1
|
Ahmadi M, Ahmadyousefi Y, Salimi Z, Mirzaei R, Najafi R, Amirheidari B, Rahbarizadeh F, Kheshti J, Safari A, Soleimani M. Innovative Diagnostic Peptide-Based Technologies for Cancer Diagnosis: Focus on EGFR-Targeting Peptides. ChemMedChem 2023; 18:e202200506. [PMID: 36357328 DOI: 10.1002/cmdc.202200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Active targeting using biological ligands has emerged as a novel strategy for the targeted delivery of diagnostic agents to tumor cells. Conjugating functional targeting moieties with diagnostic probes can increase their accumulation in tumor cells and tissues, enhancing signal detection and, thus, the sensitivity of diagnosis. Due to their small size, ease of chemical synthesis and site-specific modification, high tissue penetration, low immunogenicity, rapid blood clearance, low cost, and biosafety, peptides offer several advantages over antibodies and proteins in diagnostic applications. Epidermal growth factor receptor (EGFR) is one of the most promising cancer biomarkers for actively targeting diagnostic and therapeutic agents to tumor cells due to its active involvement and overexpression in various cancers. Several peptides for EGFR-targeting have been identified in the last decades, which have been obtained by multiple means including derivation from natural proteins, phage display screening, positional scanning synthetic combinatorial library, and in silico screening. Many studies have used these peptides as a targeting moiety for diagnosing different cancers in vitro, in vivo, and in clinical trials. This review summarizes the progress of EGFR-targeting peptide-based assays in the molecular diagnosis of cancer.
Collapse
Affiliation(s)
- Mohammad Ahmadi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Kheshti
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Safari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
The sodium iodide symporter (NIS) as theranostic gene: potential role in pre-clinical therapy of extra-thyroidal malignancies. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Ravera S, Nicola JP, Salazar-De Simone G, Sigworth FJ, Karakas E, Amzel LM, Bianchet MA, Carrasco N. Structural insights into the mechanism of the sodium/iodide symporter. Nature 2022; 612:795-801. [PMID: 36517601 PMCID: PMC10501339 DOI: 10.1038/s41586-022-05530-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
The sodium/iodide symporter (NIS) is the essential plasma membrane protein that mediates active iodide (I-) transport into the thyroid gland, the first step in the biosynthesis of the thyroid hormones-the master regulators of intermediary metabolism. NIS couples the inward translocation of I- against its electrochemical gradient to the inward transport of Na+ down its electrochemical gradient1,2. For nearly 50 years before its molecular identification3, NIS was the molecule at the centre of the single most effective internal radiation cancer therapy: radioiodide (131I-) treatment for thyroid cancer2. Mutations in NIS cause congenital hypothyroidism, which must be treated immediately after birth to prevent stunted growth and cognitive deficiency2. Here we report three structures of rat NIS, determined by single-particle cryo-electron microscopy: one with no substrates bound; one with two Na+ and one I- bound; and one with one Na+ and the oxyanion perrhenate bound. Structural analyses, functional characterization and computational studies show the substrate-binding sites and key residues for transport activity. Our results yield insights into how NIS selects, couples and translocates anions-thereby establishing a framework for understanding NIS function-and how it transports different substrates with different stoichiometries and releases substrates from its substrate-binding cavity into the cytosol.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Juan Pablo Nicola
- Department of Clinical Biochemistry, National University of Córdoba, Córdoba, Argentina
| | | | - Fred J Sigworth
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mario A Bianchet
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nancy Carrasco
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Kitzberger C, Spellerberg R, Morath V, Schwenk N, Schmohl KA, Schug C, Urnauer S, Tutter M, Eiber M, Schilling F, Weber WA, Ziegler S, Bartenstein P, Wagner E, Nelson PJ, Spitzweg C. The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Res 2022; 12:25. [PMID: 35503582 PMCID: PMC9065223 DOI: 10.1186/s13550-022-00888-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 01/14/2023] Open
Abstract
Cloning of the sodium iodide symporter (NIS) in 1996 has provided an opportunity to use NIS as a powerful theranostic transgene. Novel gene therapy strategies rely on image-guided selective NIS gene transfer in non-thyroidal tumors followed by application of therapeutic radionuclides. This review highlights the remarkable progress during the last two decades in the development of the NIS gene therapy concept using selective non-viral gene delivery vehicles including synthetic polyplexes and genetically engineered mesenchymal stem cells. In addition, NIS is a sensitive reporter gene and can be monitored by high resolution PET imaging using the radiotracers sodium [124I]iodide ([124I]NaI) or [18F]tetrafluoroborate ([18F]TFB). We performed a small preclinical PET imaging study comparing sodium [124I]iodide and in-house synthesized [18F]TFB in an orthotopic NIS-expressing glioblastoma model. The results demonstrated an improved image quality using [18F]TFB. Building upon these results, we will be able to expand the NIS gene therapy approach using non-viral gene delivery vehicles to target orthotopic tumor models with low volume disease, such as glioblastoma. Trial registration not applicable.
