1
|
Tasnim A, Sumaiya AA, Noman AA, Tahsin A, Saba AA, Ahmed R, Yasmin T, Nabi AHMN. A Comparative Meta-Analysis on the Association of lncRNAs MALAT1, HOTAIR, and AFAP1-AS1 With the Risk of Developing Lymph Node Metastasis in Lung Cancer. Cancer Rep (Hoboken) 2024; 7:e70091. [PMID: 39725668 DOI: 10.1002/cnr2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated the significance of long noncoding RNA (lncRNA) in the development of cancer metastasis. The expression levels of many lncRNAs are elevated in metastatic lung cancer patients compared to non-metastatic lung cancer patients. OBJECTIVES The primary objective of the study was to investigate the association between the expression levels of three lncRNAs (MALAT1, HOTAIR, and AFAP1-AS1) and lymph node metastasis (LNM) of lung cancer. METHODS Cell Press, PubMed, SpringerLink, Web of Science, and Google Scholar were explored to perform the literature search. After screening 1862 articles, 66 English-language articles were selected based on the inclusion and exclusion criteria. From those articles, 17 publications comprising 1622 lung cancer patients were chosen for statistical analyses as well as quality assessment tests. RESULTS Forest plot analysis revealed that there was a significant difference in the incidence of LNM between the high and low MALAT1 expression groups (OR = 3.21, 95% CI: 1.34-7.67; random effects model). Significant differences were also observed in the incidence of LNM between patients with high and low HOTAIR expression levels (OR = 4.17, 95% CI: 1.47-11.82; random effects model). The expression level of AFAP1-AS1 was found to be significantly associated with LNM in lung cancer (OR = 2.31, 95% CI: 1.39-3.85, random effects model). Additional analysis from GEPIA and GEO databases revealed that the expression levels of these lncRNAs vary according to the type of tumor tissue, organ of metastasis, and cancer stage. However, these databases show that the result for AFAP1-AS1 is the most aligned with the meta-analysis's findings. Furthermore, several quality assessment tests showed that the AFAP1-AS1 studies are more reliable compared to the studies of other lncRNAs. CONCLUSION This study suggested that LNM in lung cancer patients is associated mostly with an elevated AFAP1-AS1 lncRNA level among the pool of three lncRNAs analyzed. Before these results can be implemented in a clinical setting, it is essential to conduct further validation and undertake comprehensive analysis to ensure robustness and reliability.
Collapse
Affiliation(s)
- Anha Tasnim
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Afra Anjum Sumaiya
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Noman
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Anika Tahsin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rubaiat Ahmed
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tahirah Yasmin
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Qiu C, Li C, Zheng Q, Fang S, Xu J, Wang H, Guo H. Metformin suppresses lung adenocarcinoma by downregulating long non-coding RNA (lncRNA) AFAP1-AS1 and secreted phosphoprotein 1 (SPP1) while upregulating miR-3163. Bioengineered 2022; 13:11987-12002. [PMID: 35603556 PMCID: PMC9275981 DOI: 10.1080/21655979.2021.2005981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AFAP1-AS1 plays a pro-tumor role in lung cancer. However, no investigation has focused on whether it is involved in the anticancer activity of metformin (Met) in the treatment of lung adenocarcinoma (LUAD). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of long non-coding (lnc)RNA AFAP1-AS1, the microRNA (miR)-3163, and secreted phosphoprotein 1 (SPP1) in LUAD tissues, or of A549 and H3122 cells. Cell Counting Kit-8, wound scratch, and cell invasion assays were performed to evaluate the effect of the overexpression of lncRNA AFAP1-AS1, miR-3163, and SPP1 on the malignant behaviors of A549 and H3122 cells. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway-related proteins were detected by Western blot analysis. Dual luciferase reporter or RIP assays were used to determine the interplay between AFAP1-AS1 and miR-3163, or of miR-3163 and SPP1. Met inhibits the malignant characteristics of A549 and H3122 cells in vitro. GEPIA database analysis showed that AFAP1-AS1 is a highly expressed lncRNA in LUAD tissues, which was validated by RT-qPCR. Overexpression of AFAP1-AS1 suppressed the met-mediated anti-tumor activity in A549 and H3122 cells, while AFAP1-AS1 silencing promoted it. Met inhibited AFAP1-AS1 expression, which resulted in reduced proliferation, migration, and invasion in A549 and H3122 cells. This led to AFAP1-AS1-mediated suppression of miR-3163 and, subsequently, the upregulation of SPP1. Met exerts its antitumor activities by regulating the AFAP1-AS1/miR-3163/SPP1/PI3K/Akt/mTOR axis. Our findings deepen our understanding of mechanisms underlying anti-tumor effect of Met in LUAD.
