1
|
Ionescu C, Ghidersa M, Ciobica A, Mavroudis I, Kazis D, Petridis FE, Gorgan DL, Balmus IM. Potential Correlation Between Molecular Biomarkers and Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2025; 26:3858. [PMID: 40332547 PMCID: PMC12027598 DOI: 10.3390/ijms26083858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Diagnosing traumatic brain injury (TBI) remains challenging due to an incomplete understanding of its neuropathological mechanisms. TBI is recognised as a complex condition involving both primary and secondary injuries. Although oxidative stress is a non-specific molecular phenomenon observed in various neuropathological conditions, it plays a crucial role in brain injury response and recovery. Due to these aspects, we aimed to evaluate the interaction between some known TBI molecular biomarkers and oxidative stress in providing evidence for its possible relevance in clinical diagnosis and outcome prediction. We found that while many of the currently validated molecular biomarkers interact with oxidative pathways, their patterns of variation could assist the diagnosis, prognosis, and outcomes prediction in TBI cases.
Collapse
Affiliation(s)
- Cătălina Ionescu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Madalina Ghidersa
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
- “Ioan Haulica” Institute, Apollonia University, 700511 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
| | - Ioannis Mavroudis
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- Department of Neurosciences, Leeds Teaching Hospitals, Leeds LS9 7TF, UK
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Foivos E. Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (D.K.); (F.E.P.)
| | - Dragoș Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (C.I.); (M.G.); (A.C.); (D.L.G.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania;
| |
Collapse
|
2
|
Alcazar-Felix RJ, Jhaveri A, Iqbal J, Srinath A, Bennett C, Bindal A, Vera Cruz D, Romanos S, Hage S, Stadnik A, Lee J, Lightle R, Shenkar R, Koskimäki J, Polster SP, Girard R, Awad IA. A Systematic Review of MicroRNAs in Hemorrhagic Neurovascular Disease: Cerebral Cavernous Malformations as a Paradigm. Int J Mol Sci 2025; 26:3794. [PMID: 40332397 PMCID: PMC12028044 DOI: 10.3390/ijms26083794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Hemorrhagic neurovascular diseases, with high mortality and poor outcomes, urge novel biomarker discovery and therapeutic targets. Micro-ribonucleic acids (miRNAs) are potent post-transcriptional regulators of gene expression. They have been studied in association with disease states and implicated in mechanistic gene interactions in various pathologies. Their presence and stability in circulating fluids also suggest a role as biomarkers. This review summarizes the current state of knowledge about miRNAs in the context of cerebral cavernous malformations (CCMs), a disease involving cerebrovascular dysmorphism and hemorrhage, with known genetic underpinnings. We also review common and distinct miRNAs of CCM compared to other diseases with brain vascular dysmorphism and hemorrhage. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline, queried all peer-reviewed articles published in English as of January 2025 and reported miRNAs associated with four hemorrhagic neurovascular diseases: CCM, arteriovenous malformations, moyamoya disease, and intracerebral hemorrhage. The PubMed systematic search retrieved 154 articles that met the inclusion criteria, reporting a total of 267 unique miRNAs identified in the literature on these four hemorrhagic neurovascular diseases. Of these 267 miRNAs, 164 were identified in preclinical studies, while 159 were identified in human subjects. Seventeen miRNAs were common to CCM and other hemorrhagic diseases. Common and unique disease-associated miRNAs in this systematic review motivate novel mechanistic hypotheses and have potential applications in diagnostic, predictive, prognostic, and therapeutic contexts of use. Much of current research can be considered hypothesis-generating, reflecting association rather than causation. Future areas of mechanistic investigation are proposed alongside approaches to analytic and clinical validations of contexts of use for biomarkers.
Collapse
Affiliation(s)
- Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Aditya Jhaveri
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Javed Iqbal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Carolyn Bennett
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Diana Vera Cruz
- Center for Research Informatics, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Justine Lee
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Sean P. Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL 60637, USA (J.L.); (S.P.P.)
| |
Collapse
|
3
|
Chuang YT, Yen CY, Chien TM, Chang FR, Wu KC, Tsai YH, Shiau JP, Chang HW. Natural products modulate phthalate-associated miRNAs and targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117015. [PMID: 39265265 DOI: 10.1016/j.ecoenv.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900392, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
5
|
Fuertes-Agudo M, Luque-Tévar M, Cucarella C, Martín-Sanz P, Casado M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants (Basel) 2023; 12:1491. [PMID: 37627486 PMCID: PMC10451723 DOI: 10.3390/antiox12081491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidative stress and inflammation play an important role in the pathophysiological changes of liver diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that positively regulates the basal and inducible expression of a large battery of cytoprotective genes, thus playing a key role in protecting against oxidative damage. Cyclooxygenase-2 (COX-2) is a key enzyme in prostaglandin biosynthesis. Its expression has always been associated with the induction of inflammation, but we have shown that, in addition to possessing other benefits, the constitutive expression of COX-2 in hepatocytes is beneficial in reducing inflammation and oxidative stress in multiple liver diseases. In this review, we summarized the role of NRF2 as a main agent in the resolution of oxidative stress, the crucial role of NRF2 signaling pathways during the development of chronic liver diseases, and, finally we related its action to that of COX-2, where it appears to operate as its partner in providing a hepatoprotective effect.
Collapse
Affiliation(s)
- Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - María Luque-Tévar
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carme Cucarella
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB) “Alberto Sols”, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV), CSIC, Jaume Roig 11, 46010 Valencia, Spain; (M.F.-A.); (M.L.-T.); (C.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
6
|
Sakshi S, Jayasuriya R, Sathish Kumar RC, Umapathy D, Gopinathan A, Balamurugan R, Ganesan K, Ramkumar KM. MicroRNA-27b Impairs Nrf2-Mediated Angiogenesis in the Progression of Diabetic Foot Ulcer. J Clin Med 2023; 12:4551. [PMID: 37445586 DOI: 10.3390/jcm12134551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) is a stress-activated transcription factor regulating antioxidant genes, and a deficiency thereof, slowing lymphangiogenesis, has been reported in diabetic foot ulcer (DFU). The mode of Nrf2 regulation in DFU has been less explored. Emerging studies on miRNA-mediated target regulation show miRNA to be the leading player in the pathogenesis of the disease. In the present study, we demonstrated the role of miR-27b in regulating Nrf2-mediated angiogenesis in DFU. A lower expression of mRNA targets, such as Nrf2, HO-1, SDF-1α, and VEGF, was observed in tissue biopsied from chronic DFU subjects, which was in line with miR-27b, signifying a positive correlation with Nrf2. Similarly, we found significantly reduced expression of miR-27b and target mRNAs Nrf2, HO-1, SDF-1α, and VEGF in endothelial cells under a hyperglycemic microenvironment (HGM). To confirm the association of miR-27b on regulating Nrf2-mediated angiogenesis, we inhibited its expression through RNA interference-mediated knockdown and observed disturbances in angiogenic signaling with reduced endothelial cell migration. In addition, to explore the role of miR-27b and angiogenesis in the activation of Nrf2, we pretreated the endothelial cells with two well-known pharmacological compounds-pterostilbene and resveratrol. We observed that activation of Nrf2 through these compounds ameliorates impaired angiogenesis on HGM-induced endothelial cells. This study suggests a positive role of miR-27b in regulating Nrf2, which seems to be decreased in DFU and improves on treatment with pterostilbene and resveratrol.
