1
|
Kyrgiafini MA, Katsigianni M, Giannoulis T, Sarafidou T, Chatziparasidou A, Mamuris Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Noncoding RNA 2025; 11:4. [PMID: 39846682 PMCID: PMC11755663 DOI: 10.3390/ncrna11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia. However, this study was designed to complement previous findings and provide a more holistic understanding of asthenozoospermia, this time focusing on noncoding regions. This study aimed to identify and prioritize variants in differentially expressed (DE) lncRNAs found exclusively in asthenozoospermic men, focusing on their impact on lncRNA structure and lncRNA-miRNA-mRNA interactions. Methods: Whole-genome sequencing (WGS) was performed on samples from asthenozoospermic and normozoospermic men. Additionally, an RNA-seq dataset from normozoospermic and asthenozoospermic individuals was analyzed to identify DE lncRNAs. Bioinformatics analyses were conducted to map unique variants on DE lncRNAs, followed by prioritization based on predicted functional impact. The structural impact of the variants and their effects on lncRNA-miRNA interactions were assessed using computational tools. Gene ontology (GO) and KEGG pathway analyses were employed to investigate the affected biological processes and pathways. Results: We identified 4173 unique variants mapped to 258 DE lncRNAs. After prioritization, 5 unique variants in 5 lncRNAs were found to affect lncRNA structure, while 20 variants in 17 lncRNAs were predicted to disrupt miRNA-lncRNA interactions. Enriched pathways included Wnt signaling, phosphatase binding, and cell proliferation, all previously implicated in reproductive health. Conclusions: This study identifies specific variants in DE lncRNAs that may play a role in asthenozoospermia. Given the limited research utilizing WGS to explore the role of noncoding RNAs in male infertility, our findings provide valuable insights and a foundation for future studies.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Maria Katsigianni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Bahramy A, Zafari N, Rajabi F, Aghakhani A, Jayedi A, Khaboushan AS, Zolbin MM, Yekaninejad MS. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front Mol Biosci 2023; 10:1096524. [PMID: 36726376 PMCID: PMC9885171 DOI: 10.3389/fmolb.2023.1096524] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Breast cancer (BC) is the most common cancer in women. The incidence and morbidity of BC are expected to rise rapidly. The stage at which BC is diagnosed has a significant impact on clinical outcomes. When detected early, an overall 5-year survival rate of up to 90% is possible. Although numerous studies have been conducted to assess the prognostic and diagnostic values of non-coding RNAs (ncRNAs) in breast cancer, their overall potential remains unclear. In this field of study, there are various systematic reviews and meta-analysis studies that report volumes of data. In this study, we tried to collect all these systematic reviews and meta-analysis studies in order to re-analyze their data without any restriction to breast cancer or non-coding RNA type, to make it as comprehensive as possible. Methods: Three databases, namely, PubMed, Scopus, and Web of Science (WoS), were searched to find any relevant meta-analysis studies. After thoroughly searching, the screening of titles, abstracts, and full-text and the quality of all included studies were assessed using the AMSTAR tool. All the required data including hazard ratios (HRs), sensitivity (SENS), and specificity (SPEC) were extracted for further analysis, and all analyses were carried out using Stata. Results: In the prognostic part, our initial search of three databases produced 10,548 articles, of which 58 studies were included in the current study. We assessed the correlation of non-coding RNA (ncRNA) expression with different survival outcomes in breast cancer patients: overall survival (OS) (HR = 1.521), disease-free survival (DFS) (HR = 1.33), recurrence-free survival (RFS) (HR = 1.66), progression-free survival (PFS) (HR = 1.71), metastasis-free survival (MFS) (HR = 0.90), and disease-specific survival (DSS) (HR = 0.37). After eliminating low-quality studies, the results did not change significantly. In the diagnostic part, 22 articles and 30 datasets were retrieved from 8,453 articles. The quality of all studies was determined. The bivariate and random-effects models were used to assess the diagnostic value of ncRNAs. The overall area under the curve (AUC) of ncRNAs in differentiated patients is 0.88 (SENS: 80% and SPEC: 82%). There was no difference in the potential of single and combined ncRNAs in differentiated BC patients. However, the overall potential of microRNAs (miRNAs) is higher than that of long non-coding RNAs (lncRNAs). No evidence of publication bias was found in the current study. Nine miRNAs, four lncRNAs, and five gene targets showed significant OS and RFS between normal and cancer patients based on pan-cancer data analysis, demonstrating their potential prognostic value. Conclusion: The present umbrella review showed that ncRNAs, including lncRNAs and miRNAs, can be used as prognostic and diagnostic biomarkers for breast cancer patients, regardless of the sample sources, ethnicity of patients, and subtype of breast cancer.
