1
|
Bana S, Daffara S, Dagar A, Tiwari AK, Medhi K, Mukherjee S, Uttam V, Ansari MR, Tuli HS, Yadav V, Jain A. Clinical Significance of LINC00261 in the Pathogenesis of Pancreatic, Colorectal, Hepatocellular, and Gallbladder Cancer. Diseases 2025; 13:89. [PMID: 40136629 PMCID: PMC11941650 DOI: 10.3390/diseases13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic (PC), colorectal (CRC), hepatocellular (HCC), and gallbladder (GC) cancers together account for nearly 20% of all cancer cases. However, specific biomarkers and therapeutic targets for these cancers are lacking. Diagnosing these cancers early and providing timely, appropriate treatment to improve patient outcomes is crucial. In this context, previous studies, including ours, have highlighted the potential of non-coding RNAs, particularly long non-coding RNAs (lncRNAs), in diagnosing and prognosis of various cancers. This review focuses on the mechanistic role of the recently identified lncRNA LINC00261 in PC, CRC, HCC, and GC. Our comprehensive literature analysis revealed that LINC00261 functions as a tumor suppressor, and its reduced expression is associated with larger tumor size, advanced tumor-node-metastasis (TNM) stages, lymphatic metastasis, and poorer overall survival rates. Additionally, we discovered that LINC00261 acts as a molecular sponge for miRNAs, such as miR-550a-3p, miR-23a-3p, miR-148a, miR-324-3p, and miR-105-5p, regulating critical cancer-related signaling pathways, including PI3K/Akt/mTOR, Protein kinase B, and Mammalian target of rapamycin (mTOR). Further bioinformatic analysis revealed that LINC00261 regulates key cellular processes, such as protein-DNA complex formation, ribonuclease complex activity, histone deacetylase complexes, and nuclear matrix interactions. Overall, we believe that LINC00261 holds significant promise as a future biomarker and, when combined with existing treatment strategies, may enhance cancer patient care and survival.
Collapse
Affiliation(s)
- Sanjana Bana
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sia Daffara
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Aastha Dagar
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Ashutosh Kumar Tiwari
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Kanupriya Medhi
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sagarika Mukherjee
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Md Rizwan Ansari
- GD Research Center, 3rd Floor, Jyoti Pinnacle Building, Survey No.11, Kondapur Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500081, Telangana, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India;
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, 20213 Malmö, Sweden
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| |
Collapse
|
2
|
Ghafouri-Fard S, Dashti S, Taheri M. Erratum to "The HOTTIP (HOXA transcript at the distal tip) lncRNA: Review of oncogenic roles in human" [Biomed. Pharmacother. 127(2020) 110158]. Biomed Pharmacother 2025; 183:117868. [PMID: 39863493 DOI: 10.1016/j.biopha.2025.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025] Open
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Yadav G, Kulshreshtha R. Pan-cancer analyses identify MIR210HG overexpression, epigenetic regulation and oncogenic role in human tumors and its interaction with the tumor microenvironment. Life Sci 2024; 339:122438. [PMID: 38242493 DOI: 10.1016/j.lfs.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Molecular entities showing dysregulation in multiple cancers may hold great biomarker or therapeutic potential. There is accumulating evidence that highlights the dysregulation of a long non-coding RNA, MIR210HG, in various cancers and its oncogenic role. However, a comprehensive analysis of MIR210HG expression pattern, molecular mechanisms, diagnostic or prognostic significance or evaluation of its interaction with tumor microenvironment across various cancers remains unstudied. METHODS A systematic pan-cancer analysis was done using multiple public databases and bioinformatic tools to study the molecular role and clinical significance of MIR210HG. We have analyzed expression patterns, genome alteration, transcriptional and epigenetic regulation, correlation with patient survival, immune infiltrates, co-expressed genes, interacting proteins, and pathways associated with MIR210HG. RESULTS The Pan cancer expression analysis of MIR210HG through various tumor datasets demonstrated that MIR210HG is significantly upregulated in most cancers and increased with the tumor stage in a subset of them. Furthermore, prognostic analysis revealed high MIR210HG expression is associated with poor overall and disease-free survival in specific cancer types. Genetic alteration analysis showed minimal alterations in the MIR210HG locus, indicating that overexpression in cancers is not due to gene amplification. The exploration of SNPs on MIR210HG suggested possible structural changes that may affect its interactions with the miRNAs. The correlation of MIR210HG with promoter methylation was found to be significantly negative in nature in majority of cancers depicting the possible epigenetic regulation of expression of MIR210HG. Additionally, MIR210HG showed negative correlations with immune cells and thus may have strong impact on the tumor microenvironment. Functional analysis indicates its association with hypoxia, angiogenesis, metastasis, and DNA damage repair processes. MIR210HG was found to interact with several proteins and potentially regulate chromatin modifications and transcriptional regulation. CONCLUSIONS A first pan-can cancer analysis of MIR210HG highlights its transcriptional and epigenetic deregulation and oncogenic role in the majority of cancers, its correlation with tumor microenvironment factors such as hypoxia and immune infiltration, and its potential as a prognostic biomarker and therapeutic target in several cancers.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
