1
|
Gupta S, Kishore A, Rishi V, Aggarwal A. Mitochondria and its epigenetic dynamics: Insight into synaptic regulation and synaptopathies. Funct Integr Genomics 2025; 25:26. [PMID: 39849126 DOI: 10.1007/s10142-025-01530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca2+) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca2+ homeostasis to prevent excitotoxicity and support synaptic neurotransmission. Additionally, the dynamic processes of mitochondria ensure mitochondrial quality and adaptability, which are essential for maintaining effective synaptic activity. Emerging evidence highlights the significant role of epigenetic modifications in regulating mitochondrial dynamics and function. Epigenetic changes influence gene expression, which in turn affects mitochondrial activity, ensuring coordinated responses necessary for synapse development. Furthermore, metabolic changes within mitochondria can impact the epigenetic machinery, thereby modulating gene expression patterns that support synaptic integrity. Altered epigenetic regulation affecting mitochondrial dynamics and functions is linked to several neurological disorders, including Amyotrophic Lateral Sclerosis, Huntington's, Alzheimer's, and Parkinson's diseases, emphasizing its crucial function. The review delves into the molecular machinery involved in mitochondrial dynamics, ATP and Ca2+ regulation, highlighting the role of key proteins that facilitate the processes. Additionally, it also shed light on the emerging epigenetic factors influencing these regulations. It provides a thorough summary on the current understanding of the role of mitochondria in synapse development and emphasizes the importance of both molecular and epigenetic mechanisms in maintaining synaptic integrity.
Collapse
Affiliation(s)
- Shiwangi Gupta
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India
- Department of Biotechnology, Sector-25, Panjab University, BMS block I, Chandigarh, India
| | - Abhinoy Kishore
- Indian Institute of Science, Bengaluru, India
- Chandigarh Group of Colleges, Landran, Punjab, India
| | - Vikas Rishi
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India
| | - Aanchal Aggarwal
- National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
| |
Collapse
|
2
|
Wang M, Hu Y, Cai F, Guo L, Mao Y, Zhang Y. Jmjd2c maintains the ALDH bri+ cancer stemness with transcription factor SOX2 in lung squamous cell carcinoma. Cancer Biol Ther 2024; 25:2373447. [PMID: 38975736 PMCID: PMC11232651 DOI: 10.1080/15384047.2024.2373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Lung squamous cell carcinoma (LSCC) is a deadly cancer in the world. Histone demethylase Jmjd2c is a key epigenetic regulator in various tumors, while the molecular mechanism underlying Jmjd2c regulatory in LSCC is still unclear. We used the aldehyde dehydrogenasebright (ALDHbri+) subtype as a research model for cancer stem cells (CSCs) in LSCC and detected the sphere formation ability and the proportion of ALDHbri+ CSCs with Jmjd2c interference and caffeic acid (CA) treatment. Additionally, we carried out bioinformatic analysis on the expression file of Jmjd2c RNAi mice and performed western blotting, qRT-PCR, Co-IP and GST pull-down assays to confirm the bioinformatic findings. Moreover, we generated Jmjd2c-silenced and Jmjd2c-SOX2-silenced ALDHbri+ tumor-bearing BALB/c nude mice to detect the effects on tumor progression. The results showed that Jmjd2c downregulation inhibited the sphere formation and the proportion of ALDHbri+ CSCs. The SOX2 decreased expression significantly in Jmjd2c RNAi mice, and they were positively co-expressed according to the bioinformatic analysis. In addition, SOX2 expression decreased in Jmjd2c shRNA ALDHbri+ CSCs, Jmjd2c and SOX2 proteins interacted with each other. Furthermore, Jmjd2c interference revealed significant blocking effect, and Jmjd2c-SOX2 interference contributed even stronger inhibition on ALDHbri+ tumor progression. The Jmjd2c and SOX2 levels were closely related to the development and prognosis of LSCC patients. This study indicated that Jmjd2c played key roles on maintaining ALDHbri+ CSC activity in LSCC by interacting with transcription factor SOX2. Jmjd2c might be a novel molecule for therapeutic targets and biomarkers in the diagnosis and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yuling Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lili Guo