Collapse
Affiliation(s)
- Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| |
Collapse
|
4
|
Fan C, Xiong F, Tang Y, Li P, Zhu K, Mo Y, Wang Y, Zhang S, Gong Z, Liao Q, Li G, Zeng Z, Guo C, Xiong W, Huang H. Construction of a lncRNA–mRNA Co-Expression Network for Nasopharyngeal Carcinoma. Front Oncol 2022; 12:809760. [PMID: 35875165 PMCID: PMC9302896 DOI: 10.3389/fonc.2022.809760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) widely regulate gene expression and play important roles in the pathogenesis of human diseases, including malignant tumors. However, the functions of most lncRNAs remain to be elucidated. In order to study and screen novel lncRNAs with important functions in the carcinogenesis of nasopharyngeal carcinoma (NPC), we constructed a lncRNA expression profile of 10 NPC tissues and 6 controls through a gene microarray. We identified 1,276 lncRNAs, of which most are unknown, with different expression levels in the healthy and NPC tissues. In order to shed light on the functions of these unknown lncRNAs, we first constructed a co-expression network of lncRNAs and mRNAs using bioinformatics and systematic biological approach. Moreover, mRNAs were clustered and enriched by their biological functions, and those lncRNAs have similar expression trends with mRNAs were defined as functional molecules with potential biological significance. The module may help identify key lncRNAs in the carcinogenesis of NPC and provide clues for in-depth study of their functions and associated signaling pathways. We suggest the newly identified lncRNAs may have clinic value as biomarkers and therapeutic targets for NPC diagnosis and treatment.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kunjie Zhu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumin Wang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojiang Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- *Correspondence: Wei Xiong, ; He Huang,
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Wei Xiong, ; He Huang,
| |
Collapse
|
5
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
6
|
Liu B, Wu Z, Lin C, Li L, Kuang X. Applicability of TIVAP versus PICC in non-hematological malignancies patients: A meta-analysis and systematic review. PLoS One 2021; 16:e0255473. [PMID: 34343193 PMCID: PMC8330915 DOI: 10.1371/journal.pone.0255473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/17/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Applicability of totally implantable venous access port (TIVAP) and peripherally inserted central venous catheter (PICC) in non-hematological malignancies patients remains controversial. METHODS A systematic studies search in the public databases PubMed, EMBASE, Wan Fang, CNKI (China National Knowledge Infrastructure), the Cochrane Library and Google Scholar (updated to May 1, 2020) was performed to identify eligible researches. All statistical tests in this meta-analysis were performed using Stata 12.0 software (Stata Corp, College Station, TX). A P value less than 0.05 was considered statistically significant. RESULTS Thirteen studies were included in this final meta-analysis. The pooled data showed that compared with PICC, TIVAP was associated with a higher first-puncture success rate (OR:2.028, 95%CI:1.25-3.289, P<0.05), a lower accidental removal rate (OR:0.447, 95%CI:0.225-0.889, P<0.05) and lower complication rates, including infection (OR:0.570, 95%CI: 0.383-0.850, P<0.05), occlusion (OR:0.172, 95%CI:0.092-0.324, P<0.05), malposition (OR:0.279, 95%CI:0.128-0.608, P<0.05), thrombosis (OR:0.191, 95%CI, 0.111-0.329, P<0.05), phlebitis (OR:0.102, 95%CI, 0.038-0.273, P<0.05), allergy (OR:0.155, 95%CI:0.035-0.696, P<0.05). However, no difference was found in catheter life span (P>0.05) and extravasation (P>0.05). Moreover, TIVAP is more expensive compared with PICC in six-month use (weighted mean difference:3.132, 95%CI:2.434-3.83, P<0.05), but is much similar in 12 months use (P>0.05). CONCLUSION For the patients with non-hematological malignancies, TIVAP was superior to PICC in the data related to placement and the incidence of complications. Meanwhile, TIVAP is more expensive compared with PICC in six-month use, but it is much similar in twelve-month use.
Collapse
Affiliation(s)
- Baiying Liu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha, China
| | - Xuechun Kuang
- Department of Geratic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
7
|
Ning M, Qin S, Tian J, Wang Y, Liu Q. LncRNA AFAP-AS1 promotes anaplastic thyroid cancer progression by sponging miR-155-5p through ETS1/ERK pathway. Bioengineered 2021; 12:1543-1554. [PMID: 33999777 PMCID: PMC8806209 DOI: 10.1080/21655979.2021.1918537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most common malignant endocrine tumors which resist to majority treatment. Thus, there is impelling need to figure out the mechanism of progress of ATC. In this study, we explored the function and mechanism of lncRNA actin filamentin-1 antisense RNA (AFAP-AS1) which provided a new biomarker for ATC. Viabilities and apoptosis were tested by CCK-8, colony formation and flow cytometry. The interactions between miR-155-5p and AFAP-AS1 or ETS1 was detected by luciferase reporter assays. ETS proto-oncogene1/mitogen-activated protein kinase1 (ETS1/ERK) pathway was assessed by Western blot. Xenograft models were built to confirm the function of AFAP-AS1 in vivo. Firstly, we showed that relative RNA expression of AFAP-AS1 in ATC cells was higher than in immortalized thyroid cells. Next, AFAP-AS1 was verified as an oncogene in ATC since knock-down of AFAP-AS1 inhibited cell proliferation and accelerated apoptosis. In addition, miR-155-5p was negatively regulated by AFAP-AS1. Moreover, AFAP-AS1 regulated ETS1/ERK pathway by sponging miR-155-5p. Finally, we confirmed knock-down of AFAP-AS1 significantly suppressed tumor proliferation in vivo. Our research proved that AFAP-AS1 could facilitate progression of thyroid cancer sponging miR-155-5p through ETS1/ERK pathway.
