance of improving RCC treatment and reducing adverse effects, nanoscience and natural products can be included in therapeutic strategies.
Collapse
Affiliation(s)
- Josiele DA Silva Prade
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | - Theodoro DA Rosa Salles
- Laboratory of Nanostructured Magnetic Materials - LaMMaN, Franciscan University, Santa Maria, RS, Brazil
- Graduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Laboratory of Nanostructured Magnetic Materials - LaMMaN, Franciscan University, Santa Maria, RS, Brazil
- Graduate Program in Nanosciences, Franciscan University, Santa Maria, RS, Brazil
| | - Francine Carla Cadona
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Dani KA, Rich JM, Kumar SS, Cen H, Duddalwar VA, D’Souza A. Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring. Cancers (Basel) 2023; 15:4934. [PMID: 37894301 PMCID: PMC10605584 DOI: 10.3390/cancers15204934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Challenges remain in determining the most effective treatment strategies and identifying patients who would benefit from adjuvant or neoadjuvant therapy in renal cell carcinoma. The objective of this review is to provide a comprehensive overview of biomarkers in metastatic renal cell carcinoma (mRCC) and their utility in prediction of treatment response, prognosis, and therapeutic monitoring in patients receiving systemic therapy for metastatic disease. METHODS A systematic literature search was conducted using the PubMed database for relevant studies published between January 2017 and December 2022. The search focused on biomarkers associated with mRCC and their relationship to immune checkpoint inhibitors, targeted therapy, and VEGF inhibitors in the adjuvant, neoadjuvant, and metastatic settings. RESULTS The review identified various biomarkers with predictive, prognostic, and therapeutic monitoring potential in mRCC. The review also discussed the challenges associated with anti-angiogenic and immune-checkpoint monotherapy trials and highlighted the need for personalized therapy based on molecular signatures. CONCLUSION This comprehensive review provides valuable insights into the landscape of biomarkers in mRCC and their potential applications in prediction of treatment response, prognosis, and therapeutic monitoring. The findings underscore the importance of incorporating biomarker assessment into clinical practice to guide treatment decisions and improve patient outcomes in mRCC.
Collapse
Affiliation(s)
- Komal A. Dani
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Joseph M. Rich
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Sean S. Kumar
- Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Harmony Cen
- University of Southern California, Los Angeles, CA 90033, USA;
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Institute of Urology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anishka D’Souza
- Department of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
4
|
Pohl L, Friedhoff J, Jurcic C, Teroerde M, Schindler I, Strepi K, Schneider F, Kaczorowski A, Hohenfellner M, Duensing A, Duensing S. Kidney Cancer Models for Pre-Clinical Drug Discovery: Challenges and Opportunities. Front Oncol 2022; 12:889686. [PMID: 35619925 PMCID: PMC9128013 DOI: 10.3389/fonc.2022.889686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) is among the most lethal urological malignancies once metastatic. The introduction of immune checkpoint inhibitors has revolutionized the therapeutic landscape of metastatic RCC, nevertheless, a significant proportion of patients will experience disease progression. Novel treatment options are therefore still needed and in vitro and in vivo model systems are crucial to ultimately improve disease control. At the same time, RCC is characterized by a number of molecular and functional peculiarities that have the potential to limit the utility of pre-clinical model systems. This includes not only the well-known genomic intratumoral heterogeneity (ITH) of RCC but also a remarkable functional ITH that can be shaped by influences of the tumor microenvironment. Importantly, RCC is among the tumor entities, in which a high number of intratumoral cytotoxic T cells is associated with a poor prognosis. In fact, many of these T cells are exhausted, which represents a major challenge for modeling tumor-immune cell interactions. Lastly, pre-clinical drug development commonly relies on using phenotypic screening of 2D or 3D RCC cell culture models, however, the problem of “reverse engineering” can prevent the identification of the precise mode of action of drug candidates thus impeding their translation to the clinic. In conclusion, a holistic approach to model the complex “ecosystem RCC” will likely require not only a combination of model systems but also an integration of concepts and methods using artificial intelligence to further improve pre-clinical drug discovery.
Collapse
Affiliation(s)
- Laura Pohl
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jana Friedhoff
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christina Jurcic
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Teroerde
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Isabella Schindler
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstantina Strepi
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Schneider
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Anette Duensing
- Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Precision Oncology of Urological Malignancies, Department of Urology University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany.,Department of Urology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Molecular Mechanisms of Resistance to Immunotherapy and Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13235981. [PMID: 34885091 PMCID: PMC8656474 DOI: 10.3390/cancers13235981] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immunogenic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized the treatment landscape. This approach has achieved a substantial improvement in life expectancy and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from this success as most patients will finally progress to these therapies and, even worse, approximately 5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research have been conducted to decode the biological basis underlying the resistance mechanisms regarding angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular alterations to understand the resistance pathways related to the treatment with TKI and immune checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that are currently under research to overcome these resistance alterations in preclinical studies and early phase clinical trials.
