1
|
Lu T, Huo Z, Zhang Y, Li X. The Role of the p21-Activated Kinase Family in Tumor Immunity. Int J Mol Sci 2025; 26:3885. [PMID: 40332759 PMCID: PMC12027587 DOI: 10.3390/ijms26083885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
The p21-activated kinases (PAKs) are a group of evolutionarily conserved serine/threonine protein kinases and serve as a downstream target of the small GTPases Rac and Cdc42, both of which belong to the Rho family. PAKs play pivotal roles in various physiological processes, including cytoskeletal rearrangement and cellular signal transduction. Group II PAKs (PAK4-6) are particularly closely linked to human tumors, such as breast and pancreatic cancers, while Group I PAKs (PAK1-3) are indispensable for normal physiological functions such as cardiovascular development and neurogenesis. In recent years, the association of PAKs with diseases like cancer and the rise of small-molecule inhibitors targeting PAKs have attracted significant attention. This article focuses on the analysis of PAKs' role in tumor progression and immune infiltration, as well as the current small-molecule inhibitors of PAKs and their mechanisms.
Collapse
Affiliation(s)
- Tianqi Lu
- Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the People’s Republic of China, Department of Cell Biology, China Medical University, Shenyang 110122, China;
- Department of Pharmaceutical Neuroendocrinology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zijun Huo
- The Second Clinical College, China Medical University, Shenyang 110122, China; (Z.H.); (Y.Z.)
| | - Yiran Zhang
- The Second Clinical College, China Medical University, Shenyang 110122, China; (Z.H.); (Y.Z.)
| | - Xiaodong Li
- Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the People’s Republic of China, Department of Cell Biology, China Medical University, Shenyang 110122, China;
| |
Collapse
|
2
|
Roy J, Hemavathy N, Saravanan R, Gopinath P, Pugazh P, Jeyaraman J, Venkatraman G, Rayala SK. Spatio-temporal localization of P21-activated kinase in endometrial cancer. Biotechnol Appl Biochem 2024. [PMID: 39506238 DOI: 10.1002/bab.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024]
Abstract
Endometrial cancer is the sixth most common gynecologic cancer, and has been reported as a malignancy arising due to the idiopathic effects of certain anticancer agents. Tamoxifen is the drug of choice in ER-positive breast cancer, and several studies have shown better disease-free survival in these patients. However, the long-term usage of tamoxifen has been associated with resistance and risk for endometrial malignancy. A direct mechanistic basis for tamoxifen-induced endometrial tumorigenesis is still unclear. Hyperactivation of PAK1 in endometrial cancer correlates with poor overall survival. The present study demonstrates that tamoxifen treatment induces nuclear localization of PAK1 in endometrial carcinoma cells. This nuclear transit is mediated through JAK2 phosphorylation of PAK1 and binding of β-PIX. In addition, a computational approach involving molecular modeling and simulation of phosphorylated and unphosphorylated forms of PAK1 was used to elucidate the dynamics of nuclear localization. Thus, PAK1 phosphorylation by JAK2 is a prerequisite for its nuclear localization and its tumorigenic effects on endometrial cancer cells.
Collapse
Affiliation(s)
- Joydeep Roy
- Department of Biotechnology, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu, India
| | - Nagarajan Hemavathy
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Biotechnology, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu, India
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Prarthana Gopinath
- Department of Biotechnology, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu, India
| | - Pooja Pugazh
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras (IIT Madras), Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
4
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
5
|
Yu X, Huang C, Liu J, Shi X, Li X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sci 2022; 17:586-598. [PMID: 35800076 PMCID: PMC9210989 DOI: 10.1515/biol-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
P21-activated protein kinases (PAKs) are thought to be at the center of tumor signaling pathways. As a representative member of the group II PAK family, P21-activated protein kinase 4 (PAK4) plays an important role in the development of tumors, with several biological functions such as participating in oncogenic transformation, promoting cell division, resisting aging and apoptosis, regulating cytoskeleton and adhesion, as well as suppressing antitumor immune responses. PAK4 is also crucial in biological processes, including the occurrence, proliferation, survival, migration, invasion, drug resistance, and immune escape of tumor cells. It is closely related to poor prognosis and tumor-related pathological indicators, which have significant clinical and pathological significance. Therefore, this article offers a review of the structure, activation, and biological functions of PAK4 and its clinical and pathological importance. This overview should be of assistance for future research on PAK4 and tumors and provide new ideas for tumor treatment and prognostic evaluation of patients.
Collapse
Affiliation(s)
- Xinbo Yu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Changwei Huang
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiyuan Liu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xinyu Shi
- The Second Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
6
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
Affiliation(s)
- Atreyi Dasgupta
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Laura Sierra
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Susan V Tsang
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Tajhal Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakse
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Ryan L Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas.
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, Zhang TT, Zhang CJ, Du YY, Gu KS, Wei W. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett 2020; 493:120-127. [PMID: 32829006 DOI: 10.1016/j.canlet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Meng-Na Zhan
- Department of Pathology, Zhong-Shan Hospital Affiliated to Fudan University, Shanghai, 200023, China
| | - Wan-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Teng-Teng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cong-Jun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ying-Ying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
8
|
A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood 2019; 133:2198-2211. [DOI: 10.1182/blood-2018-10-881441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.