Collapse
Affiliation(s)
- MingLiang Ning
- The Third Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shaojie Qin
- The Third Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jia Tian
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuchen Wang
- The Third Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qingyuan Liu
- The Third Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Xiong F, Zhu K, Deng S, Huang H, Yang L, Gong Z, Shi L, He Y, Tang Y, Liao Q, Yu J, Li X, Li Y, Li G, Zeng Z, Xiong W, Zhang S, Guo C. AFAP1-AS1: a rising star among oncogenic long non-coding RNAs. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1602-1611. [PMID: 33999309 DOI: 10.1007/s11427-020-1874-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become a hotspot in biomedical research. This interest reflects their extensive involvement in the regulation of the expression of other genes, and their influence on the occurrence and development of a variety of human diseases. Actin filament associated protein 1-Antisense RNA 1(AFAP1-AS1) is a recently discovered oncogenic lncRNA. It is highly expressed in a variety of solid tumors, and regulates the expression of downstream genes and signaling pathways through adsorption and competing microRNAs, or by the direct binding to other proteins. Ultimately, AFAP1-AS1 promotes proliferation, chemotherapy resistance, and resistance to apoptosis, maintains stemness, and enhances invasion and migration of tumor cells. This paper summarizes the research concerning AFAP1-AS1 in malignant tumors, including the clinical application prospects of AFAP1-AS1 as a potential molecular marker and therapeutic target of malignant tumors. We also discuss the limitations in the knowledge of AFAP1-AS1 and directions of further research. AFAP1-AS1 is expected to provide an example for studies of other lncRNA molecules.
Collapse
Affiliation(s)
- Fang Xiong
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Kunjie Zhu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Su Deng
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Hongbin Huang
- Science and Technology on Information System Engineering Laboratory, National University of Defense Technology, Changsha, 410000, China
| | - Liting Yang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital Central South University, Changsha, 410011, China
| | - Yi He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jianjun Yu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Periodontology, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education of China, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Chen Z, Wang X, Hou X, Ding F, Yi K, Zhang P, You T. Knockdown of Long Non-Coding RNA AFAP1-AS1 Promoted Viability and Suppressed Death of Cardiomyocytes in Response to I/R In Vitro and In Vivo. J Cardiovasc Transl Res 2020; 13:996-1007. [PMID: 32406007 DOI: 10.1007/s12265-020-10016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNA (lncRNA) plays a pivotal role in the development of myocardial infarction (MI). The aim of this study was to investigate the effects of lncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) on cell cycle, proliferation, and apoptosis. RT-qPCR was used to detect the expression levels of AFAP1-AS1, miR-512-3p, and reticulon 3 (RTN3) in rat model of I/R. The simulated MI environment was constructed. MTT assay and flow cytometry were used to detect changes in cardiomyocyte viability and cell cycle/apoptosis after MI by AFAP1-AS1 silencing or RTN3 silencing. The targeting relationship of miR-512-3p and AFAP1-AS1 and RTN3 in cardiomyocytes was verified by dual luciferase reporter assay. The expression levels of AFAP1-AS1 and RTN3 were significantly upregulated in a rat model of LAD ligation (or MI) ligation, while the expression level of miR-512-3p was significantly reduced. Overexpressed AFAP1-AS1 and RTN3 promoted cardiomyocyte apoptosis and inhibited cardiomyocyte proliferation. MiR-512-3p was a direct target of AFAP1-AS1, and RTN3 was a direct target of miR-512-3p. AFAP1-AS1 promoted the progression of MI by targeting miR-512-3p. AFAP1-AS1 promoted the progression of MI by modulating the miR-512-3p/RTN3 axis. AFAP1-AS1 may be a potential therapy target for MI. Graphical Abstract The role of AFAP1-AS1 in regulating MI injury in vivo. (A) Effect of AFAP1-AS1 in MI injury in vivo. (B) The mRNA level of RTN3 in MI injury in vivo. (C) The protein level of RTN3 in MI injury in vivo. (D) Effect of miR-512-3p in MI model group. (E) TUNEL assay. *P < 0.05, **P < 0.01 vs the sham group; #P < 0.05, ##P < 0.01 vs the MI group.
Collapse
Affiliation(s)
- Zhigong Chen
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Xinkuan Wang
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Xiaodong Hou
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Fan Ding
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Kang Yi
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Peng Zhang
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Tao You
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China.