- Department of Pathology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yimin Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Yingmin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
3
|
Liu Y, Wang S, Wei S, Qiu X, Mei Y, Yan L. The promotive role of lncRNA MIR205HG in proliferation, invasion, and migration of melanoma cells via the JMJD2C/ALKBH5 axis. PLoS One 2024; 19:e0290986. [PMID: 38252669 PMCID: PMC10802967 DOI: 10.1371/journal.pone.0290986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 01/24/2024] Open
Abstract
Melanoma is a highly malignant skin cancer. This study aimed to investigate the role of long non-coding RNA MIR205 host gene (lncRNA MIR205HG) in proliferation, invasion, and migration of melanoma cells via jumonji domain containing 2C (JMJD2C) and ALKB homolog 5 (ALKBH5). Real-time quantitative polymerase chain reaction or Western blot assay showed that MIR205HG, JMJD2C, and ALKBH5 were increased in melanoma cell lines. Cell counting kit-8, colony formation, and Transwell assays showed that silencing MIR205HG inhibited proliferation, invasion, and migration of melanoma cells. RNA immunoprecipitation, actinomycin D treatment, and chromatin immunoprecipitation showed that MIR205HG may bind to human antigen R (HuR, ELAVL1) and stabilized JMJD2C expression, and JMJD2C may increase the enrichment of H3K9me3 in the ALKBH5 promotor region to promote ALKBH5 transcription. The tumor xenograft assay based on subcutaneous injection of sh-MIR205HG-treated melanoma cells showed that silencing MIR205HG suppressed tumor growth and reduced Ki67 positive rate by inactivating the JMJD2C/ALKBH5 axis. Generally, MIR205HG facilitated proliferation, invasion, and migration of melanoma cells through HuR-mediated stabilization of JMJD2C and increasing ALKBH5 transcription by erasing H3K9me3.
Collapse
Affiliation(s)
- Yujing Liu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Suihai Wang
- School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Shanshan Wei
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xianwen Qiu
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yijie Mei
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Yan
- Department of Dermatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
MALAT1 in colorectal cancer: Its implication as a diagnostic, prognostic, and predictive biomarker. Gene 2022; 843:146791. [PMID: 35961438 DOI: 10.1016/j.gene.2022.146791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), originally described as a prognostic biomarker remarkably linked with metastasis potential in lung cancer, has been identified as contributing to many diseases, including colorectal cancer (CRC). This long non-coding RNA (lncRNA) has come to the forefront of lncRNA research for its implications in cancer-related processes, such as cell proliferation and migration. In general, lncRNAs are recognized as enhancers, scaffolds, or decoys for a variety of oncogenes and tumor suppressors, although our understanding of lncRNA functions and mechanisms of action is still limited. Nowadays, cancer research is attracted to lncRNAs' ability to improve the early diagnosis of cancer, determine patients' prognosis, or predict therapy outcomes. In this review, we aimed to evaluate recent publications trying to uncover the cellular mechanisms of MALAT1-mediated regulation, and its potential exploitation in the management of CRC. The conclusions of this review provide robust support for the essential role of MALAT1 in CRC development and future personalized therapy.