Collapse
|
9
|
Yaguchi T, Onishi T. Estrogen induces cell proliferation by promoting ABCG2-mediated efflux in endometrial cancer cells. Biochem Biophys Rep 2018; 16:74-78. [PMID: 30377671 PMCID: PMC6202658 DOI: 10.1016/j.bbrep.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, it has reported that overeating of lipid-food has led to increase the amount of estrogen in vivo and the incidence of endometrial carcinomas. It is well-known that ATP-binding cassette transporter sub-family G2 (ABCG2) is highly expressed in cancer stem cells (CSCs). CSCs possess the ability for differentiation, tumorigenesis, stem cell self-renewal, and the efflux of anti-cancer drug and these abilities affect malignancy of cancer cells. However, little is known about the relationship between the expression of ABCG2 and malignancy of cancer cells. The present study aimed at understanding the regulatory mechanism underlying 17-β-estradiol (E2)-induced cell proliferation under the control of ABCG2. E2 increased cell viability with a peak at 1 μM and facilitated ABCG2 mRNA expression followed by the increase of ABCG2 expression level at plasma membrane. E2-induced cell proliferation was inhibited by reserpine, an inhibitor of ABCG2, and the ABCG2 siRNA treatment. Thus, these results imply that ABCG2 plays an important role in the promotion of E2-induced cell proliferation in Ishikawa cells.
Collapse
Affiliation(s)
- Takahiro Yaguchi
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho, Kurashiki 712-8505, Japan
- Department of Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takafumi Onishi
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho, Kurashiki 712-8505, Japan
| |
Collapse
|
10
|
Wang F, Chen Q, Huang G, Guo X, Li N, Li Y, Li B. BKCa participates in E2 inducing endometrial adenocarcinoma by activating MEK/ERK pathway. BMC Cancer 2018; 18:1128. [PMID: 30445932 PMCID: PMC6240221 DOI: 10.1186/s12885-018-5027-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background The large-conductance, voltage-gated, calcium (Ca (2+))-activated potassium channel (BKCa) plays an important role in regulating Ca (2+) signaling and cell physiological function, and is aberrantly expressed in some types of cancers. The present study focuses on identifying the oncogenic potential and clinical significance of BKCa in endometrial adenocarcinoma, as well as exploring the mechanistic relevance by 17β -estradiol (E2) inducing aberrant activation of MEK1/2 and ERK1/2 via BKCa. Methods The expression of BKCa, ERK1/2 and p-ERK1/2 were examined by immunohistochemical staining in 263 cases, including 185 primary types I endometrial cancer tissues, 38 atypical endometrial hyperplasia tissues and 40 normal endometrium tissues. Cell growth, cycle, apoptosis rate, migration and invasion was separately tested in Ishikawa cells using siRNA-BKCa and/or E2 treatment, as well as the expression of these interested proteins by western blot analysis. Results We showed that expression of BKCa is significantly elevated in 185 types I endometrial adenocarcinoma tissues compared to those of the normal endometrium and atypical endometrial hyperplasia tissues. Furthermore, in vitro observations revealed that down-regulation of BKCa expression inhibited cell growth by both enhancing apoptosis and blocking G1/S transition, suppressed cell migration and invasion in Ishakiwa cells, and decreased the expression of p-MEK1/2 and p-ERK1/2. Additionally, RNAi-mediated knockdown of BKCa attenuated the increased cellular growth and invasion, as well as the elevated expression of p-MEK1/2 and p-ERK1/2 proteins, induced by E2 stimulation. More importantly, the aberrant expression of BKCa and p-ERK1/2 were closely related with poor prognostic factors in type I endometrial cancer, and up-regulated expression of p-ERK1/2 was significantly associated with shorter disease-free survival (DFS) and overall survival (OS) and was an independent prognostic factor in type I endometrial cancer patients. Conclusion Our results demonstrated that BKCa and the key downstream effectors p-ERK1/2 could be involved in important signaling pathways in initiation and development of endometrial adenocarcinoma and may provide a new therapeutic approach for women with endometrial cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-5027-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Genping Huang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xuedong Guo
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Na Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University, School of Medicine, Xueshi Road 1, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
11
|
Li Q, Zhang X, Wei N, Liu S, Ling Y, Wang H. p21-activated kinase 4 as a switch between caspase-8 apoptosis and NF-κB survival signals in response to TNF-α in hepatocarcinoma cells. Biochem Biophys Res Commun 2018; 503:3003-3010. [PMID: 30149917 DOI: 10.1016/j.bbrc.2018.08.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
PAK4 is overexpressed in a variety of human cancers and considered a promising candidate for therapeutic target. However, its functions remain poorly understood, especially in liver carcinogenesis which could be triggered by inflammation. In the present study, endogenous PAK4 was knockdown using siRNA in HepG2 and SK-Hep1 cells. The two cell lines performed reduced cell viability, altered cell cycle composed of decreased S and arrest in G2, and apoptosis. Meanwhile, expression of NF-κB p65 in the nuclei and caspase-8 activity did not show significant differences from control. However, after treating cells with TNF-α, an inflammatory cytokine, we investigated repressed nuclear expression and localization of NF-κB p65, and induced apoptosis with increased caspase-8 activity in PAK4-knockdown cells. The findings revealed that ablation of PAK4 inhibited cell viability via blocking cell cycle and progressing apoptosis. The apoptosis was partially dependent upon caspase-8 concomitant with attenuated NF-κB survival signal due to stimulus of TNF-α. It suggests that PAK4 as target is a switch between caspase-8 apoptosis and NF-κB survival signals induced by TNF-α in hepatocarcinoma cells.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyun Zhang
- Pathological Department, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Na Wei
- Institute of Pathophysiology, College of Basic Medical, Lanzhou University, Lanzhou, 730000, China
| | - Shuwen Liu
- Gastrointestinal Surgery Department, Gansu Provincial Cancer Hospital, Lanzhou, 730050, China
| | - Yaqin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Hao Wang
- Orthopedics Department, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|