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Li P, Zhang S, Mo Y, Zhang L, Wang Y, Xiong F, Zhang S, Liu J, Xu Y, Zeng Z, Xiong W, Li Y, Gong Z. Long non-coding RNA expression profiles and related regulatory networks in areca nut chewing-induced tongue squamous cell carcinoma. Oncol Lett 2020; 20:302. [PMID: 33093911 DOI: 10.3892/ol.2020.12165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Areca nut chewing is an important risk factor for developing tongue squamous cell carcinoma (TSCC), although the underlying molecular mechanism is unknown. To determine the potential molecular mechanisms of areca nut chewing-induced TSCC, the present study performed whole-genome detection with five pairs of TSCC and adjacent normal tissues, via mRNA- and long non-coding (lnc)RNA-gene chip analysis. A total of 3,860 differentially expressed genes were identified, including 2,193 lncRNAs and 1,667 mRNAs. Gene set-enrichment analysis revealed that the differentially expressed mRNAs were enriched in chromosome 22q13, 8p21 and 3p21 regions, and were regulated by nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRFs). The results of ingenuity pathway analysis revealed that these mRNAs were significantly enriched for inflammatory immune-related signaling pathways. A co-expression network of mRNAs and lncRNAs was constructed by performing weighted gene co-expression network analysis. The present study focused on NF-κB-, IRF- and Th cell-signaling pathway-related lncRNAs and the corresponding mRNA-lncRNA regulatory networks. To the best of our knowledge, the present study was the first to investigate differential mRNA- and lncRNA-expression profiles in TSCCs induced by areca nut chewing. Inflammation-related mRNA-lncRNA regulatory networks driven by IRFs and NF-κB were identified, as well as the Th cell-related signaling pathways that play important carcinogenic roles in areca nut chewing-induced TSCC. These differentially expressed mRNAs and lncRNAs, and their regulatory networks provide insight for further analysis on the molecular mechanism of areca nut chewing-induced TSCC, candidate molecular markers and targets for further clinical intervention.
Collapse
Affiliation(s)
- Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shanshan Zhang
- Department of Stomatology, The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lishen Zhang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Fang Xiong
- Department of Stomatology, The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuai Zhang
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiang Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuming Xu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Tang T, Yang L, Cao Y, Wang M, Zhang S, Gong Z, Xiong F, He Y, Zhou Y, Liao Q, Xiang B, Zhou M, Guo C, Li X, Li Y, Xiong W, Li G, Zeng Z. LncRNA AATBC regulates Pinin to promote metastasis in nasopharyngeal carcinoma. Mol Oncol 2020; 14:2251-2270. [PMID: 32364663 PMCID: PMC7463349 DOI: 10.1002/1878-0261.12703] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNA (lncRNA) have emerged as crucial regulators for a myriad of biological processes, and perturbations in their cellular expression levels have often been associated with cancer pathogenesis. In this study, we identified AATBC (apoptosis-associated transcript in bladder cancer, LOC284837) as a novel lncRNA. AATBC was found to be highly expressed in nasopharyngeal carcinoma (NPC), and increased AATBC expression was associated with poor survival in patients with NPC. Furthermore, AATBC promoted migration and invasion of NPC cells in vitro, as well as metastasis in vivo. AATBC upregulated the expression of the desmosome-associated protein pinin (PNN) through miR-1237-3p sponging. In turn, PNN interacted with the epithelial-mesenchymal transition (EMT) activator ZEB1 and upregulated ZEB1 expression to promote EMT in NPC cells. Collectively, our results indicate that AATBC promotes NPC progression through the miR-1237-3p-PNN-ZEB1 axis. Our findings indicate AATBC as a potential prognostic biomarker or therapeutic target in NPC.
Collapse
Affiliation(s)
- Ting Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Liting Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yujian Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Maonan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Shanshan Zhang
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zhaojian Gong
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fang Xiong
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yi He
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Yong Li
- Department of MedicineComprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation OncologyHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research InstituteCentral South UniversityChangshaChina
| |
Collapse
|
12
|
Wu X, Xia T, Cao M, Zhang P, Shi G, Chen L, Zhang J, Yin J, Wu P, Cai B, Lu Z, Miao Y, Jiang K. LncRNA BANCR Promotes Pancreatic Cancer Tumorigenesis via Modulating MiR-195-5p/Wnt/β-Catenin Signaling Pathway. Technol Cancer Res Treat 2020; 18:1533033819887962. [PMID: 31769353 PMCID: PMC6880033 DOI: 10.1177/1533033819887962] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Long noncoding BRAF-activated noncoding RNA has been reported to be tightly associated
with tumorigenesis and development in various types of cancers. However, the expression,
biological function, and modulatory mechanism of BRAF-activated noncoding RNA in
pancreatic cancer remained unclear. In the present work, we explored the carcinogenic
activity and underlying mechanism of BRAF-activated noncoding RNA on pancreatic cancer
in vitro. We identified that BRAF-activated noncoding RNA was
upregulated in pancreatic cancer tissues and cell lines, and BRAF-activated noncoding RNA
was related to tumor metastasis and stage. BRAF-activated noncoding RNA reinforces
proliferation, invasion, and migration in PANC-1 and SW1990 cells. Moreover, miR-195-5p
was downregulated in both PC tissues and cell lines. Our results based on luciferase
reporter, RIP-Ago2 and qRT-PCR assays, showed that miR-195-5p was a direct target of
BRAF-activated noncoding RNA. Furthermore, miR-195-5p inhibitor abrogated the effects of
short-interfering BRAF-activated noncoding RNA on PANC-1 and SW1990 cell growth and
invasion in vitro. We further identified that BRAF-activated noncoding
RNA played a vital role in activating the Wnt/β-catenin pathway by sponging miR-195-5p.