Collapse
Affiliation(s)
- Shukla Sakshi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Rajappan Chandra Sathish Kumar
- Interdisciplinary Institute of Indian System and Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Dhamodharan Umapathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Athira Gopinathan
- SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ramachandran Balamurugan
- SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
7
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
8
|
Silva-Llanes I, Shin CH, Jiménez-Villegas J, Gorospe M, Lastres-Becker I. The Transcription Factor NRF2 Has Epigenetic Regulatory Functions Modulating HDACs, DNMTs, and miRNA Biogenesis. Antioxidants (Basel) 2023; 12:641. [PMID: 36978889 PMCID: PMC10045347 DOI: 10.3390/antiox12030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The epigenetic regulation of gene expression is a complex and tightly regulated process that defines cellular identity and is associated with health and disease processes. Oxidative stress is capable of inducing epigenetic modifications. The transcription factor NRF2 (nuclear factor erythroid-derived 2-like 2) is a master regulator of cellular homeostasis, regulating genes bearing antioxidant response elements (AREs) in their promoters. Here, we report the identification of ARE sequences in the promoter regions of genes encoding several epigenetic regulatory factors, such as histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and proteins involved in microRNA biogenesis. In this research, we study this possibility by integrating bioinformatic, genetic, pharmacological, and molecular approaches. We found ARE sequences in the promoter regions of genes encoding several HDACs, DNMTs, and proteins involved in miRNA biogenesis. We confirmed that NRF2 regulates the production of these genes by studying NRF2-deficient cells and cells treated with dimethyl fumarate (DMF), an inducer of the NRF2 signaling pathway. In addition, we found that NRF2 could be involved in the target RNA-dependent microRNA degradation (TDMD) of miR-155-5p through its interaction with Nfe2l2 mRNA. Our data indicate that NRF2 has an epigenetic regulatory function, complementing its traditional function and expanding the regulatory dimensions that should be considered when developing NRF2-centered therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Silva-Llanes
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - José Jiménez-Villegas
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ma W, Zhang S, Li Y, Chen T, Yang Q, Feng X. Adiponectin alleviates non-alcoholic fatty liver injury via regulating oxidative stress in liver cells. Minerva Med 2022; 113:990-999. [PMID: 32996726 DOI: 10.23736/s0026-4806.20.06734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The aim of the present study was to investigate the role of adiponectin in non-alcoholic fatty liver cell model and its mechanism. METHODS The serum were collected from patients with non-alcoholic fatty liver disease and healthy controls. Then the expression of APN in the serum was detected using APN kit. Furthermore, an in vitro model of NAFLD was established using mixed fatty acids treated HepG2 cells, and APN was highly expressed in the culture solution to a concentration of 10 μg/mL. The normal control group (Normal) was normal cells, the model group (NAFLD) was mixed fatty acids treated HepG2 cells, the experimental group (NAFLD+APN) was model cells transfected with high APN expression, and the negative control group (NAFLD+PBS) was model cells transfected with PBS. The expression of NOX2 in each group was detected by Western blot. The corresponding kit was used to detect the level of triglyceride (TG), the activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA), and the ratio of GSH/GSSG in each group of cells. RESULTS The expression level of APN was greatly decreased in the serum of NAFLD patients (P<0.01), and the TG content was significantly increased in HepG2 cells treated with fatty acids (P<0.001), indicating successful modeling. The cells had high expression of APN (P<0.001) showed low expression of NOX2 (P<0.001). The kit test results showed that the high expression of APN could reverse the decrease of SOD activity, the increase of MDA level, the decrease of GSH/GSSG ratio and the increase of TG content (P<0.001), all of which were restored to the modeling level after application of NOX2's activator TBCA. CONCLUSIONS APN was lowly expressed in the serum of NAFLD patients. Its effect mechanism was to alleviate the injury of NAFLD cells by reducing oxidative stress via regulating NOX2 expression.
Collapse
Affiliation(s)
- Wenwen Ma
- Department of Infectious Diseases, Shengli Oilfield Central Hospital, Dongying, China
| | - Shanshan Zhang
- Department of General Medical Science, Shengli Oilfield Central Hospital, Dongying, China
| | - Yi Li
- Department of Infectious Diseases, Shengli Oilfield Central Hospital, Dongying, China
| | - Tansheng Chen
- Department of Infectious Diseases, Shengli Oilfield Central Hospital, Dongying, China
| | - Qin Yang
- Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Xue Feng
- Department of Infectious Diseases, Shengli Oilfield Central Hospital, Dongying, China -
| |
Collapse
|
10
|
Zhang Y, Yu W, Liu Y, Chang W, Wang M, Zhang L. Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:995518. [PMID: 36245922 PMCID: PMC9559574 DOI: 10.3389/fnmol.2022.995518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hemorrhagic stroke can be categorized into several subtypes. The most common is intracerebral hemorrhage (ICH), which exhibits significant morbidity and mortality, affecting the lives of millions of people worldwide every year. Brain injury after ICH includes the primary injury that results from direct compression as well as stimulation by the hematoma and secondary brain injury (SBI) that is due to ischemia and hypoxia in the penumbra around the hematoma. A number of recent studies have analyzed the mechanisms producing the oxidative stress and inflammation that develop following hematoma formation and are associated with the ICH induced by the SBI as well as the resulting neurological dysfunction. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a critical component in mediating oxidative stress and anti-inflammatory response. We summarize the pathological mechanisms of ICH focusing on oxidative stress and the regulatory role of Nrf2, and review the mechanisms regulating Nrf2 at the transcriptional and post-transcriptional levels by influencing gene expression levels, protein stability, subcellular localization, and synergistic effects with other transcription factors. We further reviewing the efficacy of several Nrf2 activators in the treatment of ICH in experimental ICH models. Activation of Nrf2 might produce antioxidant, anti-inflammatory, and neuron-protection effects, which could potentially be a focus for developing future treatments and prevention of ICH.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Yuan Zhang,
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenguang Chang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front Immunol 2022; 13:847246. [PMID: 35355999 PMCID: PMC8959663 DOI: 10.3389/fimmu.2022.847246] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly fatal disease with mortality rate of approximately 50%. Oxidative stress (OS) is a prominent cause of brain injury in ICH. Important sources of reactive oxygen species after hemorrhage are mitochondria dysfunction, degradated products of erythrocytes, excitotoxic glutamate, activated microglia and infiltrated neutrophils. OS harms the central nervous system after ICH mainly through impacting inflammation, killing brain cells and exacerbating damage of the blood brain barrier. This review discusses the sources and the possible molecular mechanisms of OS in producing brain injury in ICH, and anti-OS strategies to ameliorate the devastation of ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Pala M, Meral I, Pala Acikgoz N, Gorucu Yilmaz Ş, Taslidere E, Okur SK, Acar S, Akbas F. Pentylenetetrazole-induced kindling rat model: miR-182 and miR-27b-3p mediated neuroprotective effect of thymoquinone in the hippocampus. Neurol Res 2022; 44:726-737. [DOI: 10.1080/01616412.2022.2051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mukaddes Pala