Collapse
Affiliation(s)
- Carolin Kitzberger
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for Nanoscience, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany. .,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Spellerberg R, Benli-Hoppe T, Kitzberger C, Berger S, Schmohl KA, Schwenk N, Yen HY, Zach C, Schilling F, Weber WA, Kälin RE, Glass R, Nelson PJ, Wagner E, Spitzweg C. Selective sodium iodide symporter ( NIS) genetherapy of glioblastoma mediatedby EGFR-targeted lipopolyplexes. Mol Ther Oncolytics 2021; 23:432-446. [PMID: 34853814 PMCID: PMC8604759 DOI: 10.1016/j.omto.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Lipo-oligomers, post-functionalized with ligands to enhance targeting, represent promising new vehicles for the tumor-specific delivery of therapeutic genes such as the sodium iodide symporter (NIS). Due to its iodide trapping activity, NIS is a powerful theranostic tool for diagnostic imaging and the application of therapeutic radionuclides. 124I PET imaging allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression, and application of 131I enables cytoreduction. In our experimental design, we used epidermal growth factor receptor (EGFR)-targeted polyplexes (GE11) initially characterized in vitro using 125I uptake assays. Mice bearing an orthotopic glioblastoma were treated subsequently with mono-dibenzocyclooctyne (DBCO)-PEG24-GE11/NIS or bisDBCO-PEG24-GE11/NIS, and 24-48 h later, 124I uptake was assessed by positron emission tomography (PET) imaging. The best-performing polyplex in the imaging studies was then selected for 131I therapy studies. The in vitro studies showed EGFR-dependent and NIS-specific transfection efficiency of the polyplexes. The injection of monoDBCO-PEG24-GE11/NIS polyplexes 48 h before 124I application was characterized to be the optimal regime in the imaging studies and was therefore used for an 131I therapy study, showing a significant decrease in tumor growth and a significant extension of survival in the therapy group. These studies demonstrate the potential of EGFR-targeted polyplex-mediated NIS gene therapy as a new strategy for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rebekka Spellerberg
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Carolin Kitzberger
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Roland E Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany.,Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), partner site 80336 Munich and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, LMU Munich, 81377 Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital, LMU Munich, 81377 Munich, Germany.,Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Sung K, Hosoya K, Murase Y, Deguchi T, Kim S, Sunaga T, Okumura M. Visualizing the cancer stem-like properties of canine tumour cells with low proteasome activity. Vet Comp Oncol 2021; 20:324-335. [PMID: 34719098 DOI: 10.1111/vco.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Cancer stem-like cells (CSCs) cause treatment failure in various tumours; however, establishing CSC-targeted therapies has been hampered by difficulties in the identification and isolation of this small sub-population of cells. Recent studies have revealed that tumour cells with low proteasome activity display a CSC phenotype that can be utilized to image CSCs in canines. This study visualizes and reveals the CSC-like properties of tumour cells with low proteasome activity in HMPOS (osteosarcoma) and MegTCC (transitional cell carcinoma), which are canine cell lines. The parent cells were genetically engineered to express ZsGreen1, a fluorescent protein connected to the carboxyl-terminal degron of canine ornithine decarboxylase that accumulates with low proteasome activity (ZsG+ cells). ZsG+ cells were imaged and the mode of action of this system was confirmed using a proteasome inhibitor (MG-132), which increased the ZsGreen1 fluorescence intensity. The CSC-like properties of ZsG+ cells were evaluated on the basis of cell divisions, cell cycle, the expression of CSC markers and tumourigenicity. ZsG+ cells underwent asymmetric divisions and had a low percentage of G0/G1 phase cells; moreover, ZsG+ cells expressed CSC markers such as CD133 and showed a large tumourigenic capability. In histopathological analysis, ZsG+ cells were widely distributed in the tumour samples derived from ZsG+ cells and in the proliferative regions of the tumours. The results of this study indicate that visualized canine tumour cells with low proteasome activity have a CSC-like phenotype and that this visualization system can be utilized to identify and isolate canine CSCs.