Collectively, our study showed that BRAF-activated noncoding RNA promotes pancreatic
cancer tumorigenesis through miR-195-5p/Wnt/β-catenin axis may serve as a potential target
for diagnostics and therapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- Xinquan Wu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Hepato-Pancreato-Biliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Tianfang Xia
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Meng Cao
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengbo Zhang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pancreatic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guodong Shi
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Chen
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Yin
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengfei Wu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Baobao Cai
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zipeng Lu
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Miao
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuirong Jiang
- Center of Pancreas, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China.,Pancreas Institute, The First Affiliated Hospital to Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Fan C, Tang Y, Wang J, Wang Y, Xiong F, Zhang S, Li X, Xiang B, Wu X, Guo C, Ma J, Zhou M, Li X, Xiong W, Li Y, Li G, Zeng Z. Long non-coding RNA LOC284454 promotes migration and invasion of nasopharyngeal carcinoma via modulating the Rho/Rac signaling pathway. Carcinogenesis 2019; 40:380-391. [PMID: 30380023 DOI: 10.1093/carcin/bgy143] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique malignant cancer with high metastasis. Because the early symptoms of NPC patients are not obvious, most patients have distant metastases when diagnosed, which makes treatment difficult. Long non-coding RNAs (lncRNAs) are emerging as important regulators in human carcinogenesis. LncRNAs have been increasingly identified but remain largely unknown in NPC. Therefore, we performed gene expression profiling to screen for altered expression of lncRNAs in NPC tissues and adjacent samples. One lncRNA, LOC284454, was upregulated and associated with poor prognosis in NPC. In in vivo and in vitro assays, LOC284454 promoted the migration and invasion capacity of NPC cells. Mass spectrometry combined with bioinformatics suggested that LOC284454 affected the cytoskeletal and adhesion-related Rho/Rac signaling pathways. LOC284454 may be a potential novel treatment target and is expected to be a new diagnostic and prognostic marker in patients with NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yanyan Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Yian Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine
| |
Collapse
|
14
|
Fan CM, Wang JP, Tang YY, Zhao J, He SY, Xiong F, Guo C, Xiang B, Zhou M, Li XL, Li Y, Li GY, Xiong W, Zeng ZY. circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci 2019; 110:2180-2188. [PMID: 31046163 PMCID: PMC6609809 DOI: 10.1111/cas.14034] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Novel diagnostic and prognostic biomarkers of cancers are needed to improve precision medicine. Circular RNAs act as important regulators in cancers at the transcriptional and posttranscriptional levels. The circular RNA circMAN1A2 is highly expressed in nasopharyngeal carcinoma according to our previous RNA sequencing data; however, the expression and functions of circMAN1A2 in cancers are still obscure. Therefore, in this study, we evaluated the expression of circMAN1A2 in the sera of patients with nasopharyngeal carcinoma and other malignant tumors and analyzed its correlations with clinical features and diagnostic values. The expression levels of circMAN1A2 were detected by quantitative real-time PCR, and the correlations of clinical features with circMAN1A2 expression were analyzed by χ2 tests. Receiver operating characteristic curves were used to evaluate the clinical applications of circMAN1A2. The results showed that circMAN1A2 was upregulated in nasopharyngeal carcinoma, oral cancer, thyroid cancer, ovarian cancer, and lung cancer, with areas under the curves of 0.911, 0.779, 0.734, 0.694, and 0.645, respectively, indicating the good diagnostic value of circMAN1A2. Overall, our findings suggested that circMAN1A2 could be a serum biomarker for malignant tumors, providing important insights into diagnostic approaches for malignant tumors. Further studies are needed to elucidate the mechanisms of circMAN1A2 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Chun-Mei Fan
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Peng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yan-Yan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jin Zhao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shu-Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gui-Yuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Mo Y, Wang Y, Xiong F, Ge X, Li Z, Li X, Li Y, Li X, Xiong W, Li G, Zeng Z, Guo C. Proteomic Analysis of the Molecular Mechanism of Lovastatin Inhibiting the Growth of Nasopharyngeal Carcinoma Cells. J Cancer 2019; 10:2342-2349. [PMID: 31258737 PMCID: PMC6584415 DOI: 10.7150/jca.30454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic abnormalities are one of the essential features of tumors. Increasingly more studies have shown that lovastatin, a lipid-reducing drug, has visible inhibitory effects on tumors, but it has not been reported in nasopharyngeal carcinoma. In this paper, we explored the effects of lovastatin on the growth of nasopharyngeal carcinoma cells and its possible molecular mechanisms. After treating nasopharyngeal carcinoma cells with different concentrations of lovastatin, we found that lovastatin can inhibit the growth of nasopharyngeal carcinoma in a time- and dose-dependent manner. To explore the molecular mechanism of how lovastatin inhibits the growth of nasopharyngeal carcinoma, we examined the proteome of nasopharyngeal carcinoma cells treated at different time points using an LC/MS whole-proteomic strategy. The molecular network of differentially expressed proteins was constructed using IPA software. It was found that lovastatin inhibited the growth of nasopharyngeal carcinoma cells mainly by affecting the EIF2 and the mTOR pathways, which regulate cell metabolism and apoptosis. The results of this study provide a robust basis for further research on the molecular mechanism of lovastatin's inhibition of nasopharyngeal carcinoma cells and provide a reference for the clinical use of lovastatin in the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiaolu Ge