Collapse
|
5
|
KDM4C Contributes to Trophoblast-Like Stem Cell Conversion from Porcine-Induced Pluripotent Stem Cells (piPSCs) Via Regulating CDX2. Int J Mol Sci 2022; 23:ijms23147586. [PMID: 35886932 PMCID: PMC9323581 DOI: 10.3390/ijms23147586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Studies on ESRRB-regulating porcine-induced pluripotent stem cells (piPSCs) converted to trophoblast-like stem cells (TLSCs) contribute to the understanding of early embryo development. However, the epigenetic modification regulation network during the conversion is poorly understood. Here, the global change in histone H3 Lysine 4, 9, 27, 36 methylation and Lysine 27 acetylation was investigated in piPSCs and TLSCs. We found a high modification profile of H3K36me2 in TLSCs compared to that of piPSCs, whereas the profiles of other modifications remained constant. KDM4C, a H3K36me3/2 demethylase, whose gene body region was combined with ESRRB, was upregulated in TLSCs. Moreover, KDM4 inhibitor supplementation rescued the AP-negative phenotype observed in TLSCs, confirming that KDM4C could regulate the pluripotency of TLSCs. Subsequently, KDM4C replenishment results show the significantly repressed proliferation and AP-positive staining of TLSCs. The expressions of CDX2 and KRT8 were also upregulated after KDM4C overexpression. In summary, these results show that KDM4C replaced the function of ESRRB. These findings reveal the unique and crucial role of KDM4C-mediated epigenetic chromatin modifications in determination of piPSCs’ fate and expand the understanding of the connection between piPSCs and TSCs.
Collapse
|
6
|
Zhu Q, Chen H, Li X, Wang X, Yan H. JMJD2C mediates the MDM2/p53/IL5RA axis to promote CDDP resistance in uveal melanoma. Cell Death Dis 2022; 8:227. [PMID: 35468881 PMCID: PMC9039082 DOI: 10.1038/s41420-022-00949-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapy resistance poses an obstacle for effective treatment of uveal melanoma. In this study, we aim to investigate the effects of jumonji domain containing 2C (JMJD2C)-mediated mouse double minute-2 homolog (MDM2)/p53/interleukin 5 receptor subunit alpha (IL5RA) axis on cisplatin (CDDP) resistance in uveal melanoma. RT-qPCR and Western blot assay were performed to determine their expression patterns in uveal melanoma cell line (MUM-2B) and CDDP-resistant cell line (MUM-2B/CDDP). The enrichment of H3K9me3 in MDM2 promoter region was examined by ChIP, and the binding between p53 and ubiquitin in MUM-2B cells testified by co-IP assay. Following overexpression or silencing of JMJD2C/MDM2/p53/IL5RA, the 50% concentration of inhibition (IC50) and the biological characteristics of MUM-2B and MUM-2B/CDDP cells were examined using CCK-8 assay, SA-β-gal staining, fluorescence-activated cell sorting analysis, and Transwell assay. Finally, the tumorigenicity of transplanted MUM-2B and MUM-2B/CDDP cells in nude mice was assessed. JMJD2C was documented to be highly expressed in uveal melanoma cells, promoting the CDDP resistance. Histone demethylase JMJD2C removed the H3K9me3 modification of MDM2 promoter, which promoted the expression of MDM2. MDM2 enhanced the IL5RA expression through stimulating the ubiquitination and degradation of p53, thus inducing CDDP resistance of uveal melanoma cells. Furthermore, the results of in vivo experiments revealed that JMJD2C mediated the MDM2/p53/IL5RA axis to expedite the growth of uveal melanoma and augment the CDDP resistance. Taken together, JMJD2C can induce histone demethylation to upregulate MDM2, thereby ubiquitinating p53 and upregulating IL5RA. As a consequence, CDDP resistance in uveal melanoma is ultimately accelerated.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Xiaoying Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Hongtao Yan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
7
|
Xue C, Corey E, Gujral TS. Proteomic and Transcriptomic Profiling Reveals Mitochondrial Oxidative Phosphorylation as Therapeutic Vulnerability in Androgen Receptor Pathway Active Prostate Tumors. Cancers (Basel) 2022; 14:cancers14071739. [PMID: 35406510 PMCID: PMC8997167 DOI: 10.3390/cancers14071739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Metastatic prostate cancer (PC) is the second leading cause of cancer deaths in males. The lack of preclinical models and molecular characterization for advanced stage PC is a key barrier in understanding the aggressive subsets androgen receptor (AR) pathway active or AR-null castration-resistant prostate cancers (CRPC). Our study aimed to assess the potential of patient-derived xenograft (PDX) models and an approach integrating proteomic and transcriptomic