4
|
Zhang N, Yu X, Sun H, Zhao Y, Wu J, Liu G. A prognostic and immunotherapy effectiveness model for pancreatic adenocarcinoma based on cuproptosis-related lncRNAs signature. Medicine (Baltimore) 2023; 102:e35167. [PMID: 37861553 PMCID: PMC10589590 DOI: 10.1097/md.0000000000035167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) results in one of the deadliest solid tumors with discouraging clinical outcomes. Growing evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in altering the growth, prognosis, migration, and invasion of pancreatic cancer cells. Cuproptosis is a novel type of cell death induced by copper (Cu) and is associated with mitochondrial respiration during the tricarboxylic acid cycle. However, the relationship between lncRNAs related to cuproptosis and PAAD is poorly studied. In this study, we investigated the association between a signature of cuproptosis-related lncRNAs and the diagnosis of PAAD. Genomic data and clinical information were obtained using the TCGA dataset, while cuproptosis-related genes (CRGs) from previous studies. Co-expression analysis was utilized to identify lncRNAs associated with cuproptosis. We developed and verified a prognostic risk model following a classification of patients into high- and low-risk categories. The prediction capacity of the risk model was assessed using a number of methods including Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, nomograms, and principal component analysis (PCA). Furthermore, differentially expressed genes (DEGs) were used to perform functional enrichment analyses, and to examine the behaviors of various risk groups in terms of immune-related activities and medication sensitivity. We identified 7 cuproptosis-related lncRNA signatures, including CASC19, FAM83A-AS1, AC074099.1, AC007292.2, AC026462.3, AL358944.1, and AC009019.1, as overall survival (OS) predictors. OS and progression-free survival (PFS) showed significant differences among patients in different risk groups. Independent prognostic analysis revealed that the cuproptosis-related lncRNA signatures can independently achieve patient prognosis. The risk model demonstrated strong predictive ability for patient outcomes, as evidenced by ROC curves, nomograms, and PCA. Higher tumor mutation burden (TMB) and lower tumor immune dysfunction and exclusion (TIDE) scores were observed in the high-risk group. Additionally, the low-risk group was hypersensitive to 3 anti-cancer medications, whereas the high-risk group was hypersensitive to one. A prognostic risk model with a good predictive ability based on cuproptosis-related lncRNAs was developed, providing a theoretical basis for personalized treatment and immunotherapeutic responses in pancreatic cancer.
Collapse
Affiliation(s)
- Ning Zhang
- Graduate College, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xuehua Yu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
- College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Hui Sun
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunhong Zhao
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jing Wu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Rastad H, Mozafary Bazargany MH, Samimisedeh P, Farahani M, Hashemnejad M, Moghadam S, Khodaparast Z, Shams R, Seifi-Alan M. Clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer: a systematic review study and meta-analysis. Pathol Res Pract 2023; 245:154403. [PMID: 37004278 DOI: 10.1016/j.prp.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Aberrant expression of lncRNAs in cancer cells can impact their key phenotypes. We aimed to summarize available evidence on clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer. METHODS A systematic search was performed on Medline and Embase databases using relevant key terms covering lncRNA TPT1-AS1, cancer, and clinical outcomes. The effect size estimates and their 95 % confidence interval (CI) were pooled using random-effects models. Meta- analyses were conducted using STATA 16.0 software. RESULTS Seventeen articles met our eligibility criteria. Tumor tissue compared to normal tissue showed increased level of lncRNA TPT1-AS1 expression (pooled standardized mean difference (95 % CI): 0.65 (0.52-0.79)). Overexpression of this lncRNA was a significant predictor for poor prognosis (Pooled log-rank test P-value < 0.001); in patients with high-level of lncRNA TPT1-AS1, the risk of death at five years was 1.40 times greater than their counterparts. The pooled Odds ratios for association lncRNA TPT1-AS1 with tumor stage, tumor size, and lymph node metastasis were 1.94 (95 % CI: 0.90-4.19, 8 studies, I2 = 79.6 %), 2.33 (95 % CI: 1.31-4.14, 5 studies, I2 = 40.0 %), and 1.89 (95 % CI: 1.08-3.36, 5 studies, I2 = 61.7 %), respectively. Regarding the identified potential mechanisms, lncRNA TPT1-AS1 plays a role in cancer growth mainly by sponging miRNAs and regulating their downstream targets or controlling the expression of key cell cycle regulators. CONCLUSION In cancer patients, elevated expression of lncRNA TPT1-AS1 might be associated with a shorter Overall Survival, advanced stages, larger tumor size, and lymph node metastasis.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Farahani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somaye Moghadam
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Khodaparast