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, Gong Z, Zhang W, Zhou M, Xiang B, Wu X, Li X, Li Y, Li G, Xiong W, Zeng Z, Xiong F, Guo C. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer 2019; 10:2185-2193. [PMID: 31258722 PMCID: PMC6584404 DOI: 10.7150/jca.30222] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is a complex fibrous reticular structure composed of microfilaments, microtubules and intermediate filaments. These components coordinate morphology support and intracellular transport that is involved in a variety of cell activities, such as cell proliferation, migration and differentiation. In addition, the cytoskeleton also plays an important role in viral infection. During an infection by a Herpesvirus, the virus utilizes microfilaments to enter cells and travel to the nucleus by microtubules; the viral DNA replicates with the help of host microfilaments; and the virus particles start assembling with a capsid in the cytoplasm before egress. The cytoskeleton changes in cells infected with Herpesvirus are made to either counteract or obey the virus, thereby promote cell transforming into cancerous ones. This article aims to clarify the interaction between the virus and cytoskeleton components in the process of Herpesvirus infection and the molecular motor, cytoskeleton-associated proteins and drugs that play an important role in the process of a Herpesvirus infection and carcinogenesis process.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Bo H, Cao K, Tang R, Zhang H, Gong Z, Liu Z, Liu J, Li J, Fan L. A network-based approach to identify DNA methylation and its involved molecular pathways in testicular germ cell tumors. J Cancer 2019; 10:893-902. [PMID: 30854095 PMCID: PMC6400810 DOI: 10.7150/jca.27491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Testicular germ cell tumors (TGCT) is the most common testicular malignancy threaten young male reproductive health. This study aimed to identify aberrantly methylated-differentially expressed genes and pathways in TGCT by comprehensive bioinformatics analysis. Methods: Data of gene expression microarrays (GSE3218, GSE18155) and gene methylation microarrays (GSE72444) were collected from GEO database. Integrated analysis acquired aberrantly methylated-genes. Functional and pathway enrichment analysis were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and App Mcode was used for module analysis. GEPIA platform and DiseaseMeth database were used for confirming the expression and methylation levels of hub genes. Finally, Human Protein Atlas database was performed to evaluate the prognostic significance. Results: Totally 604 hypomethylation-high expression and 147 hypermethylation-low genes were identified. The high expressed genes were enriched in biological processes of cell proliferation and migration. The top 8 hub genes of PPI network were GAPDH, VEGFA, PTPRC, RIPK4, MMP9, CSF1R, KRAS and FN1. After validation in GEPIA platform, all hub genes were elevated in TGCT tissues. Only MMP9, CSF1R and PTPRC showed hypomethylation-high expression status, which predicted the poor outcome of TGCT patients. Conclusion: Our study indicated possible aberrantly methylated-differentially expressed genes and pathways in TGCT by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of TGCT.
Collapse
Affiliation(s)
- Hao Bo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruiling Tang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Han Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Li
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
18
|
Wei F, Jing YZ, He Y, Tang YY, Yang LT, Wu YF, Tang L, Shi L, Gong ZJ, Guo C, Zhou M, Xiang B, Li XL, Li Y, Li GY, Xiong W, Zeng ZY, Xiong F. Cloning and characterization of the putative AFAP1-AS1 promoter region. J Cancer 2019; 10:1145-1153. [PMID: 30854123 PMCID: PMC6400686 DOI: 10.7150/jca.29049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Actin filament-associated protein 1-antisense RNA1 (AFAP1-AS1), a cancer-related long non-coding RNA, has been found to be upregulated in multiple types of cancers. AFAP1-AS1 is important for the initiation, progression and poor prognosis of many cancers, including nasopharyngeal carcinoma (NPC). However, the mechanism underlying the regulation of AFAP1-AS1 expression is not well-understood. In our study, the potential promoter region of AFAP1-AS1 was predicted by comprehensive bioinformatics analysis. Moreover, promoter deletion analysis identified the sequence between positions -359 and -28 bp as the minimal promoter region of AFAP1-AS1. The ChIP assay results indicate that the AFAP1-AS1 promoter is responsive to the transcription factor c-Myc, which can promote high AFAP1-AS1 expression. This study is the first to clone and characterize the AFAP1-AS1 promoter region. Our findings will help to better understand the underlying mechanism of high AFAP1-AS1 expression in tumorigenesis and to develop new strategies for therapeutic high expression of AFAP1-AS1 in NPC.
Collapse
Affiliation(s)
- Fang Wei
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi-Zhou Jing
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan-Yan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li-Ting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ying-Fen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhao-Jian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Ling Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gui-Yuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao-Yang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
20
|
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18:10. [PMID: 30646912 PMCID: PMC6332843 DOI: 10.1186/s12943-018-0928-4] [Citation(s) in RCA: 951] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/26/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune escape, including immunosuppression, which has become a research hotspot in recent years. The programmed death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor. This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the therapeutic efficiency of PD-L1/PD-1 blocking.
Collapse
Affiliation(s)
- Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiangying Deng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
21
|
Jiang F, Ling X. The Advancement of Long Non-Coding RNAs in Cholangiocarcinoma Development. J Cancer 2019; 10:2407-2414. [PMID: 31258745 PMCID: PMC6584350 DOI: 10.7150/jca.32411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignancy with increasing incidence in recent years. CCA patients are usually diagnosed at advanced stage due to lack of apparent symptoms and specifically diagnostic markers. Nowadays, surgical removal is the only effective method for CCA whereas overall 5-year-survival rate keeps around 10%. Long-noncoding RNA (lncRNA), a subtype of noncoding RNA, is widely studied to be abnormally expressed in multiple cancers including CCA. LncRNA can promote proliferation, migration, invasion and inhibit apoptosis of CCA. Moreover, lncRNA is negatively correlated with the prognosis of CCA. LncRNA may contribute to the development of CCA via modulating gene transcription, sponging microRNA, regulating CCA-related signaling pathways or protein expression. LncRNA is thought to be potential diagnostic markers and therapeutic targets for CCA.