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Malatya, Turkey
| | - Ismail Meral
- Faculty of Medicine, Department of Physiology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nilgun Pala Acikgoz
- Faculty of Medicine, Department of Neurology, Bezmialem Vakif University, Istanbul, Turkey
| | - Şenay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Elif Taslidere
- Faculty of Medicine, Department of Histology and Embryology, Inonu University, Malatya, Turkey
| | - Sema Karaca Okur
- Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Seyma Acar
- Sancaktepe No. 1 Family Health Center, Istanbul, Turkey
| | - Fahri Akbas
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
13
|
Wang L, Bayanbold K, Zhao L, Wang Y, Adamcakova-Dodd A, Thorne PS, Yang H, Jiang BH, Liu LZ. Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151118. [PMID: 34718002 PMCID: PMC9387726 DOI: 10.1016/j.scitotenv.2021.151118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known carcinogen that can cause several types of cancer including lung cancer. NF-E2-related factor 2 (Nrf2), the redox sensitive transcription factor, can protect normal cells from a variety of toxicants and carcinogens by inducing the expression of cellular protective genes and maintaining redox balance. However, Nrf2 also protects cancer cells from radio- and chemo-therapies and facilitates cancer progression. Although Cr(VI) treatment has been demonstrated to upregulate Nrf2 expression, the mechanisms for Nrf2 regulation upon chronic Cr(VI) exposure remain to be elucidated. We found that Nrf2 was upregulated in BEAS-2B cells exposed to Cr(VI) from 1 to 5 months, and also in Cr(VI)-induced transformed (Cr-T) cells with Cr(VI) treatment for 6 months. We showed that KEAP1, the classic negative regulator of Nrf2, was downregulated after Cr(VI) exposure for 4 months, suggesting that Nrf2 induction by Cr(VI) treatment is through KEAP1 decrease at late stage. To further decipher the mechanisms of Nrf2 upregulation at early stage of Cr(VI) exposure, we demonstrated that miR-27a and miR-27b were redox sensitive miRNAs, since reactive oxygen species (ROS) scavengers induced miR-27a/b expression. After Cr(VI) exposure for 1 month, the expression levels of miR-27a/b was dramatically decreased. The changes of miR-27a/b and their target Nrf2 were confirmed in vivo by mouse model intranasally exposed to Cr(VI) for 12 weeks. Nrf2 was a direct target of miR-27a/b, which acted as tumor suppressors in vitro and in vivo to inhibit tumorigenesis and cancer development of Cr-T cells. The results suggested that the inhibition of miR-27a/b was responsible for Nrf2 upregulation at both early stage and late stage of Cr(VI) exposure. This novel regulation of Nrf2 upon chronic Cr(VI) exposure through redox-regulated miR-27a/b will provide potential targets for preventing and treating Cr(VI)-induced carcinogenesis in the future.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Khaliunaa Bayanbold
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hushan Yang
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
14
|
miR-27b inhibition contributes to cytotoxicity in patulin-exposed HEK293 cells. Toxicon 2022; 210:58-65. [PMID: 35217024 DOI: 10.1016/j.toxicon.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Patulin (PAT) is a mycotoxin produced by Penicillium and other fungi that contaminate fruit. PAT targets the kidney and is associated with nephrotoxicity. Micro-RNAs (miRNA) may offer new insights into PAT-induced nephrotoxicity. Cytochrome P450 family 1, subfamily B, polypeptide 1 (CYP1B1), involved in metabolism of dietary toxins is negatively regulated by miR-27b and linked with the nuclear factor kappa B (NF-κB) pathway and peroxisome proliferator activated receptor gamma (PPARɣ) in renal fibrosis. This study investigated the effects of PAT on miR-27b, CYP1B1, PPARɣ and cytotoxicity in human kidney (HEK293) cells. HEK293 cells were exposed to PAT (2.5 μM, 24h). Protein expression of CYP1B1, PPARɣ, NF-κB (p65), pNF-κB (p65) (phospho-Ser563) and cleaved PARP-1 was quantified using western blotting. QPCR evaluated mRNA levels of CYP1B1, IL-6, miR-27b, OGG1, mtDNA, TFAM and UCP2. Mitochondrial membrane potential and phosphatidylserine (PS) externalization was evaluated by flow cytometry while levels of ATP and caspase -9, -8, -3/7 activity was measured using luminometry. PAT significantly decreased miR-27b levels (p = 0.0014) and increased CYP1B1 mRNA (p = 0.0015) and protein (p = 0.0013) levels. PPARɣ protein expression was significantly increased (p = 0.0002) and associated with decreased NF-κB activation (p = 0.0273) and IL-6 mRNA levels (p = 0.0265). Finally, PAT significantly compromised mitochondrial repair mechanisms and increased apoptotic biomarkers. PAT altered miR-27b levels and PPARɣ, with associated changes to NF-κB activation, downstream IL-6 and CYP1B1 expression. These results show that PAT impairs detoxification mechanisms leading to mitochondrial damage and apoptosis. In conclusion, PAT altered the epigenetic environment and impaired detoxification processes, supporting a mechanism for nephrotoxic outcomes.
Collapse
|
15
|
Takahashi P, Xavier DJ, Lima JEBF, Evangelista AF, Collares CVA, Foss-Freitas MC, Rassi DM, Donadi EA, Passos GA, Sakamoto-Hojo ET. Transcript Expression Profiles and MicroRNA Regulation Indicate an Upregulation of Processes Linked to Oxidative Stress, DNA Repair, Cell Death, and Inflammation in Type 1 Diabetes Mellitus Patients. J Diabetes Res 2022; 2022:3511329. [PMID: 35155683 PMCID: PMC8825437 DOI: 10.1155/2022/3511329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing β-cells leading to impaired insulin secretion and hyperglycemia. T1D is accompanied by DNA damage, oxidative stress, and inflammation, although there is still scarce information about the oxidative stress response and DNA repair in T1D pathogenesis. We used the microarray method to assess mRNA expression profiles in peripheral blood mononuclear cells (PBMCs) of 19 T1D patients compared to 11 controls and identify mRNA targets of microRNAs that were previously reported for T1D patients. We found 277 differentially expressed genes (220 upregulated and 57 downregulated) in T1D patients compared to controls. Analysis by gene sets (GSA and GSEA) showed an upregulation of processes linked to ROS generation, oxidative stress, inflammation, cell death, ER stress, and DNA repair in T1D patients. Besides, genes related to oxidative stress responses and DNA repair (PTGS2, ATF3, FOSB, DUSP1, and TNFAIP3) were found to be targets of four microRNAs (hsa-miR-101, hsa-miR148a, hsa-miR-27b, and hsa-miR-424). The expression levels of these mRNAs and microRNAs were confirmed by qRT-PCR. Therefore, the present study on differential expression profiles indicates relevant biological functions related to oxidative stress response, DNA repair, inflammation, and apoptosis in PBMCs of T1D patients relative to controls. We also report new insights regarding microRNA-mRNA interactions, which may play important roles in the T1D pathogenesis.