Collapse
Affiliation(s)
- Caiyu Qiu
- Department of Physical Examination Center, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Chuanxiang Li
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Quan Zheng
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Si Fang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jianqun Xu
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongjuan Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongrong Guo
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Mokhtari M. A Review on the Role of AFAP1-AS1 in the Pathoetiology of Cancer. Front Oncol 2021; 11:777849. [PMID: 34912717 PMCID: PMC8666534 DOI: 10.3389/fonc.2021.777849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
AFAP1-AS1 is a long non-coding RNA which partakes in the pathoetiology of several cancers. The sense protein coding gene from this locus partakes in the regulation of cytophagy, cell motility, invasive characteristics of cells and metastatic ability. In addition to acting in concert with AFAP1, AFAP1-AS1 can sequester a number of cancer-related miRNAs, thus affecting activity of signaling pathways involved in cancer progression. Most of animal studies have confirmed that AFAP1-AS1 silencing can reduce tumor volume and invasive behavior of tumor cells in the xenograft models. Moreover, statistical analyses in the human subjects have shown strong correlation between expression levels of this lncRNA and clinical outcomes. In the present work, we review the impact of AFAP1-AS1 in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayybeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Xiong F, Zhu K, Deng S, Huang H, Yang L, Gong Z, Shi L, He Y, Tang Y, Liao Q, Yu J, Li X, Li Y, Li G, Zeng Z, Xiong W, Zhang S, Guo C. AFAP1-AS1: a rising star among oncogenic long non-coding RNAs. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1602-1611. [PMID: 33999309 DOI: 10.1007/s11427-020-1874-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become a hotspot in biomedical research. This interest reflects their extensive involvement in the regulation of the expression of other genes, and their influence on the occurrence and development of a variety of human diseases. Actin filament associated protein 1-Antisense RNA 1(AFAP1-AS1) is a recently discovered oncogenic lncRNA. It is highly expressed in a variety of solid tumors, and regulates the expression of downstream genes and signaling pathways through adsorption and competing microRNAs, or by the direct binding to other proteins. Ultimately, AFAP1-AS1 promotes proliferation, chemotherapy resistance, and resistance to apoptosis, maintains stemness, and enhances invasion and migration of tumor cells. This paper summarizes the research concerning AFAP1-AS1 in malignant tumors, including the clinical application prospects of AFAP1-AS1 as a potential molecular marker and therapeutic target of malignant tumors. We also discuss the limitations in the knowledge of AFAP1-AS1 and directions of further research. AFAP1-AS1 is expected to provide an example for studies of other lncRNA molecules.
Collapse
Affiliation(s)
- Fang Xiong
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Kunjie Zhu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Su Deng
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Hongbin Huang
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Liting Yang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Yi He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jianjun Yu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
5
|
The knockdown of LncRNA AFAP1-AS1 suppressed cell proliferation, migration, and invasion, and promoted apoptosis by regulating miR-545-3p/hepatoma-derived growth factor axis in lung cancer. Anticancer Drugs 2020; 32:11-21. [PMID: 33290312 DOI: 10.1097/cad.0000000000001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer is one of the most common human cancers. Long noncoding RNA AFAP1-AS1 (LncRNA AFAP1-AS1) and microRNA-545-3p (miR-545-3p) were reported to play important roles in lung cancer development. This study aimed to elucidate the functional mechanisms of AFAP1-AS1 and miR-545-3p in lung cancer. Quantitative real time polymerase chain reaction was carried out to determine the levels of AFAP1-AS1, miR-545-3p and hepatoma-derived growth factor (HDGF). Cell proliferation, apoptosis, migration and invasion were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, flow cytometry, and transwell migration and invasion assays, respectively. Furthermore, the interaction between miR-545-3p and AFAP1-AS1 or HDGF was predicted by bioinformatics analysis software starbase and confirmed by the dual luciferase reporter assay. Western blot assay was used to detect the protein level of HDGF. Besides, murine xenograft model was conducted through injecting A549 cells transfected with sh-AFAP1-AS1. The expression levels of AFAP1-AS1 and HDGF were increased, while miR-545-3p was decreased in lung cancer tissues and cells. AFAP1-AS1 knockdown suppressed lung cancer cell proliferation, migration, and invasion and induced apoptosis. Furthermore, AFAP1-AS1 mediated cell progression through regulating miR-545-3p expression. In addition, miR-545-3p negatively regulated the expression level of HDGF via binding 3'-untranslated region of HDGF. As expected, AFAP1-AS1 knockdown inhibited lung cancer progression via affecting miR-545-3p/HDGF axis. Besides, AFAP1-AS1 knockdown suppressed lung cancer tumor growth in vivo. Collectively, our results suggested that AFAP1-AS1 promoted the development of lung cancer via regulating miR-545-3p/HDGF axis, providing a potential target for the treatment of lung cancer.