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Rastad H, Samimisedeh P, Alan MS, Afshar EJ, Ghalami J, Hashemnejad M, Alan MS. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: A systematic review and meta-analysis. Pathol Res Pract 2023; 241:154245. [PMID: 36580796 DOI: 10.1016/j.prp.2022.154245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND LncRNAs have the potential to play a regulatory role in different processes of cancer development and progression. We conducted a systematic review and meta-analysis of evidence on the clinical significance and prognostic value of lncRNA CERS6-AS1 in cancer. METHODS This systematic review was conducted following PRISMA guidelines. Medline and Embase databases were searched using the relevant key terms covering lncRNA CERS6-AS1 and cancer. We pooled the estimated effect sizes and their 95 % confidence interval (CI) using random-effects models in STATA 16.0 (StataCorp, College Station, TX, USA). RESULTS Eleven articles on pancreatic, colorectal, gastric, papillary thyroid, breast, and hepatocellular cancers fulfilled our eligibility criteria. Studies consistently found that lncRNA CERS6-AS1 expression is upregulated in all assessed cancers. Based on our meta-analysis, its aberrant expression was directly associated with unfavorable clinical outcomes, including higher stage (pooled Odds ratios (95 % CI): 3.15 (2.01-4.93; I2 = 0.0 %), tumor size (1.97 (1.27-3.05; I2 = 37.8 %), lymph node metastasis (6.48 (4.01-10.45; I2 = 0.40 %), and poor survival (Pooled log-rank test P-value < 0.001) in patients. Regarding potential mechanisms, functional studies revealed that LncRNA CERS6-AS1 is involved in cancer growth mainly by sponging miRNAs and regulating their downstream targets. CONCLUSION Available evidence suggests that LncRNA CERS6-AS1 is upregulated in different cancers and has an oncogenic role. LncRNA CERS6-AS1 expression level might predict cancer prognosis, highlighting its potential application as a prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Jamileh Ghalami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; The Clinical Research Development units of Kamali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
8
|
Song Z, Wang X, Chen F, Chen Q, Liu W, Yang X, Zhu X, Liu X, Wang P. LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front Oncol 2022; 12:1004212. [PMID: 36212476 PMCID: PMC9533337 DOI: 10.3389/fonc.2022.1004212] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. The main methods of treating pancreatic cancer are surgery and chemotherapy, but the treatment efficacy is low with a poor prognosis. Immunotherapy represented by PD-1/PD-L1 has brought a milestone progress in the treatment of pancreatic cancer. However, the unique tumor microenvironment of pancreatic cancer presents challenges for immunotherapy. In addition, m6A is a common RNA modification and a potential molecular target in tumor therapy. The expression pattern of m6A in pancreatic cancer is still unclear. LncRNAs also play an essential role in pancreatic cancer development and treatment. In this study, we found that some m6A regulators were significantly elevated in pancreatic cancer and associated with the expression of PD-1/PD-L1. Moreover, we observed that METTL3 can increase the expression of PD-L1. Notably, METTL3 positively regulates the expression of lncRNA MALAT1 in pancreatic cancer cells. Strikingly, lncRNA MALAT1 increased the expression of PD-L1 in pancreatic cancer cells. This finding indicated that METTL3 regulated the expression of PD-L1 possibly via targeting lncRNA MALAT1 in pancreatic cancer cells. Lastly, MALAT1 governed the viability of pancreatic cancer cells. Taken together, lncRNA MALAT1 is involved in METTL3-mediated promotion of PD-L1 expression in pancreatic cancer.
Collapse
Affiliation(s)
- Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiuli Chen
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Xiaodan Yang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xun Zhu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaorong Liu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Xiaorong Liu, ; Peter Wang,
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Xiaorong Liu, ; Peter Wang,
| |
Collapse
|
9
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
10
|
Early-stage colon cancer with high MALAT1 expression is associated with the 5-Fluorouracil resistance and future metastasis. Mol Biol Rep 2022; 49:11243-11253. [PMID: 35794508 DOI: 10.1007/s11033-022-07680-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND This study aimed to investigate the role of long noncoding RNA (LncRNA) expression profiles to predict relapse and 5-FU response in patients with stage I/II colon cancer (CC). METHODS AND RESULTS The expression level of 15 LncRNA was analyzed in stage I/II colon tumors of 126 CC patients. To confirm the findings in-vitro, 5FU-resistant HT29 cells were generated by subjecting HT-29 cells to the increasing concentrations of 5FU for 6 months. The 5FU resistance was observed in WST-1 and Annexin V analyses. The colony formation and wound healing assays were assessed to determine the metastatic properties of the cells. Expression levels of LncRNAs and mRNA of EMT-related genes were determined by RT-PCR. The role of LncRNA on metastasis and 5FU sensitivity were confirmed in pcDNA3.0-PTENP1 and si-MALAT1 expressed 5FU-resistant HT29 cell lineages. RESULTS High MALAT1 (p = 0.0002) and low PTENP1 (p = 0.0044) expressions were significantly associated with 5-FU resistance and tumor relapse in stage I/II CC. The invasiveness and colony-forming characteristics of 5-FU-resistant cell lineages were higher as compared to the parent HT-29. Moreover, the expression of MALAT1 (p = 0.0009) was increased while the expression of PTENP1 (p = 0.0158) decreased in 5FU-resistant-HT-29 cells. Si-MALAT1 treatment increased cell sensitivity to 5FU, whereas it decreased invasive behaviors of 5 FU-resistant-HT-29 cells. CONCLUSION MALAT1 may be a biomarker in predicting recurrence in early-stage CC. Our findings suggest that a cell-based therapy to target MALAT1 could be established for these patients to prevent metastasis and 5-FU resistance.