Collapse
|
22
|
Chen J, Yang X, Gong D, Cui Y, Hu J, Li H, Liu P, Li C, Cheng X, Liu L, Chen H, Zu X. Long noncoding RNA X-inactive specific transcript as a prognostic factor in cancer patients: A meta-analysis based on retrospective studies. Medicine (Baltimore) 2019; 98:e14095. [PMID: 30653128 PMCID: PMC6370154 DOI: 10.1097/md.0000000000014095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/29/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS Emerging evidence showed the long noncoding RNA X-inactive specific transcript (lncRNA XIST) may play a crucial role in various cancers. However, its prognostic value in cancer patients remains controversial. Therefore, we performed an in-depth meta-analysis to investigate the potential clinical value of lncRNA XIST as a prognostic marker for cancer patients. METHODS A comprehensive literature search was performed from PubMed, Embase and the Cochrane Central Search Library by January 2018. Pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence interval (95% Cl) were calculated to evaluate the prognosis as well as clinicopathological parameters of XIST, respectively. RESULTS A total of 18 retrospective studies with 1351 cancer patients were included. Current meta-analysis revealed that elevated lncRNA XIST expression was associated with poor overall survival (OS) (HR = 2.14, 95% CI = 1.26-3.64; P = .005) and disease free survival (DFS) (HR = 4.52, 95% CI = 1.42-14.37; P = .011). The clinicopathological parameters analysis demonstrated that increased XIST expression was significantly associated with tumor size (OR = 2.93, 95% CI = 2.24-3.84; P < .001), clinical stage (OR = 2.73, 95% CI = 1.62-4.58; P < .001) and lymph node metastasis (OR = 2.44, 95% CI = 1.74-3.42; P < .001). In addition, subgroup analysis based on cancer type revealed that lncRNA XIST expression correlated with distant metastasis in digestive cancer (OR = 2.90, 95% CI = 1.80-4.68; P < .001). CONCLUSION The current meta-analysis results indicated lncRNA XIST expression level could serve as a prognostic predictor and biomarker in multiple cancers.
Collapse
Affiliation(s)
- Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Chao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Xu Cheng
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha
| |
Collapse
|
23
|
Bo H, Fan L, Li J, Liu Z, Zhang S, Shi L, Guo C, Li X, Liao Q, Zhang W, Zhou M, Xiang B, Li X, Li G, Xiong W, Zeng Z, Xiong F, Gong Z. High Expression of lncRNA AFAP1-AS1 Promotes the Progression of Colon Cancer and Predicts Poor Prognosis. J Cancer 2018; 9:4677-4683. [PMID: 30588252 PMCID: PMC6299385 DOI: 10.7150/jca.26461] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are dysregulated in various cancers. However, the clinical relevance and functional roles of AFAP1-AS1 in colon cancer (CC) have not been clarified. We analyzed the lncRNA expression patterns in Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA) RNA-seq datasets, and found that the expression level of AFAP1-AS1 was significantly elevated in CC tissues. High levels of AFAP1-AS1 were associated with poor disease-free survival and overall survival in CC patients. In vitro experiments demonstrated that AFAP1-AS1 knockdown significantly inhibited the cell invasive and migration capability in CC cell line HT-29. AFAP1-AS1 knockdown also increased the expression of E-cadherin and ZO-1 while inhibited the expression of Vimentin, MMP9, ZEB1 and β-catenin, suggesting that AFAP1-AS1 is involved in the epithelial-mesenchymal transition (EMT) process of CC. Further studies confirmed that AFAP1-AS1 knockdown also affected the actin-cytokeratin signaling pathway. Thus, AFAP1-AS1 might be a potential novel diagnostic marker and therapeutic target for CC.
Collapse
Affiliation(s)
- Hao Bo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jingjing Li
- Department of Plastic Surgery, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhizhong Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Department of Plastic Surgery, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu B, Wang L, Song YJ, Yuan S, Ren CP. The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs and miRNAs. Am J Cancer Res 2018; 8:2185-2209. [PMID: 30555738 PMCID: PMC6291648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Metastasis of nasopharyngeal carcinoma (NPC) remains a main cause of death for NPC patients even though great advances have been made in therapeutic approaches. An in-depth study into the molecular mechanisms of NPC metastasis will help us combat NPC. Epstein-Barr virus (EBV) infection is an evident feature of nonkeratinizing NPC and is strongly associated with tumor metastasis. Recently, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have become a hot topic of research due to their epigenetic regulatory roles in NPC metastasis. The EBV products, lncRNAs and miRNAs can target each other and share several common signaling pathways, which form an interconnected, complex molecular regulatory network. In this review, we discuss the features of this regulatory network and summarize the molecular mechanisms of NPC metastasis, focusing on EBV, lncRNAs and miRNAs with updated knowledge.
