1
|
McGuinness CF, Black MA, Dunbier AK. Restriction site associated DNA sequencing for tumour mutation burden estimation and mutation signature analysis. Cancer Med 2023; 12:21545-21560. [PMID: 37974533 PMCID: PMC10726921 DOI: 10.1002/cam4.6711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Genome-wide measures of genetic disruption such as tumour mutation burden (TMB) and mutation signatures are emerging as useful biomarkers to stratify patients for treatment. Clinicians commonly use cancer gene panels for tumour mutation burden estimation, and whole genome sequencing is the gold standard for mutation signature analysis. However, the accuracy and cost associated with these assays limits their utility at scale. METHODS WGS data from 560 breast cancer patients was used for in silico library simulations to evaluate the accuracy of an FDA approved cancer gene panel as well as restriction enzyme associated DNA sequencing (RADseq) libraries for TMB estimation and mutation signature analysis. We also transfected a mouse mammary cell line with APOBEC enzymes and sequenced resulting clones to evaluate the efficacy of RADseq in an experimental setting. RESULTS RADseq had improved accuracy of TMB estimation and derivation of mutation profiles when compared to the FDA approved cancer panel. Using simulated immune checkpoint blockade (ICB) trials, we show that inaccurate TMB estimation leads to a reduction in power for deriving an optimal TMB cutoff to stratify patients for immune checkpoint blockade treatment. Additionally, prioritisation of APOBEC hypermutated tumours in these trials optimises TMB cutoff determination for breast cancer. The utility of RADseq in an experimental setting was also demonstrated, based on characterisation of an APOBEC mutation signature in an APOBEC3A transfected mouse cell line. CONCLUSION In conclusion, our work demonstrates that RADseq has the potential to be used as a cost-effective, accurate solution for TMB estimation and mutation signature analysis by both clinicians and basic researchers.
Collapse
Affiliation(s)
- Conor F. McGuinness
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | | | | |
Collapse
|
2
|
Gardi N, Ketkar M, McKinnon RA, Pandol SJ, Dutt S, Barreto SG. Down-regulation of metabolic pathways could offset the poor prognosis conferred by co-existent diabetes mellitus in pancreatic (head) adenocarcinoma. ANZ J Surg 2021; 91:2466-2474. [PMID: 34514690 DOI: 10.1111/ans.17194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) patients with diabetes mellitus (DM) have poor overall survival. Underlying mechanisms have not been fully clarified. This presents an opportunity for precision-oncology for which we systematically analysed publicly-available PDAC transcriptome data. METHODS PDAC TCGA RNASeq data were used. Analyses were restricted to only 'high purity' and 'head' as anatomical site. Patients were characterised by: (1) Gene expression classification, and (2) Weighted gene correlation network analysis (WGCNA) to identify co-expression patterns of genes. Newly identified gene signature subclasses of pancreatic head PDAC were associated with clinical and functional characteristics of patients. RESULTS Consensus clustering identified two patient subclasses within PDAC involving pancreatic head. WGCNA identified 11 distinct networks of gene expression patterns across two sub-classes. Class 1 patients demonstrated a significant upregulation of Module 5 and Module 6 gene expression compared to Class 2. Class 1 predominantly expressed the acinar, ductal and islet cell gene signatures. There were significantly less patients with DM in Class 1 subclass compared to Class 2 (p < 0.037). Patients with DM had significant downregulation of pathways involved in cellular metabolism, hormone secretion and paucity of islet cell markers with no reduced survival compared with non-diabetics. CONCLUSIONS A significant proportion of patients with PDAC of pancreatic head and DM exhibit downregulation of pathways involved in cellular metabolism, hormone secretion and signalling accompanied by a paucity of islet expression. Investigating the relationship between DM and gene expression profiles in patients with PDAC presents opportunities to improve overall survival in diabetics with PDAC.
Collapse
Affiliation(s)
- Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Madhura Ketkar
- Homi Bhabha National Institute, Mumbai, India
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Ross A McKinnon
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shilpee Dutt
- Homi Bhabha National Institute, Mumbai, India
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Mumbai, India
| | - Savio G Barreto
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Abbasi A, Alexandrov LB. Significance and limitations of the use of next-generation sequencing technologies for detecting mutational signatures. DNA Repair (Amst) 2021; 107:103200. [PMID: 34411908 PMCID: PMC9478565 DOI: 10.1016/j.dnarep.2021.103200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Next generation sequencing technologies (NGS) have been critical in characterizing the genomic landscape and untangling the genetic heterogeneity of human cancer. Since its advent, NGS has played a pivotal role in identifying the patterns of somatic mutations imprinted on cancer genomes and in deciphering the signatures of the mutational processes that have generated these patterns. Mutational signatures serve as phenotypic molecular footprints of exposures to environmental factors as well as deficiency and infidelity of DNA replication and repair pathways. Since the first roadmap of mutational signatures in human cancer was generated from whole-genome and whole-exome sequencing data, there has been a growing interest to extract mutational signatures from other NGS technologies such as targeted panel sequencing, RNA sequencing, single-cell sequencing, duplex sequencing, reduced representation sequencing, and long-read sequencing. Many of these technologies have their inherent sequencing biases and produce technical artifacts that can confound the extraction of reliable and interpretable mutational signatures. In this review, we highlight the relevance, limitations, and prospects of using different NGS technologies for examining mutational patterns and for deciphering mutational signatures.
Collapse
Affiliation(s)
- Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Perner J, Abbas S, Nowicki-Osuch K, Devonshire G, Eldridge MD, Tavaré S, Fitzgerald RC. The mutREAD method detects mutational signatures from low quantities of cancer DNA. Nat Commun 2020; 11:3166. [PMID: 32576827 PMCID: PMC7311535 DOI: 10.1038/s41467-020-16974-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Mutational processes acting on cancer genomes can be traced by investigating mutational signatures. Because high sequencing costs limit current studies to small numbers of good-quality samples, we propose a robust, cost- and time-effective method, called mutREAD, to detect mutational signatures from small quantities of DNA, including degraded samples. We show that mutREAD recapitulates mutational signatures identified by whole genome sequencing, and will ultimately allow the study of mutational signatures in larger cohorts and, by compatibility with formalin-fixed paraffin-embedded samples, in clinical settings.
Collapse
Affiliation(s)
- Juliane Perner
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sujath Abbas
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Karol Nowicki-Osuch
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Barreto SG. Does biology determine survival in pancreatic cancer? Future Oncol 2020; 16:1-4. [PMID: 31872770 DOI: 10.2217/fon-2019-0706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023] Open
Affiliation(s)
- Savio George Barreto
- Division of Surgery & Perioperative Medicine Flinders Medical Centre, Bedford Park, Adelaide, South Australia, Australia
- College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Bueno-Silva B, de Alencar SM, Lombardi P, Mao W, Montalto G, Cervello M, Rakus D, Gizak A, Lin HL, Libra M, Akula SM, McCubrey JA. Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Adv Biol Regul 2019; 72:22-40. [PMID: 30898612 DOI: 10.1016/j.jbior.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Kvin Lertpiriyapong
- Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese, 20026, Italy
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieska Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Heng-Liang Lin
- Catholic Fu Jen University Hospital, New Taipei City, Taiwan
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
7
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
8
|
Solitro AR, Vander Schaaf NA. Origins of cancer: tackling provocative questions. Genes Cancer 2017. [PMCID: PMC5620006 DOI: 10.18632/genesandcancer.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Abigail R. Solitro
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503
| | | |
Collapse
|