Collapse
|
11
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
12
|
Non-Coding RNAs in Pancreatic Cancer Diagnostics and Therapy: Focus on lncRNAs, circRNAs, and piRNAs. Cancers (Basel) 2021; 13:cancers13164161. [PMID: 34439315 PMCID: PMC8392713 DOI: 10.3390/cancers13164161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is the seventh leading cause of cancer related death worldwide. In the United States, pancreatic cancer remains the fourth leading cause of cancer related death. The lack of early diagnosis and effective therapy contributes to the high mortality of pancreatic cancer. Therefore, there is an urgent need to find novel and effective biomarkers for the diagnosis and treatment of pancreatic cancer. Long noncoding RNA, circular RNAs and piwi-interacting RNA are non-coding RNAs and could become new biomarkers for the diagnosis, prognosis, and treatment of pancreatic cancer. We summarize the new findings on the roles of these non-coding RNAs in pancreatic cancer diagnosis, prognosis and targeted therapy. Abstract Pancreatic cancer is an aggressive malignance with high mortality. The lack of early diagnosis and effective therapy contributes to the high mortality of this deadly disease. For a long time being, the alterations in coding RNAs have been considered as major targets for diagnosis and treatment of pancreatic cancer. However, with the advances in high-throughput next generation of sequencing more alterations in non-coding RNAs (ncRNAs) have been discovered in different cancers. Further mechanistic studies have demonstrated that ncRNAs such as long noncoding RNAs (lncRNA), circular RNAs (circRNA) and piwi-interacting RNA (piRNA) play vital roles in the regulation of tumorigenesis, tumor progression and prognosis. In recent years, increasing studies have focused on the roles of ncRNAs in the development and progression of pancreatic cancer. Novel findings have demonstrated that lncRNA, circRNA, and piRNA are critically involved in the regulation of gene expression and cellular signal transduction in pancreatic cancer. In this review, we summarize the current knowledge of roles of lncRNA, circRNA, and piRNA in the diagnosis and prognosis of pancreatic cancer, and molecular mechanisms underlying the regulation of these ncRNAs and related signaling in pancreatic cancer therapy. The information provided here will help to find new strategies for better treatment of pancreatic cancer.
Collapse
|
13
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
14
|
Melendez-Zajgla J, Maldonado V. The Role of lncRNAs in the Stem Phenotype of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6374. [PMID: 34203589 PMCID: PMC8232220 DOI: 10.3390/ijms22126374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).
Collapse
Affiliation(s)
- Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico;
| | - Vilma Maldonado
- Epigenomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico
| |
Collapse
|
15
|
Ramya Devi KT, Karthik D, Mahendran T, Jaganathan MK, Hemdev SP. Long noncoding RNAs: role and contribution in pancreatic cancer. Transcription 2021; 12:12-27. [PMID: 34036896 DOI: 10.1080/21541264.2021.1922071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Collapse
Affiliation(s)
- K T Ramya Devi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dharshene Karthik
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India.,Department of Industrial Biotechnology, Sri Venkateswara College of Engineering, Chennai, India
| | - TharunSelvam Mahendran
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - M K Jaganathan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Sanjana Prakash Hemdev
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
16
|
Liu YF, Luo D, Li X, Li ZQ, Yu X, Zhu HW. PVT1 Knockdown Inhibits Autophagy and Improves Gemcitabine Sensitivity by Regulating the MiR-143/HIF-1α/VMP1 Axis in Pancreatic Cancer. Pancreas 2021; 50:227-234. [PMID: 33565800 DOI: 10.1097/mpa.0000000000001747] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Elucidation of the regulatory mechanisms of gemcitabine sensitivity is needed to improve the therapeutic effects of this drug in pancreatic cancer. METHODS PANC-1 cells were transfected with small hairpin RNA against PVT1 or microRNA (miR)-143 mimics or inhibitor. The gemcitabine sensitivity of pancreatic cancer was evaluated. Autophagosomes were analyzed with an immunofluorescence assay. Cell viability and proliferation were examined with MTT assays. Quantitative reverse transcription-polymerase chain reaction and Western blotting were used to analyze the expression of PVT1, miR-143, HIF-1α, VMP1, LC3I/II, p62, and Beclin-1. The interactions of PVT1/miR-143 and miR-143/HIF-1α were assessed by dual-luciferase reporter assays. RESULTS PVT1 was upregulated while miR-143 was downregulated in pancreatic cancer. Both PVT1 knockdown and miR-143 overexpression suppressed autophagy and improved gemcitabine sensitivity in pancreatic cancer. PVT1 directly sponged miR-143 to regulate HIF-1α expression. MiR-143 inhibitor reversed the effect of PVT1 knockdown on autophagy and gemcitabine sensitivity. CONCLUSIONS PVT1 knockdown inhibited autophagy and improved gemcitabine sensitivity via the miR-143/HIF-1α/VMP1 axis in pancreatic cancer. Our investigation elucidated a novel regulatory mechanism of gemcitabine sensitivity and may contribute to improve the therapeutic effects of chemotherapy drugs on pancreatic cancer.