Collapse
|
6
|
Li J, Pohl L, Schüler J, Korzeniewski N, Reimold P, Kaczorowski A, Hou W, Zschäbitz S, Nientiedt C, Jäger D, Hohenfellner M, Duensing A, Duensing S. Targeting the Proteasome in Advanced Renal Cell Carcinoma: Complexity and Limitations of Patient-Individualized Preclinical Drug Discovery. Biomedicines 2021; 9:biomedicines9060627. [PMID: 34072926 PMCID: PMC8227814 DOI: 10.3390/biomedicines9060627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Systemic treatment options for metastatic renal cell carcinoma (RCC) have significantly expanded in recent years. However, patients refractory to tyrosine kinase and immune checkpoint inhibitors still have limited treatment options and patient-individualized approaches are largely missing. Patients and Methods: In vitro drug screening of tumor-derived short-term cultures obtained from seven patients with clear cell RCC was performed. For one patient, a patient-derived xenograft (PDX) mouse model was established for in vivo validation experiments. Drug effects were further investigated in established RCC cell lines. Results: The proteasome inhibitor carfilzomib was among the top hits identified in three of four patients in which an in vitro drug screening could be performed successfully. Carfilzomib also showed significant acute and long-term cytotoxicity in established RCC cell lines. The in vivo antitumoral activity of carfilzomib was confirmed in a same-patient PDX model. The cytotoxicity of carfilzomib was found to correlate with the level of accumulation of ubiquitinated proteins. Conclusions: In this proof-of-concept study, we show that patient-individualized in vitro drug screening and preclinical validation is feasible. However, the fact that carfilzomib failed to deliver a clinical benefit in RCC patients in a recent phase II trial unrelated to the present study underscores the complexities and limitations of this strategy.
Collapse
Affiliation(s)
- Jielin Li
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Laura Pohl
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Julia Schüler
- Charles River Laboratories, Am Flughafen 12, D-79108 Freiburg, Germany;
| | - Nina Korzeniewski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Philipp Reimold
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
| | - Adam Kaczorowski
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Weibin Hou
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Cathleen Nientiedt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany; (S.Z.); (C.N.); (D.J.)
| | - Markus Hohenfellner
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
| | - Anette Duensing
- Precision Oncology of Urological Malignancies, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany;
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Im Neuenheimer Feld 517, D-69120 Heidelberg, Germany; (J.L.); (L.P.); (N.K.); (A.K.); (W.H.)
- Department of Urology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 420, D-69120 Heidelberg, Germany; (P.R.); (M.H.)
- Correspondence: ; Tel.: +49-6621-566255; Fax: +49-6221-567659
| |
Collapse
|
7
|
Makhov P, Joshi S, Ghatalia P, Kutikov A, Uzzo RG, Kolenko VM. Resistance to Systemic Therapies in Clear Cell Renal Cell Carcinoma: Mechanisms and Management Strategies. Mol Cancer Ther 2019; 17:1355-1364. [PMID: 29967214 DOI: 10.1158/1535-7163.mct-17-1299] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. It is categorized into various subtypes, with clear cell RCC (ccRCC) representing about 85% of all RCC tumors. The lack of sensitivity to chemotherapy and radiation therapy prompted research efforts into novel treatment options. The development of targeted therapeutics, including multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, has been a major breakthrough in ccRCC therapy. More recently, other therapeutic strategies, including immune checkpoint inhibitors, have emerged as effective treatment options against advanced ccRCC. Furthermore, recent advances in disease biology, tumor microenvironment, and mechanisms of resistance formed the basis for attempts to combine targeted therapies with newer generation immunotherapies to take advantage of possible synergy. This review focuses on the current status of basic, translational, and clinical studies on mechanisms of resistance to systemic therapies in ccRCC. Mol Cancer Ther; 17(7); 1355-64. ©2018 AACR.