Collapse
Affiliation(s)
- Koangyong Sung
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hosoya
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Murase
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Deguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Rosenkranz AA, Slastnikova TA. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. BIOCHEMISTRY (MOSCOW) 2021; 85:967-1092. [PMID: 33050847 DOI: 10.1134/s0006297920090011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an integral surface protein mediating cellular response to a number of growth factors. Its overexpression and increased activation due to mutations is one of the most common traits of many types of cancer. Development and clinical use of the agents, which block EGFR activation, became a prime example of the personalized targeted medicine. However, despite the obvious success in this area, cancer cure remains unattainable in most cases. Because of that, as well as the result of the search for possible ways to overcome the difficulties of treatment, a huge number of new treatment methods relying on the use of EGFR overexpression and its changes to destroy cancer cells. Modern data on the structure, functioning, and intracellular transport of EGFR, its natural ligands, as well as signaling cascades triggered by the EGFR activation, peculiarities of the EGFR expression and activation in oncological disorders, as well as applied therapeutic approaches aimed at blocking EGFR signaling pathway are summarized and analyzed in this review. Approaches to the targeted delivery of various chemotherapeutic agents, radionuclides, immunotoxins, photosensitizers, as well as the prospects for gene therapy aimed at cancer cells with EGFR overexpression are reviewed in detail. It should be noted that increasing attention is being paid nowadays to the development of multifunctional systems, either carrying several different active agents, or possessing several environment-dependent transport functions. Potentials of the systems based on receptor-mediated endocytosis of EGFR and their possible advantages and limitations are discussed.
Collapse
Affiliation(s)
- A A Rosenkranz
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
8
|
Miederer M, Pektor S, Miederer I, Bausbacher N, Keil IS, Hefesha H, Haas H, Sahin U, Diken M. Iodine-124 PET quantification of organ-specific delivery and expression of NIS-encoding RNA. EJNMMI Res 2021; 11:14. [PMID: 33569663 PMCID: PMC7876195 DOI: 10.1186/s13550-021-00753-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein.
For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00753-2.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Stefanie Pektor
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Isabell Sofia Keil
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Hossam Hefesha
- Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Heinrich Haas
- Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Ugur Sahin
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.,Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center, Johannes Gutenberg University Mainz gGmbH, Mainz, Germany. .,Biopharmaceutical New Technologies (BioNTech) SE, Mainz, Germany.
| |
Collapse
|
9
|
Wen X, Liu L, Geng Z, He L. Application of Taxol Nanomicelles with Lyp-1 Target in Targeted 805-813 Therapy of Colon Cancer. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:805-813. [PMID: 33183411 DOI: 10.1166/jnn.2021.18676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a new type of non-viral gene drug carrier, paclitaxel with Lyp-1 target has unique transmembrane ability due to its unique structure. In this paper, amino acids and surfactants are used to disperse SWCNTs in water, and non-covalent interactions are used to adsorb paclitaxel to the surface of SWCNTs. DSPE-PEG-Maleimide is then connected to NGR to achieve active targeting. To investigate the effect of NGR-SWCNTs-Paclitaxel on isolated cells, and to observe the antitumor effect of NGR-SWCNTs-Paclitaxel on S180 colon cancer mice in vivo, we provide theoretical and experimental basis for targeted cancer treatment. The luciferase activity test results showed that mi R-218 mimics had no significant effect on the intensity of the blank reporter plasmid group and p MIR-REPORT/UTR mutant luciferase activity, but in mi R-218 mimics and p MIR-REPORT/UTR Luciferase activity decreased after co-transfection of wild-type plasmids into cells. The validation results of the luciferase activity analysis system showed that mi R-218 was able to bind to Sp13'UTR. Overexpression of mi R-218 can significantly reduce the expression level of Sp1 protein but has no significant effect on Sp1 m RNA level, indicating that mi R-218 can target the regulation of Sp1 expression at the translation level.
Collapse
Affiliation(s)
- Xinian Wen
- Gastrointestinal Surgery, Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Lei Liu
- Binzhou Peoples Hospital Gastrointestinal Surgery, Binzhou, 256610, China
| | - Zhen Geng
- Binzhou Peoples Hospital Gastrointestinal Surgery, Binzhou, 256610, China
| | - Lifeng He
- GastrointestinalSurgery, Zhejiang Xiaoshan Hospital, Hangzhou, 311200, Zhejiang, China
| |
Collapse
|
10
|
Llorente-Esteban A, Manville RW, Reyna-Neyra A, Abbott GW, Amzel LM, Carrasco N. Allosteric regulation of mammalian Na +/I - symporter activity by perchlorate. Nat Struct Mol Biol 2020; 27:533-539. [PMID: 32451489 PMCID: PMC10158964 DOI: 10.1038/s41594-020-0417-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
The Na+/I- symporter (NIS), the plasma membrane protein that actively transports I- (stoichiometry 2Na+:1I-) in thyroid physiology and radioiodide-based thyroid cancer treatment, also transports the environmental pollutant perchlorate (stoichiometry 1Na+:1ClO4-), which competes with I- for transport. Until now, the mechanism by which NIS transports different anion substrates with different stoichiometries has remained unelucidated. We carried out transport measurements and analyzed these using a statistical thermodynamics-based equation and electrophysiological experiments to show that the different stoichiometry of ClO4- transport is due to ClO4- binding to a high-affinity non-transport allosteric site that prevents Na+ from binding to one of its two sites. Furthermore, low concentrations of ClO4- inhibit I- transport not only by competition but also, critically, by changing the stoichiometry of I- transport to 1:1, which greatly reduces the driving force. The data reveal that ClO4- pollution in drinking water is more dangerous than previously thought.