Collapse
Affiliation(s)
- Yun-Fei Liu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Dong Luo
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Xia Li
- Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Li
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Xiao Yu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Hong-Wei Zhu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| |
Collapse
|
17
|
El-Ashmawy NE, Al-Ashmawy GM, Hamouda SM. Long non-coding RNA FAM83H-AS1 as an emerging marker for diagnosis, prognosis and therapeutic targeting of cancer. Cell Biochem Funct 2020; 39:350-356. [PMID: 33159470 DOI: 10.1002/cbf.3601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022]
Abstract
Incidence and mortality rates of cancer continue to increase greatly despite the improved diagnostic and therapeutic methods. Based on GLOBOCAN estimates, the numbers of new cancer cases reported in 2018 were ~18.1 million, while the numbers of cancer mortalities were ~9.6 million. It remains difficult to diagnose most cancer patients at early stages. Although cancer therapy market is rapidly evolving, the effectiveness of therapy is still inadequate. Therefore, exploring new biomarkers for diagnosis, prognosis and treatment is essential for cancer management. Long non-coding RNAs (lncRNAs) are unique regulatory molecules that control several cellular processes and are implicated in diverse human diseases including cancer. LncRNAs could serve as potential biomarkers for cancer patients to aid diagnosis and determine prognosis. In addition, numerous lncRNAs have proved their ability to predict response to cancer treatment. FAM83H antisense RNA 1 (FAM83H-AS1) is among those highly dysregulated lncRNAs in cancer. FAM83H-AS1 was demonstrated to participate in the progression of different malignancies and also shown to play a vital role in diagnosis, prognosis and treatment. Here, we analyse recent studies concerning the oncogenic role and molecular mechanisms of lncRNA FAM83H-AS1 in the following cancer types: bladder, breast, lung, hepatocellular, colorectal, gastric, pancreatic, ovarian, cervical cancer as well as glioma.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Non-coding RNA biomarkers in pancreatic ductal adenocarcinoma. Semin Cancer Biol 2020; 75:153-168. [PMID: 33049362 DOI: 10.1016/j.semcancer.2020.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, which is usually diagnosed at an advanced stage. The late disease diagnosis, the limited availability of effective therapeutic interventions and lack of robust diagnostic biomarkers, are some of the primary reasons for the dismal 5-year survival rates (∼8%) in patients with PDAC. The pancreatic cancer develops through accumulation of a series of genomic and epigenomic alterations which lead to the transformation of normal pancreatic epithelium into an invasive carcinoma - a process that can take up to 15-20 years to develop, from the occurrence of first initiating mutational event. These facts highlight a unique window of opportunity for the earlier detection of PDAC, which could allow timely disease interception and improvement in the overall survival outcomes in patients suffering from this fatal malignancy. Non-coding RNAs (ncRNAs) have been recognized to play a central role in PDAC pathogenesis and are emerging as attractive candidates for biomarker development in various cancers, including PDAC. More specifically, the ncRNAs play a pivotal role in PDAC biology as they affect tumor growth, migration, and invasion by regulating cellular processes including cell cycle, apoptosis, and epithelial-mesenchymal transition. In this review, we focus on three types of well-established ncRNAs - microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) - and discuss their potential as diagnostic, prognostic and predictive biomarkers in PDAC.