Collapse
|
6
|
Fang M, Zhang M, Wang Y, Wei F, Wu J, Mou X, Zhang Y, Liang X, Tang J. Long Noncoding RNA AFAP1-AS1 Is a Critical Regulator of Nasopharyngeal Carcinoma Tumorigenicity. Front Oncol 2020; 10:601055. [PMID: 33330099 PMCID: PMC7719841 DOI: 10.3389/fonc.2020.601055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background The long noncoding RNA actin filament associated protein 1 antisense RNA1 (AFAP1-AS1) is a critical player in various cancers. However, the clinical value and functional mechanisms of AFAP1-AS1 during the tumorigenicity of nasopharyngeal carcinoma (NPC) remain unclear. Here, we investigated the clinical application and potential molecular mechanisms of AFAP1-AS1 in NPC tumorigenesis and progression. Methods The expression level of AFAP1-AS1 was determined by qRT-PCR in 10 paired fresh human NPC tissues and adjacent normal tissues. RNAscope was performed on 100 paired paraffin-embedded NPC and adjacent nontumor specimens. The biological functions of AFAP1-AS1 were assessed by in vitro and in vivo functional experiments. RNA-protein pull-down assays were performed to detect and identify the AFAP1-AS1-interacting protein KAT2B. Protein-RNA immunoprecipitation (RIP) assays were conducted to examine the interaction of AFAP1-AS1 and KAT2B. Chromatin immunoprecipitation (ChIP) and luciferase analyses were utilized to identify the binding site of transcription intermediary factor 1 alpha (TIF1α) and H3K14ac on the RBM3 promoter. Results AFAP1-AS1 is upregulated in NPC and is a poor prognostic indicator for survival in NPC patients. AFAP1-AS1 was required for NPC proliferation in vitro and tumorigenicity in vivo. Mechanistic investigations suggested that AFAP1-AS1 binds to KAT2B and promotes acetyltransferase activation at two residues (E570/D610). KAT2B further promotes H3K14 acetylation and protein binding to the bromo domain of TIF1α. Consequently, TIF1α acts as a nuclear transcriptional coactivator of RBM3 transcription, leading to YAP mRNA stabilization and enhanced NPC tumorigenicity. Conclusions Our findings suggest that AFAP1-AS1 functions as an oncogenic biomarker and promotes NPC tumorigenicity through enhanced KAT2B acetyltransferase activation and YAP mRNA stabilization.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Minjun Zhang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Yiqing Wang
- The Reproductive Medicine Special Hospital of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Fangqiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianhui Wu
- Department of the Otolaryngology, Zhongshan City People's Hospital, Zhongshan Affiliated Hospital of Sun Yan-sen University, Zhongshan, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaodong Liang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Graduate Department, Bengbu Medical College, Bengbu, China
| | - Jianming Tang
- Department of Radiation Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Xu Z, Gao G, Liu F, Han Y, Dai C, Wang S, Wei G, Kuang Y, Wan D, Zhi Q, Xu Y. Molecular Screening for Nigericin Treatment in Pancreatic Cancer by High-Throughput RNA Sequencing. Front Oncol 2020; 10:1282. [PMID: 32850392 PMCID: PMC7411259 DOI: 10.3389/fonc.2020.01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has been proved to exhibit promising anti-cancer effects on a variety of cancers. Our previous study investigated the potential anti-cancer properties in pancreatic cancer (PC), and demonstrated that nigericin could inhibit the cell viabilities in concentration- and time-dependent manners via differentially expressed circular RNAs (circRNAs). However, the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying mechanism from the perspective of lncRNA and mRNA. Methods: The continuously varying molecules (lncRNAs and mRNAs) were comprehensively screened by high-throughput RNA sequencing. Results: Our data showed that 76 lncRNAs and 172 mRNAs were common differentially expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and trans-regulation predictions and protein-protein interaction (PPI) network, were applied to annotate the potential regulatory mechanisms among these coding and non-coding RNAs during the nigericin anti-cancer process. Conclusions: These findings provided new insight into the molecular mechanism of nigericin toward cancer cells, and suggested a possible clinical application in PC.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guobang Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
8
|
Ba MC, Ba Z, Long H, Cui SZ, Gong YF, Yan ZF, Lin KP, Wu YB, Tu YN. LncRNA AC093818.1 accelerates gastric cancer metastasis by epigenetically promoting PDK1 expression. Cell Death Dis 2020; 11:64. [PMID: 31988283 PMCID: PMC6985138 DOI: 10.1038/s41419-020-2245-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