Collapse
Affiliation(s)
- Peter Makhov
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Shreyas Joshi
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Pooja Ghatalia
- Division of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Kutikov
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert G Uzzo
- Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Vladimir M Kolenko
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Matsubara N, Naito Y, Nakano K, Fujiwara Y, Ikezawa H, Yusa W, Namiki M, Okude T, Takahashi S. Lenvatinib in combination with everolimus in patients with advanced or metastatic renal cell carcinoma: A phase 1 study. Int J Urol 2018; 25:922-928. [DOI: 10.1111/iju.13776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Nobuaki Matsubara
- Department of Breast and Medical Oncology; National Cancer Center Hospital East; Kashiwa Chiba Japan
| | - Yoichi Naito
- Department of Breast and Medical Oncology; National Cancer Center Hospital East; Kashiwa Chiba Japan
| | - Kenji Nakano
- Department of Medical Oncology; Cancer Institute Hospital of Japanese Foundation for Cancer Research; Koto-ku Tokyo Japan
| | - Yutaka Fujiwara
- Department of Experimental Therapeutics; National Cancer Center Hospital; Chuo-ku Tokyo Japan
| | | | | | | | | | - Shunji Takahashi
- Department of Medical Oncology; Cancer Institute Hospital of Japanese Foundation for Cancer Research; Koto-ku Tokyo Japan
| |
Collapse
|
9
|
Genomic features of renal cell carcinoma with venous tumor thrombus. Sci Rep 2018; 8:7477. [PMID: 29748622 PMCID: PMC5945671 DOI: 10.1038/s41598-018-25544-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
A venous tumor thrombus (VTT) is a potentially lethal complication of renal cell carcinoma (RCC) but virtually nothing is known about the underlying natural history. Based on our observation that venous thrombi contain significant numbers of viable tumor cells, we applied multiregion whole exome sequencing to a total of 37 primary tumor and VTT samples including normal tissue specimens from five consecutive patients. Our findings demonstrate mutational heterogeneity between primary tumor and VTT with 106 of 483 genes (22%) harboring functional SNVs and/or indels altered in either primary tumor or thrombus. Reconstruction of the clonal phylogeny showed clustering of tumor samples and VTT samples, respectively, in the majority of tumors. However, no new subclones were detected suggesting that pre-existing subclones of the primary tumor drive VTT formation. Importantly, we found several lines of evidence for “BRCAness” in a subset of tumors. These included mutations in genes that confer “BRCAness”, a mutational signature and an increase of small indels. Re-analysis of SNV calls from the TCGA KIRC-US cohort confirmed a high frequency of the “BRCAness” mutational signature AC3 in clear cell RCC. Our findings warrant further pre-clinical experiments and may lead to novel personalized therapies for RCC patients.
Collapse
|
10
|
Prospective single center trial of next-generation sequencing analysis in metastatic renal cell cancer: the MORE-TRIAL. Future Sci OA 2018; 4:FSO299. [PMID: 29796302 PMCID: PMC5961447 DOI: 10.4155/fsoa-2017-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Aim: Targeted therapies have substantially improved the survival of patients with metastatic clear cell renal cell cancer. No prognostic or predictive biomarkers are available. Comprehensive genetic profiling offers the opportunity to define prognostic and predictive signatures aiming at a more personalized approach to treatment. Methods: In this prospectively conducted cohort study, tumor tissue and liquid biopsies are sampled at baseline and upon first and second progression under systemic treatment. Samples will be analyzed by whole-exome sequencing to generate prognostic and predictive patterns for systemic therapies. Discussion: This study is aiming at exploring genetic profiles with prognostic and predictive value in metastatic renal cell cancer patients. Clonal evolution facilitating resistance to systemic treatment will be investigated by repeat biopsies. Kidney cancer (renal cell carcinoma) is genetically diverse between different patients. Further, within a single affected individual, multiple genetic clones develop in the tumor and different metastases. Current treatment standard is molecularly targeted, albeit currently no genetic signatures can predict if an individual will benefit from treatment. This study aims at defining genetic profiles of kidney tumors of individual patients at the start of systemic therapy and at the timepoints of treatment failure. The aim will be to define markers that could help to choose the best therapy at baseline and at tumor progression.
Collapse
|
11
|
Abstract
Cabozantinib is a receptor tyrosine kinase inhibitor (TKI) with activity against a broad range of targets, including MET, RET, AXL, VEGFR2, FLT3, and c-KIT. Activity of cabozantinib towards a broad range of tumor models could be detected in several preclinical studies. Of note, cabozantinib decreases metastasis potential and tumor invasiveness when compared with placebo or agents that target VEGFR and have no activity against MET. Cabozantinib is clinically approved for the treatment of medullary thyroid cancer (MTC) and for renal cell cancer (RCC) in the second line. In MTC gain of function mutations, mutations of RET are central for tumorigenesis. Hereditary forms of MTC (MEN II) are caused by germline mutations of RET, in sporadic MTC up to 50% of cases RET mutations occur. Both MET and AXL have been described as mechanisms facilitating resistance against VEGFR-targeted tyrosine kinase therapy in clear cell RCC. Accordingly, cabozantinib has shown activity in RCC patients progressing after first-line VEGFR-TKI therapy in the pivotal METEOR trial. This phase III trial reported a benefit of 4.9 months in survival and an increase in response rate compared to standard everolimus over all patient subgroups. Of particular interest are the effects on patients with bone metastasis, which have a worse prognosis. In these patients, the beneficial effects of cabozantinib over everolimus were even more pronounced. Side effects of interest include diarrhea, hypertension, fatigue, and hand-foot syndrome.
Collapse
Affiliation(s)
- Carsten Grüllich
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Medical Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| |
Collapse
|