Collapse
|
19
|
Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anticancer Drugs 2020; 30:892-899. [PMID: 30882398 DOI: 10.1097/cad.0000000000000786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotherapy is the main treatment for advanced gastric cancer. However, the emergence of multidrug resistance (MDR) has become a major obstacle in chemotherapy in many tumors, including gastric cancer. Epithelial-mesenchymal transition (EMT), which is considered an important process in cancer development, also contributes toward tumor MDR. Salinomycin, an EMT blocker, shows broad-spectrum antitumor and chemosensitization properties. Here, we hypothesized that salinomycin could reverse the MDR of SGC7901/cisplatin (CDDP) gastric cancer cell by inhibiting EMT and further explored its possible underlying mechanisms. Our results indicated higher 50% inhibiting concentration (IC50) and stronger migration capacity in SGC7901/CDDP than in SGC7901 cells, whereas salinomycin could reduce the IC50 (50% inhibition of the concentration of chemodrugs after 4 μmol/l salinomycin treatment) and migration capacity in SGC7901/CDDP cells. At the molecular level, we found that the expression of E-cadherin, ZO-1 decreased, whereas the expression of N-cadherin, Vimentin, ZEB-1, and Twist increased in SGC7901/CDDP cells, and that salinomycin potently blocked the EMT by enhancing the expression of E-cadherin, ZO-1 and reducing the expression of N-cadherin, Vimentin, ZEB-1, and Twist in the above MDR cells. In addition, we also found that long noncoding RNA HOTTIP, an oncogenic regulator, was upregulated in SGC7901/CDDP cells, whereas its downregulation could markedly attenuate the EMT, thereby reversing the MDR. Furthermore, our data showed that the salinomycin-elicited MDR-reversion effect was associated closely with suppression of EMT through inhibition of the expression of long noncoding RNA HOTTIP. Collectively, our findings suggest a new underlying mechanism and applicable therapeutic regimen for MDR gastric cancer.
Collapse
|
20
|
Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer. Cancer Cell Int 2020; 20:457. [PMID: 32973402 PMCID: PMC7493950 DOI: 10.1186/s12935-020-01550-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the main causes of tumor-related deaths worldwide because of its low morbidity but extremely high mortality, and is therefore colloquially known as the "king of cancer." Sudden onset and lack of early diagnostic biomarkers directly contribute to the extremely high mortality rate of pancreatic cancer patients, and also make it indistinguishable from benign pancreatic diseases and precancerous pancreatic lesions. Additionally, the lack of effective prognostic biomarkers makes it difficult for clinicians to formulate precise follow-up strategies based on the postoperative characteristics of the patients, which results in missed early diagnosis of recurrent pancreatic cancer. Long non-coding RNAs (lncRNAs) can influence cell proliferation, invasion/migration, apoptosis, and even chemoresistance via regulation of various signaling pathways, leading to pro- or anti-cancer outcomes. Given the versatile effects of lncRNAs on tumor progression, using a single lncRNA or combination of several lncRNAs may be an effective method for tumor diagnosis and prognostic predictions. This review will give a comprehensive overview of the most recent research related to lncRNAs in pancreatic cancer progression, as targeted therapies, and as biomarkers for the diagnosis and prognosis of pancreatic cancer.
Collapse
|
21
|
Wang H, Wang F, Ouyang W, Jiang X, Li W. MALAT1 knockdown inhibits hypopharyngeal squamous cell carcinoma malignancy by targeting microRNA-194. Oncol Lett 2020; 20:173-182. [PMID: 32565945 PMCID: PMC7285813 DOI: 10.3892/ol.2020.11551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in the oncogenesis and progression of various types of cancer. However, the function of MALAT1 in hypopharyngeal squamous cell carcinoma (HSCC) is not completely understood. In the present study, MALAT1 expression levels were determined using reverse transcription-quantitative PCR, and Cell Counting Kit-8, Transwell and flow cytometry assays were performed to investigate the biological functions of HSCC cells. The results indicated that MALAT1 was upregulated in HSCC. MALAT1 knockdown suppressed HSCC cell proliferation, migration and invasion, and promoted apoptosis compared with the control group. Additionally, microRNA (miR)-194 was identified as a target of MALAT1 and was expressed at low levels in HSCC tissues compared with adjacent non-tumor tissues. A miR-194 agomir inhibited malignant cell behaviors, including cell proliferation, migration and invasion, whereas miR-194 antagomir promoted malignant behaviors compared with the corresponding control groups. In addition, the results suggested that MALAT1 knockdown inhibited the malignant behaviors of HSCC cells by binding miR-194. miR-194 inhibition partially reversed the MALAT1 knockdown-induced inhibitory effects on HSCC cells. Furthermore, MALAT1 knockdown combined with miR194 mimics resulted in the lowest tumor volume among all tested groups in vivo. In conclusion, the results of the present study suggested that MALAT1 knockdown suppressed the malignant behavior of HSCC by targeting miR-194; therefore, MALAT1 may serve as a novel therapeutic target for HSCC.