Gastric cancer (GC) is a highly prevalent type of metastatic tumor. The mechanisms underlying GC metastasis are poorly understood. Some long noncoding RNAs (lncRNAs) reportedly play key roles in regulating metastasis of GC. However, the biological roles of five natural antisense lncRNAs (AC093818.1, CTD-2541M15.1, BC047644, RP11-597M12.1, and RP11-40A13.1) in GC metastasis remain unclear. In this study, the expression of these lncRNAs was measured by quantitative reverse transcription-polymerase chain reaction. Migration and invasion were evaluated by wound-healing and the Transwell assay, respectively. Stable cells were injected into the tail veins of nude mice. Sections of collected lung and liver tissues were stained using hematoxylin and eosin. Protein expression was analyzed by western blot. RNA immunoprecipitation (RIP) assay was used to verify whether the STAT3 and SP1 transcription factors bound to AC093818.1 in GC cells. Expression levels of the five lncRNAs, especially AC093818.1, were significantly upregulated in metastatic GC tissues relative to those in nonmetastatic GC tissues. AC093818.1 expression was correlated with invasion, lymphatic metastasis, distal metastasis, and tumor-node-metastasis stage. AC093818.1 expression was highly sensitive and specific in the diagnosis of metastatic or nonmetastatic GC. AC093818.1 overexpression promoted GC migration and invasion in vitro and in vivo. AC093818.1 overexpression increased PDK1, p-AKT1, and p-mTOR expression levels. AC093818.1 silencing decreased these expressions. AC093818.1 bound to transcription factors STAT3 and SP1, and SP1 or STAT3 silencing could alleviated the effect of AC093818.1 overexpression. The data demonstrate that lncRNA AC093818.1 accelerates gastric cancer metastasis by epigenetically promoting PDK1 expression. LncRNA AC093818.1 may be a potential therapeutic target for metastatic GC.
Collapse
Affiliation(s)
- Ming-Chen Ba
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China.
| | - Zheng Ba
- Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hui Long
- Department of Pharmacy, Guangzhou Dermatology Institute, Guangzhou, 510095, P.R. China
| | - Shu-Zhong Cui
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| | - Yuan-Feng Gong
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| | - Zhao-Fei Yan
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| | - Kun-Peng Lin
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| | - Yin-Bing Wu
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| | - Yi-Nuo Tu
- Intracelom Hyperthermic Perfusion Therapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P.R. China
| |
Collapse
|
9
|
Zhao Z, Qiao L, Dai Z, He Q, Lan X, Huang S, He L. LncNONO-AS regulates AR expression by mediating NONO. Theriogenology 2019; 145:198-206. [PMID: 31732162 DOI: 10.1016/j.theriogenology.2019.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Spermatogenesis and healthy testicular development are prerequisites for male reproductive function. Androgen receptor (AR), an important receptor in testicular sertoli cells, is involved in androgen specific response and its dysfunction will lead to abnormal sperm development, resulting in male infertility. NONO (non-POU-domain-containing octamer binding protein) can act as a coactivator to enhance the transcription of AR, while AR may be regulated by NONO in testicular sertoli cells. LncRNAs are involved in almost every step of spermatogenesis. However, there are few studies focus on the relationship between lncRNAs and spermatogenesis in goat testis. Therefore, in this research, high throughput sequencing and bioinformatics analysis were performed on testicular tissues of Dazu black goats at different stages of development to obtain the target NONO lncRNA. It's called lncNONO-AS. This study further explored the biological functions of lncRNA through RNA pull down, overexpression, interference, fluorescence quantification, Western blot and other techniques on the basis of in vitro culture of testis sertoli cells, and we got the following results: The gene expression levels of NONO and AR in lncNONO-AS overexpression group were significantly higher than that in the empty vector group (P < 0.01). Compared with the untreated negative control group, the expression of NONO decreased from 1.00 to 0.68 (P < 0.01), and the expression of AR decreased from 1.01 to 0.34 (P < 0.01). The results showed that lncNONO-AS could regulate the expression of AR by mediating the expression of NONO.