Collapse
Affiliation(s)
- Paula Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | - Danilo J. Xavier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | - Jessica E. B. F. Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
| | | | - Cristhianna V. A. Collares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maria C. Foss-Freitas
- Division of Endocrinology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Diane M. Rassi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A. Donadi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A. Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elza T. Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, 14049900, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Liu H, Zhang B, Li XW, Du J, Feng PP, Cheng C, Zhu ZH, Lou KL, Ruan C, Zhou C, Sun XW. Acupuncture inhibits mammalian target of rapamycin, promotes autophagy and attenuates neurological deficits in a rat model of hemorrhagic stroke. Acupunct Med 2021; 40:59-67. [PMID: 34284645 DOI: 10.1177/09645284211028873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) accounts for approximately 15% of all stroke cases. Previous studies suggested that acupuncture may improve ICH-induced neurological deficits. Therefore, we investigated the effects of acupuncture on neurological deficits in an animal model of ICH. METHODS Adult male Sprague-Dawley rats were injected with autologous blood (50 μL) into the right caudate nucleus. Additional rats underwent sham surgery as controls. ICH rats either received acupuncture (GV20 through GB7 on the side of the lesion) or sham acupuncture (1 cm to the right side of the traditional acupuncture point locations). Some ICH rats received acupuncture plus rapamycin injection into the right lateral ventricle. Neurological deficits in the various groups were assessed based on composite neurological score. The perihemorrhagic penumbra was analyzed by histopathology following hematoxylin-eosin staining. Levels of autophagy-related proteins light chain (LC)3 and p62 as well as of mammalian target of rapamycin (mTOR)-related proteins, and phosphorylated (p)-mTOR and p-S6K1 (ribosomal protein S6 kinase beta-1), were assessed by Western blotting. RESULTS Acupuncture significantly improved composite neurological scores 7 days after ICH (17.7 ± 1.49 vs 14.8 ± 1.32, p < 0.01). Acupuncture augmented autophagosome and autolysosome accumulation based on transmission electron microscopy. Acupuncture significantly increased expression of LC3 (p < 0.01) but decreased expression of p62 (p < 0.01). Acupuncture also reduced levels of p-mTOR and p-S6K1 (both p < 0.01). CONCLUSION Acupuncture improved neurological deficits in a rat model of ICH, possibly by inhibiting the mTOR pathway and activating autophagy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Beng Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin-Wei Li
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Du
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pei-Pei Feng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Cheng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Hua Zhu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ke-Lang Lou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Ruan
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chi Zhou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Wei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Imai T, Matsubara H, Hara H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage. J Cereb Blood Flow Metab 2021; 41:1483-1500. [PMID: 33444090 PMCID: PMC8221764 DOI: 10.1177/0271678x20984565] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracranial hemorrhage (ICH) is a devastating disease which induces high mortality and poor outcomes including severe neurological dysfunctions. ICH pathology is divided into two types: primary brain injury (PBI) and secondary brain injury (SBI). Although there are numerous preclinical studies documenting neuroprotective agents in experimental ICH models, no effective drugs have been developed for clinical use due to complicated ICH pathology. Oxidative and inflammatory stresses play central roles in the onset and progression of brain injury after ICH, especially SBI. Nrf2 is a crucial transcription factor in the anti-oxidative stress defense system. Under normal conditions, Nrf2 is tightly regulated by the Keap1. Under ICH pathological conditions, such as overproduction of reactive oxygen species (ROS), Nrf2 is translocated into the nucleus where it up-regulates the expression of several anti-oxidative phase II enzymes such as heme oxygenase-1 (HO-1). Recently, many reports have suggested the therapeutic potential of Nrf2 activators (including natural or synthesized compounds) for treating neurodegenerative diseases. Moreover, several Nrf2 activators attenuate ischemic stroke-induced brain injury in several animal models. This review summarizes the efficacy of several Nrf2 activators in ICH animal models. In the future, Nrf2 activators might be approved for the treatment of ICH patients.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Neurosurgery, School of Medicine, Gifu University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
19
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
20
|
Walsh KB, Zimmerman KD, Zhang X, Demel SL, Luo Y, Langefeld CD, Wohleb E, Schulert G, Woo D, Adeoye O. miR-181a Mediates Inflammatory Gene Expression After Intracerebral Hemorrhage: An Integrated Analysis of miRNA-seq and mRNA-seq in a Swine ICH Model. J Mol Neurosci 2021; 71:1802-1814. [PMID: 33755911 DOI: 10.1007/s12031-021-01815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Inflammation after ICH contributes to clinical outcomes, but the relevant molecular mechanisms remain poorly understood. In studies of peripheral leukocyte counts and mRNA-sequencing (mRNA-seq), our group previously reported that monocytes and Interleukin-8 (IL-8) were important contributors to post-ICH inflammation. microRNA (miRNA) are powerful regulators of gene expression and promising therapeutic targets. We now report findings from an integrated analysis of miRNA-seq and mRNA-seq in peripheral blood mononuclear cells (PBMCs) from a swine ICH model. In 10 pigs, one PBMC sample was collected immediately prior to ICH induction and a second 6 h later; miRNA-seq and mRNA-seq were completed for each sample. An aggregate score calculation determined which miRNA regulated the differentially expressed mRNA. Networks of molecular interactions were generated for the combined miRNA/target mRNA. A total of 227 miRNA were identified, and 46 were differentially expressed after ICH (FDR < 0.05). The anti-inflammatory miR-181a was decreased post-ICH, and it was the most highly connected miRNA in the miRNA/mRNA bioinformatic network analysis. miR-181a has interconnected pathophysiology with IL-8 and monocytes; in prior studies, we found that IL-8 and monocytes contributed to post-ICH inflammation and ICH clinical outcome, respectively. miR-181a was a significant mediator of post-ICH inflammation and is promising for further study, including as a potential therapeutic target. This investigation also demonstrated feasible methodology for miRNA-seq/mRNA-seq analysis in swine that is innovative, and with unique challenges, compared with transcriptomics research in more established species.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Stacie L Demel
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Faheem MS, Ghanem N, Gad A, Procházka R, Dessouki SM. Adaptive and Biological Responses of Buffalo Granulosa Cells Exposed to Heat Stress under In Vitro Condition. Animals (Basel) 2021; 11:ani11030794. [PMID: 33809236 PMCID: PMC7998848 DOI: 10.3390/ani11030794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The pertinent consequences of global warming substantially affect both animal productivity and fertility. Noteworthy, tropical and subtropical animal breeds are productively suited to hot climate conditions. Therefore studying the physiological changes accompanying high temperature, especially in tropically adapted species such as buffalo, will help in understanding the mechanisms that the animal use to accomplish the necessary functions efficiently. Concerning fertility-related activity, granulosa cells are important for the regulation of ovarian function and the completion of oocyte maturation. In this study, the buffalo granulosa cells were examined for their viability, physiological and molecular responses under in vitro heat stress conditions. Buffalo granulosa cells displayed different adaptive responses, at the physiological and molecular levels, to the different heat stress conditions. At 40.5 °C, granulosa cells exhibited a functional persistence compared to the control and other heat-treated groups. These results will provide insights into ways that tropically adapted breeds may be able to maintain better reproductive function when exposed to heat stress compared to temperate breeds. Abstract The steroidogenesis capacity and adaptive response of follicular granulosa cells (GCs) to heat stress were assessed together with the underlying regulating molecular mechanisms in Egyptian buffalo. In vitro cultured GCs were exposed to heat stress treatments at 39.5, 40.5, or 41.5 °C for the final 24 h of the culture period (7 days), while the control group was kept under normal conditions (37 °C). Comparable viability was observed between the control and heat-treated GCs at 39.5 and 40.5 °C. A higher release of E2, P4 and IGF-1 was observed in the 40.5 °C group compared with the 39.5 or 41.5 °C groups. The total antioxidant capacity was higher in response to heat stress at 39.5 °C. At 40.5 °C, a significant upregulation pattern was found in the expression of the stress resistance transcripts (SOD2 and NFE2L2) and of CPT2. The relative abundance of ATP5F1A was significantly downregulated for all heat-treated groups compared to the control, while TNFα was downregulated in GCs at 39.5 °C. Expression analyses of stress-related miRNAs (miR-1246, miR-181a and miR-27b) exhibited a significant downregulation in the 40.5 °C group compared to the control, whereas miR-708 was upregulated in the 39.5 and 40.5 °C groups. In conclusion, buffalo GCs exhibited different adaptive responses, to the different heat stress conditions. The integration mechanism between the molecular and secretory actions of the GCs cultured at 40.5 °C might provide possible insights into the biological mechanism through which buffalo GCs react to heat stress.