techniques to explore the underlying drivers of metastatic PC. Transcriptomic and proteomic profiling of 42 PDX prostate tumors uncovered both previously established and unexpected molecular features of aggressive PC subsets. Of these, we confirmed the functional role of mitochondrial metabolism in AR-positive CRPC. Abstract Metastatic prostate cancer (PC) is the second leading cause of cancer deaths in males and has limited therapeutic options. The lack of preclinical models for advanced stage PC represents one of the primary barriers in understanding the key genetic drivers of aggressive subsets, including androgen receptor (AR) pathway active and AR-null castration-resistant prostate cancers (CRPC). In our studies, we described a series of LuCaP patient-derived xenograft (PDX) models representing the major genomic and phenotypic features of human disease. To fully exploit the potential of these preclinical models, we carried out a comprehensive transcriptomic and proteomic profiling of 42 LuCaP PDX prostate tumors. The collected proteomic data (~6000 data points) based on 71 antibodies revealed many of the previously known molecular markers associated with AR-positive and AR-null CRPC. Genomic analysis indicated subtype-specific activation of pathways such as Wnt/beta-catenin signaling, mTOR, and oxidative phosphorylation for AR-positive CRPC and upregulation of carbohydrate metabolism and glucose metabolism for AR-null CRPC. Of these, we functionally confirmed the role of mitochondrial metabolism in AR-positive CRPC cell lines. Our data highlight how the integration of transcriptomic and proteomic approaches and PDX systems as preclinical models can potentially map the connectivity of poorly understood signaling pathways in metastatic prostate cancer.
Collapse
Affiliation(s)
- Caroline Xue
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA;
| | - Taranjit S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Correspondence:
| |
Collapse
|
8
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Letfus V, Jelić D, Bokulić A, Petrinić Grba A, Koštrun S. Rational design, synthesis and biological profiling of new KDM4C inhibitors. Bioorg Med Chem 2020; 28:115128. [DOI: 10.1016/j.bmc.2019.115128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022]
|
10
|
Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy. Adv Cancer Res 2019; 141:175-212. [PMID: 30691683 DOI: 10.1016/bs.acr.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clinical studies have revealed that breast cancers contain regions of intratumoral hypoxia (reduced oxygen availability), which activates hypoxia-inducible factors (HIFs). The relationship between intratumoral hypoxia, distant metastasis and cancer mortality has been well established. A major mechanism by which intratumoral hypoxia contributes to disease progression is through induction of the breast cancer stem cell (BCSC) phenotype. BCSCs are a small subpopulation of cells with the capability for self-renewal. BCSCs have been implicated in resistance to chemotherapy, disease recurrence, and metastasis. In this review, we will discuss our current understanding of the molecular mechanisms underlying HIF-dependent induction of the BCSC phenotype in response to hypoxia or chemotherapy.
Collapse
|
11
|
FDHE-IW: A Fast Approach for Detecting High-Order Epistasis in Genome-Wide Case-Control Studies. Genes (Basel) 2018; 9:genes9090435. [PMID: 30158504 PMCID: PMC6162554 DOI: 10.3390/genes9090435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Detecting high-order epistasis in genome-wide association studies (GWASs) is of importance when characterizing complex human diseases. However, the enormous numbers of possible single-nucleotide polymorphism (SNP) combinations and the diversity among diseases presents a significant computational challenge. Herein, a fast method for detecting high-order epistasis based on an interaction weight (FDHE-IW) method is evaluated in the detection of SNP combinations associated with disease. First, the symmetrical uncertainty (SU) value for each SNP is calculated. Then, the top-k SNPs are isolated as guiders to identify 2-way SNP combinations with significant interaction weight values. Next, a forward search is employed to detect high-order SNP combinations with significant interaction weight values as candidates. Finally, the findings were statistically evaluated using a G-test to isolate true positives. The developed algorithm was used to evaluate 12 simulated datasets and an age-related macular degeneration (AMD) dataset and was shown to perform robustly in the detection of some high-order disease-causing models.
Collapse
|