Collapse
Affiliation(s)
- Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Lei Qiao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zinuo Dai
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qijie He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Siyi Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Lina He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 577] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
11
|
Chen W, Wang Z, Ren Y, Zhang L, Sun L, Man Y, Zhou Z. Silencing of keratin 1 inactivates the Notch signaling pathway to inhibit renal interstitial fibrosis and glomerular sclerosis in uremia. J Cell Physiol 2019; 235:1674-1688. [DOI: 10.1002/jcp.29087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Wen Chen
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Zhi‐Kui Wang
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Yue‐Qin Ren
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Lei Zhang
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Li‐Na Sun
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Yu‐Lin Man
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Zhong‐Qi Zhou
- Department of Nephrology Linyi People's Hospital Linyi China
| |
Collapse
|
12
|
Meng Y, Yu F. Long noncoding RNA FAM3D-AS1 inhibits development of colorectal cancer through NF-κB signaling pathway. Biosci Rep 2019; 39:BSR20190724. [PMID: 31147452 PMCID: PMC6609597 DOI: 10.1042/bsr20190724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Although numerous differential long noncoding RNAs (IncRNAs) have been identified, the relationship between lncRNA and colorectal cancer (CRC) still remains largely unclear. In the present study, we investigated the function and provided a possible mechanism of lncRNA FAM3D-AS1 in CRC. CCK8, transwell, and trypan blue staining were used to evaluate the proliferation, invasion, and cell death rates. Real-time PCR was used to elucidate the expression level of FAM3D-AS1. We found that lncRNA FAM3D-AS1 located in cytoplasm. Overexpression of FAM3D-AS1 significantly inhibited the cell proliferation, cell survival rates, and invaded cells. We also provided evidence that FAM3D-AS1 reversed the EMT process. Moreover, we proved that FAM3D-AS1 inhibits CRC development through NF-κB signaling pathway. Taken together, we performed functional analysis of FAM3D-AS1 and provided a possible mechanism in the development of CRC. Our study provided new targets for clinical treatment.
Collapse
Affiliation(s)
- Ying Meng
- The First Division of Cancer Department of Zibo Central Hospital, Shandong, China
| | - Feng Yu
- The Second Division of Gastroenterology Department of Zibo Central Hospital, Shandong, China
| |
Collapse
|
13
|
Sarfi M, Abbastabar M, Khalili E. Long noncoding RNAs biomarker-based cancer assessment. J Cell Physiol 2019; 234:16971-16986. [PMID: 30835829 DOI: 10.1002/jcp.28417] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Cancer diagnosis have mainly relied on the incorporation of molecular biomarkers as part of routine diagnostic tool. The molecular alteration ranges from those involving DNA, RNA, noncoding RNAs (microRNAs and long noncoding RNAs [lncRNAs]) and proteins. lncRNAs are recently discovered noncoding endogenous RNAs that critically regulates the development, invasion, and metastasis of cancer cells. They are dysregulated in different types of malignancies and have the potential to serve as diagnostic markers for cancer. The expression of noncoding RNAs is altered following many diseases, and besides, some of them can be secreted from the cells into the circulation following the apoptotic and necrotic cell death. These secreted noncoding RNAs are known as cell free RNA. These RNAs can be secreted from the cell through the apoptotic body, extracellular vesicles including microvesicle and exosome, and bind to proteins. Since, lncRNAs display high organ and cell specificity, can be found in the blood, urine, tumor tissue, or other tissues or bodily fluids of some patients with cancer, this review summarizes the most significant and up-to-date findings of research on lncRNAs involvement in different cancers, focusing on the potential of cancer-related lncRNAs as biomarkers for diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abbastabar
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Khalili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|