Collapse
Affiliation(s)
- Marwa S. Faheem
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt; (M.S.F.); (N.G.); (S.M.D.)
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt; (M.S.F.); (N.G.); (S.M.D.)
- Cairo University Research Park (CURP), Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt; (M.S.F.); (N.G.); (S.M.D.)
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
- Correspondence:
| | - Radek Procházka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Sherif M. Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt; (M.S.F.); (N.G.); (S.M.D.)
| |
Collapse
|
22
|
Fumonisin B 1 alters global m6A RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepG2) cells. Arch Toxicol 2021; 95:1367-1378. [PMID: 33496827 DOI: 10.1007/s00204-021-02986-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
FB1 is a common contaminant of cereal grains that affects human and animal health. It has become increasingly evident that epigenetic changes are implicated in FB1 toxicity. N6-methyladenosine (m6A), the most abundant post-transcriptional RNA modification, is influenced by fluctuations in redox status. Since oxidative stress is a characteristic of FB1 exposure, we determined if there is cross-talk between oxidative stress and m6A in FB1-exposed HepG2 cells. Briefly, HepG2 cells were treated with FB1 (0, 5, 50, 100, 200 µM; 24 h) and ROS, LDH and m6A levels were quantified. qPCR was used to determine the expression of m6A modulators, Nrf2, Keap1 and miR-27b, while western blotting was used to quantify Keap1 and Nrf2 protein expression. Methylation status of Keap1 and Nrf2 promoters was assessed and RNA immunoprecipitation quantified m6A-Keap1 and m6A-Nrf2 levels. FB1 induced accumulation of intracellular ROS (p ≤ 0.001) and LDH leakage (p ≤ 0.001). Elevated m6A levels (p ≤ 0.05) were accompanied by an increase in m6A "writers" [METLL3 (p ≤ 0.01) and METLL14 (p ≤ 0.01)], and "readers" [YTHDF1 (p ≤ 0.01), YTHDF2 (p ≤ 0.01), YTHDF3 (p ≤ 0.001) and YTHDC2 (p ≤ 0.01)] and a decrease in m6A "erasers" [ALKBH5 (p ≤ 0.001) and FTO (p ≤ 0.001)]. Hypermethylation and hypomethylation occurred at Keap1 (p ≤ 0.001) and Nrf2 (p ≤ 0.001) promoters, respectively. MiR-27b was reduced (p ≤ 0.001); however, m6A-Keap1 (p ≤ 0.05) and m6A-Nrf2 (p ≤ 0.01) levels were upregulated. This resulted in the ultimate decrease in Keap1 (p ≤ 0.001) and increase in Nrf2 (p ≤ 0.001) expression. Our findings reveal that m6A RNA methylation can be modified by exposure to FB1, and a cross-talk between m6A and redox regulators does occur.
Collapse
|
23
|
Hermenean A, Trotta MC, Gharbia S, Hermenean AG, Peteu VE, Balta C, Cotoraci C, Gesualdo C, Rossi S, Gherghiceanu M, D'Amico M. Changes in Retinal Structure and Ultrastructure in the Aged Mice Correlate With Differences in the Expression of Selected Retinal miRNAs. Front Pharmacol 2021; 11:593514. [PMID: 33519453 PMCID: PMC7838525 DOI: 10.3389/fphar.2020.593514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Age and gender are two important factors that may influence the function and structure of the retina and its susceptibility to retinal diseases. The aim of this study was to delineate the influence that biological sex and age exert on the retinal structural and ultrastructural changes in mice and to identify the age-related miRNA dysregulation profiles in the retina by gender. Experiments were undertaken on male and female Balb/c aged 24 months (approximately 75–85 years in humans) compared to the control (3 months). The retinas were analyzed by histology, transmission electron microscopy, and age-related miRNA expression profile analysis. Retinas of both sexes showed a steady decline in retinal thickness as follows: photoreceptor (PS) and outer layers (p < 0.01 for the aged male vs. control; p < 0.05 for the aged female vs. control); the inner retinal layers were significantly affected by the aging process in the males (p < 0.01) but not in the aged females. Electron microscopy revealed more abnormalities which involve the retinal pigment epithelium (RPE) and Bruch’s membrane, outer and inner layers, vascular changes, deposits of amorphous materials, and accumulation of lipids or lipofuscins. Age-related miRNAs, miR-27a-3p (p < 0.01), miR-27b-3p (p < 0.05), and miR-20a-5p (p < 0.05) were significantly up-regulated in aged male mice compared to the controls, whereas miR-20b-5p was significantly down-regulated in aged male (p < 0.05) and female mice (p < 0.05) compared to the respective controls. miR-27a-3p (5.00 fold; p < 0.01) and miR-27b (7.58 fold; p < 0.01) were significantly up-regulated in aged male mice vs. aged female mice, whereas miR-20b-5p (−2.10 fold; p < 0.05) was significantly down-regulated in aged male mice vs. aged female mice. Interestingly, miR-27a-3p, miR-27b-3p, miR-20a-5p, and miR-20b-5p expressions significantly correlated with the thickness of the retinal PS layer (p < 0.01), retinal outer layers (p < 0.01), and Bruch’s membrane (p < 0.01). Our results showed that biological sex can influence the structure and function of the retina upon aging, suggesting that this difference may be underlined by the dysregulation of age-related mi-RNAs.
Collapse
Affiliation(s)
- Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Maria Consiglia Trotta
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sami Gharbia
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania.,Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | | | | | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Coralia Cotoraci
- Faculty of Medicine, Vasile Goldis Western University of Arad, Arad, Romania
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mihaela Gherghiceanu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Michele D'Amico
- Section of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
24
|
Acupuncture Ameliorates Neuronal Cell Death, Inflammation, and Ferroptosis and Downregulated miR-23a-3p After Intracerebral Hemorrhage in Rats. J Mol Neurosci 2021; 71:1863-1875. [PMID: 33403590 DOI: 10.1007/s12031-020-01770-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Baihui-penetrating-Qubin acupuncture is frequently used to treat intracerebral hemorrhage (ICH) in China. Acupuncture affects multiple microRNAs in diseases. MicroRNA-23a-3p (miR-23a-3p) has been demonstrated to be up-regulated in ICH patients. Herein, the effect of Baihui-penetrating-Qubin acupuncture on miR-23a-3p expression after ICH and the role of miR-23a-3p in ICH were discussed. A rat model of ICH was induced by infusing autologous blood into caudate nucleus. Acupuncture was performed after ICH once a day for 30 min. After 3 consecutive days of acupuncture, the neurobehavioral function, brain edema, neuronal cell death, inflammation, ferroptosis, nuclear factor E2-like 2 (NFE2L2) signaling and miR-23a-3p levels in brain tissues were analyzed. Additionally, antagomiR-23a-3p was injected into rats 3 days prior to ICH modeling to analyze the function of miR-23a-3p in neuronal cell death, inflammation, ferroptosis, and NFE2L2 signaling. Acupuncture relieved the ICH-induced neurological function deficits, increases in brain water content and Fluoro-Jade B (FJB)-positive cells and release of proinflammatory cytokines. Acupuncture also alleviated ferroptosis and decreased miR-23a-3p expression, as evidenced by the increased NFE2L2 nuclear translocation and expressions of heme oxygenase-1 and glutathione peroxidase 4 and the decreased iron and malondialdehyde contents and reactive oxygen species accumulation. Additionally, antagomiR-23a-3p inhibited the ICH-induced increases in FJB-positive cells, release of proinflammatory cytokines, ferroptosis, and promoted NFE2L2 activation. Notably, the binding site of miR-23a-3p existed in NFE2L2. Taken together, acupuncture may alleviate the neuronal cell death, inflammation, and ferroptosis after ICH by down-regulating miR-23a-3p. This study provides a potential mechanism underlying the Baihui-penetrating-Qubin acupuncture improving the early injury after ICH.