Collapse
Affiliation(s)
- Alejandro Llorente-Esteban
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Andrea Reyna-Neyra
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Tutter M, Schug C, Schmohl KA, Urnauer S, Schwenk N, Petrini M, Lokerse WJM, Zach C, Ziegler S, Bartenstein P, Weber WA, Wagner E, Lindner LH, Nelson PJ, Spitzweg C. Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter ( NIS) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Am J Cancer Res 2020; 10:4490-4506. [PMID: 32292510 PMCID: PMC7150485 DOI: 10.7150/thno.41489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: The tumor homing characteristics of mesenchymal stem cells (MSCs) make them attractive vehicles for the tumor-specific delivery of therapeutic agents, such as the sodium iodide symporter (NIS). NIS is a theranostic protein that allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression by radioiodine imaging as well as the therapeutic application of 131I. To gain local and temporal control of transgene expression, and thereby improve tumor selectivity, we engineered MSCs to express the NIS gene under control of a heat-inducible HSP70B promoter (HSP70B-NIS-MSCs). Experimental Design: NIS induction in heat-treated HSP70B-NIS-MSCs was verified by 125I uptake assay, RT-PCR, Western blot and immunofluorescence staining. HSP70B-NIS-MSCs were then injected i.v. into mice carrying subcutaneous hepatocellular carcinoma HuH7 xenografts, and hyperthermia (1 h at 41°C) was locally applied to the tumor. 0 - 72 h later radioiodine uptake was assessed by 123I-scintigraphy. The most effective uptake regime was then selected for 131I therapy. Results: The HSP70B promoter showed low basal activity in vitro and was significantly induced in response to heat. In vivo, the highest tumoral iodine accumulation was seen 12 h after application of hyperthermia. HSP70B-NIS-MSC-mediated 131I therapy combined with hyperthermia resulted in a significantly reduced tumor growth with prolonged survival as compared to control groups. Conclusions: The heat-inducible HSP70B promoter allows hyperthermia-induced spatial and temporal control of MSC-mediated theranostic NIS gene radiotherapy with efficient tumor-selective and temperature-dependent accumulation of radioiodine in heat-treated tumors.
Collapse
|
12
|
Yim MS, Soung NK, Han EH, Min JY, Han H, Son EJ, Kim HN, Kim B, Bang JK, Ryu EK. Vitamin E-Conjugated Phosphopeptide Inhibitor of the Polo-Box Domain of Polo-Like Kinase 1. Mol Pharm 2019; 16:4867-4877. [PMID: 31663746 DOI: 10.1021/acs.molpharmaceut.9b00757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (Plk1) regulates cell cycle and cell proliferation, and is currently considered a potential biomarker in clinical trials for many cancers. A characteristic feature of Plks is their C-terminal polo-box domain (PBD). Pro-Leu-His-Ser-pThr (PLHS[pT])-the phosphopeptide inhibitor of the PBD of Plk1-induces apoptosis in cancer cells. However, because of the low cell membrane-penetration ability of PLHS[pT], new approaches are required to overcome these drawbacks. We therefore developed a vitamin E (VE) conjugate that is biodegradable by intracellular redox enzymes as an anticancer drug-delivery system. To ensure high efficiency of membrane penetration, we synthesized VE-S-S-PLHS[pT]KY (1) by conjugating PLHS[pT] to VE via a disulfide bond. We found that 1 penetrated cancer cell membranes, blocked cancer cell proliferation, and induced apoptosis in cancer cells through cell cycle arrest in the G2/M phase. We synthesized a radiolabeled peptide (124I-1), and the radioligand was evaluated in in vivo tumor uptake using positron emission tomography. This study shows that combination conjugates are an excellent strategy for specifically targeting Plk PBD. These conjugates have a dual function, with possible uses in anticancer therapy and tumor diagnosis.
Collapse
Affiliation(s)
- Min Su Yim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Nak Kyun Soung
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Jin-Young Min
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - HoJin Han
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Eun-Ju Son
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Hak Nam Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - BoYeon Kim
- Anticancer Agent Research Center, World Class Institute, Korean Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| | - Eun Kyoung Ryu
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea
| |
Collapse
|
13
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2019; 60:1665-1681. [PMID: 31792128 PMCID: PMC12079160 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Affiliation(s)
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Germany
| |
Collapse
|
15
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|