Collapse
Affiliation(s)
- Hongming Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fei Wang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyu Ouyang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jiang
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wei Li
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Gong R, Jiang Y. Non-coding RNAs in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:309. [PMID: 32257946 PMCID: PMC7089935 DOI: 10.3389/fonc.2020.00309] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are reported to be expressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). These ncRNAs affect the growth, migration and invasion of tumor cells by regulating cell cycle and apoptosis, as well as playing important roles in epigenetic processes, transcription and post-transcriptional regulation. It is still unclear whether alterations in ncRNAs influence PDAC development and progression. Because of this, analysis based on existing data on ncRNAs, which are crucial for modulating pancreatic tumorigenesis, will be important for future research on PDAC. Here, we summarize ncRNAs with tumor-promoting functions: HOTAIR, HOTTIP, MALAT1, lncRNA H19, lncRNA PVT1, circ-RNA ciRS-7, circ-0030235, circ-RNA_100782, circ-LDLRAD3, circ-0007534, circRHOT1, circZMYM2, circ-IARS, circ-RNA PDE8A, miR-21, miR-155, miR-221/222, miR-196b, miR-10a. While others including GAS5, MEG3, and lncRNA ENST00000480739, has_circ_0001649, miR-34a, miR-100, miR-217, miR-143 inhibit the proliferation and invasion of PDAC. Hence, we summarize the functions of ncRNAs in the occurrence, development and metastasis of PDAC, with the goal to provide guidance in the clinical diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Ruining Gong
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueping Jiang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Shao G, Zhao Z, Zhao W, Hu G, Zhang L, Li W, Xing C, Zhang X. Long non-coding RNA MALAT1 activates autophagy and promotes cell proliferation by downregulating microRNA-204 expression in gastric cancer. Oncol Lett 2020; 19:805-812. [PMID: 31897197 PMCID: PMC6924198 DOI: 10.3892/ol.2019.11184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the major diseases that threaten human health. Although the development of novel drugs has significantly improved the efficacy of GC chemotherapy, the 5-year survival rate of patients with GC remains unsatisfactory. In the present study, the role and mechanism of the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in GC proliferation was investigated. Clinical specimens and cancer cells were analyzed by western blotting or immunofluorescence. Reverse transcription-quantitative polymerase chain reaction analysis of 57 paired GC and non-tumorous tissues revealed elevated expression of MALAT1 in GC tissues compared with controls. In addition, increased MALAT1 was associated with elevated levels of microtubule-associated protein 1 light chain 3β (LC3B) and antigen Ki67, which are autophagy and proliferation markers, respectively. MTT and colony formation assay results demonstrated that MALAT1 promoted GC cell proliferation. To the best of our knowledge, the present study was the first to demonstrate that upregulated MALAT1 was associated with increased autophagy activation in GC tissues. Furthermore, this study reported that MALAT1 increased cell proliferation and enhanced autophagy activation in GC cells. In addition, the results revealed that MALAT1 inhibited microRNA (miR)-204 expression in GC cells. The present study also demonstrated that miR-204 repressed autophagy through the downregulation of LC3B and transient receptor potential melastatin 3 expression in GC cells. These results indicated that MALAT1 activated autophagy and promoted cell proliferation by downregulating miR-204 expression in GC.
Collapse
Affiliation(s)
- Guoyi Shao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Gen Hu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Liying Zhang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Wei Li
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xian Zhang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu 214400, P.R. China
| |
Collapse
|
24
|
Metastasis Associated Lung Adenocarcinoma Transcript 1: An update on expression pattern and functions in carcinogenesis. Exp Mol Pathol 2019; 112:104330. [PMID: 31712117 DOI: 10.1016/j.yexmp.2019.104330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
The Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is among long non-coding RNAs (lncRNAs) which has disapproved the old term of "junk DNA" which was used for majority of human genome which are not transcribed to proteins. An extensive portion of literature points to the fundamental role of this lncRNA in tumorigenesis process of diverse cancers ranging from solid tumors to leukemia. Being firstly identified in lung cancer, it has prognostic and diagnostic values in several cancer types. Consistent with the proposed oncogenic roles for this lncRNA, most of studies have shown up-regulation of MALAT1 in malignant tissues compared with non-malignant/normal tissues of the same source. However, few studies have shown down-regulation of MALAT1 in breast cancer, endometrial cancer, colorectal cancer and glioma. In the current study, we have conducted a comprehensive literature search and provided an up-date on the role of MALAT1 in cancer biology. Our investigation underscores a potential role as a diagnostic/prognostic marker and a putative therapeutic target for MALAT1.
Collapse
|
25
|
Lou S, Xu J, Wang B, Li S, Ren J, Hu Z, Xu B, Luo F. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:814-825. [PMID: 31314060 DOI: 10.1093/abbs/gmz071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/03/2019] [Indexed: 12/28/2022] Open
Abstract
Recent studies have demonstrated that the expression of the long non-coding RNA (lncRNA) AFAP1-AS1 in pancreatic cancer is negatively correlated with survival and prognosis. However, the effects of oridonin and lncRNA AFAP1-AS1 on the epithelial-to-mesenchymal transition (EMT) and migration of pancreatic cancer cells have not been fully elucidated. Surgery is the only potentially curative method for pancreatic cancer, but postoperative recurrence and metastasis are common. The aim of the present study was to assess the effect of oridonin and lncRNA AFAP1-AS1 silencing on pancreatic cancer cells. The pancreatic cancer cell lines BxPC-3 and PANC-1 cells were transfected with siAFAP1-AS1 and its negative control (siNC). After that, oridonin was used to treat the siAFAP1-AS1-transfected cells. The expression of lncRNA AFAP1-AS1 was downregulated in the pancreatic cancer cell lines BxPC-3 and PANC-1. The apoptosis and cell cycle progression of pancreatic cancer cells were evaluated by flow cytometry and Hoechst 33258 staining. Metastasis and invasion of BxPC-3 and PANC-1 cells were detected by transwell migration assay, real-time cell analysis, and western blot analysis. Cells were transfected with the lentiviral siAFAP1-AS1 and siNC, and tumorigenesis was evaluated in BALB/C nude mice. Immunohistochemical examination was used to verify the effects of oridonin and siAFAP1-AS1 on pancreatic cancer. The results demonstrated that the combination of oridonin and siAFAP1-AS1 inhibited pancreatic cancer cell proliferation, induced apoptosis, arrested cell cycle progression, prevented the migration, regulated EMT-related protein expression in BxPC-3 and PANC-1 cells, and inhibited pancreatic cancer cell tumorigenicity and EMT in nude mice.