Collapse
|
25
|
MiR-367 alleviates inflammatory injury of microglia by promoting M2 polarization via targeting CEBPA. In Vitro Cell Dev Biol Anim 2020; 56:878-887. [PMID: 33150481 PMCID: PMC7723938 DOI: 10.1007/s11626-020-00519-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
MiR-367 was reported to regulate inflammatory response of microglia. CCAAT/enhancer-binding protein α (C/EBPA) could mediate microglia polarization. In this study, we explored the possible roles of miR-367 and CEBPA in intracerebral hemorrhage (ICH). ICH and normal specimens were obtained from the tissue adjacent to and distant from hematoma of ICH patients, respectively. Microglia were isolated and identified by immunofluorescence. The isolated microglia were treated with erythrocyte lysate and randomly divided into 8 groups using different transfection reagents. The transfection efficiency of miR-367 was determined by qRT-PCR. The expressions of M1 and M2 microglia markers were detected by Western blotting. The relationship between CEBPA and miR-367 was confirmed by dual luciferase reporter system. Flow cytometry was performed to determine the level of apoptosis in the cells transfected with miR-367 and CEBPA in erythrocyte lysate–treated microglia. We found that miR-367 expression level was downregulated in ICH specimens. Erythrocyte lysate–treated microglia was successfully established using erythrocyte lysate, as decreased miR-367 expression was observed. Overexpression of miR-367 could significantly decrease the expressions of MHC-ІІ, IL-1β, and Bax, reduced apoptosis rate, and increased the expressions of CD206, Bal-2, and Arg-1 in erythrocyte lysate–treated microglia. CEBPA was proved to be a direct target for miR-367, which could inhibit microglia M2 polarization and increase apoptosis rate. However, in the presence of both CEBPA and miR-367 mimic, the protein and mRNA expressions of CEBPA were decreased, leading to promoted microglia M2 polarization and a decreased apoptosis rate. MiR-367 regulates microglia polarization by targeting CEBPA and is expected to alleviate ICH-induced inflammatory injury.
Collapse
|
26
|
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, Robles-Rivera RR, Arévalo-Simental DE, Castellanos-González JA, Hernández-Chávez A, Huerta-Olvera SG, Cardona-Muñoz EG, Rodríguez-Carrizalez AD. Importance of the Use of Oxidative Stress Biomarkers and Inflammatory Profile in Aqueous and Vitreous Humor in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9090891. [PMID: 32962301 PMCID: PMC7555116 DOI: 10.3390/antiox9090891] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of visual impairment and morbidity worldwide, being the number one cause of blindness in people between 27 and 75 years old. It is estimated that ~191 million people will be diagnosed with this microvascular complication by 2030. Its pathogenesis is due to alterations in the retinal microvasculature as a result of a high concentration of glucose in the blood for a long time which generates numerous molecular changes like oxidative stress. Therefore, this narrative review aims to approach various biomarkers associated with the development of diabetic retinopathy. Focusing on the molecules showing promise as detection tools, among them we consider markers of oxidative stress (TAC, LPO, MDA, 4-HNE, SOD, GPx, and catalase), inflammation (IL-6, IL-1ß, IL-8, IL-10, IL-17A, TNF-α, and MMPs), apoptosis (NF-kB, cyt-c, and caspases), and recently those that have to do with epigenetic modifications, their measurement in different biological matrices obtained from the eye, including importance, obtaining process, handling, and storage of these matrices in order to have the ability to detect the disease in its early stages.
Collapse
Affiliation(s)
- Ana Karen López-Contreras
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - María Guadalupe Martínez-Ruiz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Cecilia Olvera-Montaño
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Ricardo Raúl Robles-Rivera
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Diana Esperanza Arévalo-Simental
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Jalisco 44280, Mexico
| | - José Alberto Castellanos-González
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco 44329, Mexico
| | - Abel Hernández-Chávez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Selene Guadalupe Huerta-Olvera
- Medical and Life Sciences Department, La Ciénega University Center, University of Guadalajara, Ocotlán, Jalisco 47810, Mexico;
| | - Ernesto German Cardona-Muñoz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Adolfo Daniel Rodríguez-Carrizalez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Correspondence:
| |
Collapse
|
27
|
Oxidative Stress-Mediated Blood-Brain Barrier (BBB) Disruption in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/4356386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB), as a crucial gate of brain-blood molecular exchange, is involved in the pathogenesis of multiple neurological diseases. Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the scavenger system. Since oxidative stress plays a significant role in the production and maintenance of the BBB, the cerebrovascular system is especially vulnerable to it. The pathways that initiate BBB dysfunction include, but are not limited to, mitochondrial dysfunction, excitotoxicity, iron metabolism, cytokines, pyroptosis, and necroptosis, all converging on the generation of ROS. Interestingly, ROS also provide common triggers that directly regulate BBB damage, parameters including tight junction (TJ) modifications, transporters, matrix metalloproteinase (MMP) activation, inflammatory responses, and autophagy. We will discuss the role of oxidative stress-mediated BBB disruption in neurological diseases, such as hemorrhagic stroke, ischemic stroke (IS), Alzheimer’s disease (AD), Parkinson’s disease (PD), traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and cerebral small vessel disease (CSVD). This review will also discuss the latest clinical evidence of potential biomarkers and antioxidant drugs towards oxidative stress in neurological diseases. A deeper understanding of how oxidative stress damages BBB may open up more therapeutic options for the treatment of neurological diseases.
Collapse
|
28
|
Gareev IF, Beilerly OA, Nazarov VV. [MicroRNA and their potential role in the pathogenesis of hemorrhagic stroke]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:86-93. [PMID: 32207747 DOI: 10.17116/neiro20208401186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spontaneous (non-traumatic) intracerebral hemorrhage (ICH), or hemorrhagic stroke, is a common and serious disease with high morbidity and mortality. Current methods of treating hemorrhagic stroke, from conservative to surgical, are insufficient, which justifies the continuation of the study of this condition, including cellular and molecular changes that occur during a stroke. MicroRNAs (miRNAs) are a class of small non-coding RNAs that play an important role in post-transcriptional regulation of gene expression. MicroRNAs are involved in almost all biological processes, including cell proliferation, apoptosis and cell differentiation, and are also key substances in pathophysiological processes in many diseases, and therefore they can be both potential biomarkers and new therapeutic targets in cancer, degenerative and cardiovascular disease. In recent years, a number of studies have been aimed at studying the role of microRNAs in pathophysiological processes in hemorrhagic stroke, such as apoptosis, inflammation, oxidative stress, violation of the blood-brain barrier (BBB) and cerebral edema. The results of the studies demonstrated that changes in miRNA expression may be associated with the prognosis of ICH. In this article, we consider studies related to miRNAs and hemorrhagic stroke, and clarify the complex relationship between them.
Collapse
Affiliation(s)
- I F Gareev
- Bashkir State Medical University, Ufa, Russia
| | | | - V V Nazarov
- Burdenko NeurosurgicalCenter, Moscow, Russia
| |
Collapse
|
29
|
Hang H, Wang LK, Ren SY, Song AJ, Wu GF. Activating PPARγ Increases NQO1 and γ-GCS Expression via Nrf2 in Thrombin-activated Microglia. Curr Med Sci 2020; 40:55-62. [PMID: 32166665 DOI: 10.1007/s11596-020-2146-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/09/2019] [Indexed: 01/24/2023]
Abstract
The present study aimed to explore the molecular mechanisms underlying the increase of nicotinamide adenine dinucleotide phosphate:quinine oxidoreductase 1 (NQO1) and γ-glutamylcysteine synthetase (γ-GCS) in brain tissues after intracerebral hemorrhage (ICH). The microglial cells obtained from newborn rats were cultured and then randomly divided into the normal control group (NC group), model control group (MC group), rosiglitazone (RSG) intervention group (RSG group), retinoic-acid intervention group (RSG+RA group), and sulforaphane group (RSG+SF group). The expression levels of NQO1, γ-GCS, and nuclear factor E2-related factor 2 (Nrf2) were measured by real-time polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that the levels of NQO1, γ-GCS and Nrf2 were significantly increased in the MC group and the RSG group as compared with those in the NC group (P<0.01). They were found to be markedly decreased in the RSG+RA group and increased in the RSG+SF group when compared with those in the MC group or the RSG group (P<0.01). The RSG+SF group displayed the highest levels of NQO1, γ-GCS, and Nrf2 among the five groups. In conclusion, a medium dose of RSG increased the anti-oxidative ability of thrombin-activated microglia by increasing the expression of NQO1 and γ-GCS. The molecular mechanisms underlying the increase of NQO1 and γ-GCS in thrombin-activated microglia may be associated with the activation of Nrf2.
Collapse
Affiliation(s)
- Hang Hang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Li-Kun Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Si-Ying Ren
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - An-Jun Song
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guo-Feng Wu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
30
|
Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020; 9:antiox9030193. [PMID: 32106613 PMCID: PMC7139512 DOI: 10.3390/antiox9030193] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) regulatory pathway plays an essential role in protecting cells and tissues from oxidative, electrophilic, and xenobiotic stress. By controlling the transactivation of over 500 cytoprotective genes, the NRF2 transcription factor has been implicated in the physiopathology of several human diseases, including cancer. In this respect, accumulating evidence indicates that NRF2 can act as a double-edged sword, being able to mediate tumor suppressive or pro-oncogenic functions, depending on the specific biological context of its activation. Thus, a better understanding of the mechanisms that control NRF2 functions and the most appropriate context of its activation is a prerequisite for the development of effective therapeutic strategies based on NRF2 modulation. In line of principle, the controlled activation of NRF2 might reduce the risk of cancer initiation and development in normal cells by scavenging reactive-oxygen species (ROS) and by preventing genomic instability through decreased DNA damage. In contrast however, already transformed cells with constitutive or prolonged activation of NRF2 signaling might represent a major clinical hurdle and exhibit an aggressive phenotype characterized by therapy resistance and unfavorable prognosis, requiring the use of NRF2 inhibitors. In this review, we will focus on the dual roles of the NRF2-KEAP1 pathway in cancer promotion and inhibition, describing the mechanisms of its activation and potential therapeutic strategies based on the use of context-specific modulation of NRF2.
Collapse
|
31
|
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2020; 10:1551. [PMID: 32038239 PMCID: PMC6985769 DOI: 10.3389/fphar.2019.01551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Upregulation of neuronal oxidative stress is involved in the progression of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a promising candidate for the treatment of ICH-induced SBI.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiguang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia He
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
33
|
Wang JA, Tong ML, Zhao B, Zhu G, Xi DH, Yang JP. Parthenolide ameliorates intracerebral hemorrhage-induced brain injury in rats. Phytother Res 2019; 34:153-160. [PMID: 31497910 DOI: 10.1002/ptr.6510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Abstract
Neuroinflammation and oxidative stress are key contributors to intracranial hemorrhage (ICH)-induced brain injury. Parthenolide (PN) is a sesquiterpene lactone that has been observed to have antioxidative, anti-inflammatory, and neuroprotective potentials. However, the role of PN in ICH remains unclear. Therefore, we investigated the neuroprotective effects and underlying mechanisms of PN on an experimental model of ICH in rats. Our results showed that PN treatment improved neurological deficit and brain edema in ICH rats. The ipsilateral hemispheres of the brain were separated and homogenized. The concentrations of TNF-α, interleukin (IL)-6, and IL-17 in the homogenates were detected by enzyme-linked immunosorbent assay. We found that PN inhibited the production of proinflammatory cytokines in an ICH rat model. The ROS and glutathione (GSH) levels, as well as the activity of superoxide dismutase (SOD) in the homogenates were measured. ICH caused an increase in ROS level, and the decreases in GSH level and SOD activity were mitigated by PN treatment. Furthermore, PN significantly suppressed the expressions of active caspase-3 and Bax in ipsilateral hemispheres of the brain at Day 3 after ICH, as well as increased the surviving neurons. Finally, the ICH-induced activation of TLR4/NF-κB pathway was suppressed by PN treatment. These findings suggested that PN could be beneficial in the therapeutic strategy for ICH treatment.
Collapse
Affiliation(s)
- Jun-An Wang
- Department of Anesthesiology, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China.,Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming-Liang Tong
- Department of Anesthesiology, Central Hospital of Minhang District, Shanghai, China
| | - Bin Zhao
- Department of Anesthesiology, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Zhu
- Department of Anesthesiology, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dong-Hua Xi
- Department of Anesthesiology, Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jian-Ping Yang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Essack M, Salhi A, Stanimirovic J, Tifratene F, Bin Raies A, Hungler A, Uludag M, Van Neste C, Trpkovic A, Bajic VP, Bajic VB, Isenovic ER. Literature-Based Enrichment Insights into Redox Control of Vascular Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1769437. [PMID: 31223421 PMCID: PMC6542245 DOI: 10.1155/2019/1769437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes, molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text mining for the exploration of this topic.
Collapse
Affiliation(s)
- Magbubah Essack
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Julijana Stanimirovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Faroug Tifratene
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arwa Bin Raies
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Arnaud Hungler
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Christophe Van Neste
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Andreja Trpkovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladan P. Bajic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Vinca Institute, University of Belgrade, Laboratory for Molecular Endocrinology and Radiobiology, Belgrade, Serbia
| |
Collapse
|
35
|
Zhu X, Oseghale AR, Nicole LH, Li B, Pace BS. Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Exp Biol Med (Maywood) 2019; 244:171-182. [PMID: 30674214 DOI: 10.1177/1535370219825859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is a group of inherited blood disorders caused by mutations in the human β-globin gene, leading to the synthesis of abnormal hemoglobin S, chronic hemolysis, and oxidative stress. Inhibition of hemoglobin S polymerization by fetal hemoglobin holds the greatest promise for treating SCD. The transcription factor NRF2, is the master regulator of the cellular oxidative stress response and activator of fetal hemoglobin expression. In animal models, various small chemical molecules activate NRF2 and ameliorate the pathophysiology of SCD. This review discusses the mechanisms of NRF2 regulation and therapeutic strategies of NRF2 activation to design the treatment options for individuals with SCD.