Collapse
Affiliation(s)
- Songmei Lou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bili Wang
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuquan Li
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jun Ren
- Medical Technology College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengjun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
van der Sijde F, Vietsch EE, Mustafa DAM, Besselink MG, Groot Koerkamp B, van Eijck CHJ. Circulating Biomarkers for Prediction of Objective Response to Chemotherapy in Pancreatic Cancer Patients. Cancers (Basel) 2019; 11:cancers11010093. [PMID: 30650521 PMCID: PMC6356815 DOI: 10.3390/cancers11010093] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a lethal disease with increasing incidence. Most patients present with advanced disease, for which palliative systemic chemotherapy is the only therapeutic option. Despite improved median survival rates with FOLFIRINOX or gemcitabine chemotherapy compared to the best supportive care, many individual patients may not benefit from chemotherapy. Biomarkers are needed to predict who will benefit from chemotherapy and to monitor a patient’s response to chemotherapy. This review summarizes current research and future perspectives on circulating biomarkers for systemic chemotherapy response.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Eveline E Vietsch
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Dana A M Mustafa
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
27
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
28
|
Peng F, Shi X, Meng Y, Dong B, Xu G, Hou T, Shi Y, Liu T. Long non-coding RNA HOTTIP is upregulated in renal cell carcinoma and regulates cell growth and apoptosis by epigenetically silencing of LATS2. Biomed Pharmacother 2018; 105:1133-1140. [PMID: 30021349 DOI: 10.1016/j.biopha.2018.06.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most aggressive malignancies with increasing incidence worldwide and is characterized by dismal prognosis owing to a lack of early detection and prognostic biomarkers for this fatal disease. Accumulating studies demonstrated that abnormally expressed long non-coding RNAs (lncRNAs) are involved in tumorigenesis and progression. Specifically, HOTTIP is upregulated and exerts oncogenic properties in some cancers. However, its clinical significance, biological functions and molecular mechanisms in RCC have not been studied. In the current study, RT-qPCR was performed to quantify the relative expression of HOTTIP in RCC tissues and cells. Additionally, we explored its clinical value using Fisher's exact test. Moreover, cell growth and apoptosis altered by HOTTIP was evaluated in vitro and in vivo. Mechanistically, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) analysis was used to determine its molecular mechanism in cell growth and apoptosis. As a result, upregulated HOTTIP is closely associated with unfavorable phenotypes in RCC patients. The mechanistic investigations showed that HOTTIP could bind to enhancer of zeste homolog 2 (EZH2) and lysine specific demethylase 1 (LSD1), thereby repressing LATS2 expression. Collectively, our study illustrates how HOTTIP plays an oncogenic role in RCC and may offer a potential therapeutic target for treating this fatal disease.
Collapse
Affiliation(s)
- Feifei Peng
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Xiaoli Shi
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Yin Meng
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Bo Dong
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Guangchi Xu
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Tingting Hou
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Yang Shi
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China
| | - Tao Liu
- Department of Urology Surgery, Second Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province, 161000, China.
| |
Collapse
|
29
|
Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol 2018; 11:63. [PMID: 29739426 PMCID: PMC5941496 DOI: 10.1186/s13045-018-0606-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
The deeper understanding of non-coding RNAs has recently changed the dogma of molecular biology assuming protein-coding genes as unique functional biological effectors, while non-coding genes as junk material of doubtful significance. In the last decade, an exciting boom of experimental research has brought to light the pivotal biological functions of long non-coding RNAs (lncRNAs), representing more than the half of the whole non-coding transcriptome, along with their dysregulation in many diseases, including cancer.In this review, we summarize the emerging insights on lncRNA expression and functional role in cancer, focusing on the evolutionary conserved and abundantly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) that currently represents the best characterized lncRNA. Altogether, literature data indicate aberrant expression and dysregulated activity of MALAT1 in human malignancies and envision MALAT1 targeting as a novel treatment strategy against cancer.
Collapse
Affiliation(s)
- Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy.
| | - Lavinia Raimondi
- IRCSS Rizzoli Orthopedic Institute, Bologna, Italy
- Innovative Technology Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Angelica Stamato
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|