Collapse
Affiliation(s)
- Xingguo Zhu
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Aluya R Oseghale
- 2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Lopez H Nicole
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Biaoru Li
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Betty S Pace
- 1 Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,2 Vascular Biology Center, Augusta University, Augusta, GA 30912, USA.,3 Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
36
|
Huang Y, Huang L, Zhu G, Pei Z, Zhang W. Downregulated microRNA-27b attenuates lipopolysaccharide-induced acute lung injury via activation of NF-E2-related factor 2 and inhibition of nuclear factor κB signaling pathway. J Cell Physiol 2018; 234:6023-6032. [PMID: 30584668 DOI: 10.1002/jcp.27187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Acute lung injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema, and respiratory failure. Lipopolysaccharide (LPS) is a leading cause for ALI and when administered to a mouse it induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. This study focused on investigating whether microRNA-27b (miR-27b) affects ALI in a mouse model established by LPS-induction and to further explore the underlying mechanism. After model establishment, the mice were treated with miR-27b agomir, miR-27b antagomir, or D-ribofuranosylbenzimidazole (an inhibitor of nuclear factor-E2-related factor 2 [Nrf2]) to determine levels of miR-27b, Nrf2, nuclear factor kappa-light-chain-enhancer of activated B cells nuclear factor κB (NF-κB), p-NF-κB, and heme oxygenase-1 (HO-1). The levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in bronchoalveolar lavage fluid (BALF) were determined. The results of luciferase activity suggested that Nrf2 was a target gene of miR-27b. It was indicated that the Nrf2 level decreased in lung tissues from ALI mice. The downregulation of miR-27b decreased the levels of IL-1β, IL-6, and TNF-α in BALF of ALI mice. Downregulated miR-27b increased Nrf2 level, thus enhancing HO-1 level along with reduction of NF-κB level as well as the extent of NF-κB phosphorylation in the lung tissues of the transfected mice. Pathological changes were ameliorated in LPS-reduced mice elicited by miR-27b inhibition. The results of this study demonstrate that downregulated miR-27b couldenhance Nrf2 and HO-1 expressions, inhibit NF-κB signaling pathway, which exerts a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Lixue Huang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Guangfa Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhenye Pei
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wenmei Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
37
|
Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, Chen S, Zhang J. The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets. Cell Transplant 2018; 27:1778-1788. [PMID: 29871520 PMCID: PMC6300776 DOI: 10.1177/0963689718773361] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the most devastating diseases worldwide. In recent years, a great number of studies have focused on the effects of microRNAs (miRNAs) on stroke and the results demonstrated that the expressions of miRNAs are associated with the prognosis of stroke. In the present study, we review relevant articles regarding miRNAs and stroke and will explain the complex link between both. The miRNAs participate extensively in the pathophysiology following the stroke, including apoptosis, neuroinflammation, oxidative stress, blood–brain barrier (BBB) disruption and brain edema. The information about the stroke–miRNA system may be helpful for therapeutic and diagnostic methods in stroke treatment.
Collapse
Affiliation(s)
- Weilin Xu
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 4 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,2 Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,3 Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Wang S, Li D, Huang C, Wan Y, Wang J, Zan X, Yang B. Overexpression of adiponectin alleviates intracerebral hemorrhage-induced brain injury in rats via suppression of oxidative stress. Neurosci Lett 2018; 681:110-116. [PMID: 29870775 DOI: 10.1016/j.neulet.2018.05.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 11/18/2022]
Abstract
Oxidative stress and blood-brain barrier (BBB) dysfunction contribute to brain injury after intracerebral hemorrhage (ICH). Adiponectin (APN) inhibits oxidative stress in the CNS, but the role of APN in ICH is not clear. Thus, we elucidated the possible neuroprotective effect of APN in ICH-induced brain injury in rats and investigated the neuroprotective mechanisms. A lentivirus-carrying APN gene was injected into rats 14 days before ICH induced via intracerebral injection of autologous blood. The effects of lentiviral overexpression of APN on brain injury were evaluated 24 h after ICH. Superoxide dismutase (SOD), glutathione (GSH), and the ratio of oxidized glutathione to reduced glutathione (GSSG/GSH) and malondialdehyde (MDA) were measured. Oxidative stress-related proteins were measured by Western blot and qRT-PCR. APN overexpression improved neurological function, reduced brain edema, preserved the BBB and increased the expression of APN and decreased the expression of NADPH oxidase-2 (NOX 2) compared with null vector controls (p < 0.01). SOD, GSH, and GSSG/GSH increased, and MDA was reduced. Furthermore, tetrabromocinnamic acid (TBCA, a NADPH oxidase activator) blocked the effect of APN on cerebral protection and antioxidant activity. Our results demonstrate the importance of APN in regulating oxidative stress and BBB function and suggest APN may be a novel treatment for brain damage after ICH.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Dan Li
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Conggai Huang
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Yu Wan
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Jieqiong Wang
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Xiao Zan
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China
| | - Bo Yang
- Department of Pathology, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China; Medical experiment research center, The Affiliated hospital of Southwest Medical University, 646000, Luzhou, People's Republic of China.
| |
Collapse
|
39
|
Zhang B, Dai XH, Yu XP, Zou W, Teng W, Sun XW, Yu WW, Liu H, Wang H, Sun MJ, Li M. Baihui (DU20)-penetrating- Qubin (GB7) acupuncture inhibits apoptosis in the perihemorrhagic penumbra. Neural Regen Res 2018; 13:1602-1608. [PMID: 30127121 PMCID: PMC6126129 DOI: 10.4103/1673-5374.237123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Baihui (DU20)-penetrating-Qubin (GB7) acupuncture can inhibit inflammatory reactions and activate signaling pathways related to proliferation after intracerebral hemorrhage. However, there is no research showing the relationship between this treatment and cell apoptosis. Rat models of intracerebral hemorrhage were established by injecting 60 μL of autologous blood into the right side of the caudate-putamen. Six hours later, the needle traveled subcutaneously from the Baihui acupoint to Qubin acupoint. The needle was alternately rotated (180 ± 10 turns/min) manually along clockwise and counter-clockwise directions. Stimulation lasted for 7 days, and was performed three times each for 6 minutes with 6-minute intervals between stimulations. Rats intraperitoneally receiving Sonic hedgehog pathway activator, purmorphamine (1 mg/kg per day), served as positive controls. Motor and sensory function were assessed using the Ludmila Belayev test. Extent of pathological changes were measured in the perihemorrhagic penumbra using hematoxylin-eosin staining. Apoptosis was examined by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay. Expression of smoothened (Smo) and glioma-associated homolog 1 (Gli1) was determined by western blot assay. Our results showed that Baihui-penetrating-Qubin acupuncture promoted recovery of motor and sensory function, reduced the apoptotic cell percentage in the perihemorrhagic penumbra, and up-regulated Smo and Gli1 expression. We conclude that Baihui-penetrating-Qubin acupuncture can mitigate hemorrhage and promote functional recovery of the brain in a rat model of intracerebral hemorrhage, possibly by activating the Sonic hedgehog pathway.
Collapse
Affiliation(s)
- Beng Zhang
- Heilongjiang University of Chinese Medicine; First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Zou
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine; Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei Teng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Wei-Wei Yu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hui Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng-Juan Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Meng Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|