Collapse
Affiliation(s)
- Chen-Xuan Zhao
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Zheng-Qing Ba
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Hong-Juan Xu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei-Dong Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Yu-Jia Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Shuai Yuan
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Cai-Ping Ren
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| |
Collapse
|
25
|
Lian Y, Xiong F, Yang L, Bo H, Gong Z, Wang Y, Wei F, Tang Y, Li X, Liao Q, Wang H, Zhou M, Xiang B, Wu X, Li Y, Li X, Chen X, Li G, Guo C, Zeng Z, Xiong W. Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:253. [PMID: 30326930 PMCID: PMC6191894 DOI: 10.1186/s13046-018-0918-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long noncoding RNA, is significantly highly expressed and associated with metastasis and poor prognosis in many cancers, including nasopharyngeal carcinoma (NPC). In this study, we aim to identify the role of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC metastasis. METHODS The role of AFAP1-AS1, miR-423-5p, and FOSL2 in NPC metastasis was investigated in vitro and in vivo. Bioinformatics analysis and luciferase activity assays were used to identify the interaction between AFAP1-AS1, miR-423-5p, and FOSL2. Additionally, real-time PCR and western blotting were used to assess the function of AFAP1-AS1 acting as an oncogenic lncRNA to promote NPC progression by regulating miR-423-5p and the downstream Rho/Rac pathway. RESULTS In this study, we determined that AFAP1-AS1 functions as a competing endogenous RNA in NPC to regulate the Rho/Rac pathway through miR-423-5p. These interactions can mediate the expression of RAB11B, LASP1, and FOSL2 and accelerate cell migration and invasion via the Rho/Rac signaling pathway or FOSL2. AFAP1-AS1 and FOSL2 could competitively bind with miR-423-5p to regulate several molecules, including RAB11B and LASP1 of the Rho/Rac signaling pathway. AFAP1-AS1 can also regulate the expression of LASP1, which was transcriptionally regulated by FOSL2, resulting in increased migration and invasion of NPC cells via the Rho/Rac signaling pathway. CONCLUSIONS The observations in this study identify an important role for AFAP1-AS1 as a competing endogenous RNA (ceRNA) in NPC pathogenesis and indicate that it may serve as a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Lian
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Bo
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Wu
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yong Li
- Department of Reproductive medicine, Ganzhou Hospital Affiliated to Nanchang University, NanChang, Jiangxi, China.,Department of Cancer Biology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and OCancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
26
|
The role of long non-coding RNA AFAP1-AS1 in human malignant tumors. Pathol Res Pract 2018; 214:1524-1531. [PMID: 30173945 DOI: 10.1016/j.prp.2018.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) are a type Table of endogenous RNA longer than 200 nucleotides in length, and this kind of RNAs lack or possess limited ability of coding proteins. A large number of studies have demonstrated that lncRNAs could take part in massive biological processes, such as transcriptional activation and interference, cellular differentiation, proliferation, migration, invasion and apoptosis. The abnormal expression of lncRNAs has been clarified to play extremely important roles in various diseases, especially in human cancers. LncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is a newly recognized cancer-related lncRNA deriving from the antisense strand of DNA at the AFAP1 coding gene locus. A slew of new studies suggest that AFAP1-AS1 is involved in many kinds of malignant tumors. Moreover, in recent years, the dysregulated expression of AFAP1-AS1 has been confirmed to be associated with oncogenesis and tumor progression. Evidence has increasingly shown that AFAP1-AS1 could probably serve as a novel potential molecular biomarker in tumor diagnosis and therapeutic target in tumor treatment. In this review, we sum up present stage new hottest research issues in respect of the biological functions and molecular mechanisms of AFAP1-AS1 in occurrence and progression of human tumors. MATERIALS AND METHODS In this review, we summarize the recent researches about the expression and molecular biological mechanisms of lncRNA AFAP1-AS1 in tumor development. Existing relevant studies are acquired and analyzed by searching Pubmed, BioMedNet, GEO database and Academic Search Elit systematically. RESULTS Long non-coding RNA AFAP1-AS1 is an important tumor-associated lncRNA and its aberrant expression has been found in many malignancies so far, including pancreatic ductal adenocarcinoma, cholangiocarcinoma, gallbladder cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, esophageal cancer, nasopharyngeal carcinoma, lung cancer, ovarian cancer, breast cancer, retinoblastoma, laryngeal cancer, tongue squamous cell carcinoma and thyroid cancer. In addition, the dysregulated expression of AFAP1-AS1 is related to carcinogensis, overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and tumor progression containing lymph node metastasis, distant metastasis, histological grade, tumor size and tumor stage. CONCLUSIONS A series of studies provide detailed information to understand lncRNA AFAP1-AS1 role in various human cancers. LncRNA AFAP1-AS1 is an oncogene in tumors that have been studied so far, and it may act as a useful tumor biomarker and therapeutic target.
Collapse
|
27
|
LncRNA AFAP1-AS1 is a prognostic biomarker and serves as oncogenic role in retinoblastoma. Biosci Rep 2018; 38:BSR20180384. [PMID: 29654169 PMCID: PMC6048204 DOI: 10.1042/bsr20180384] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
The actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been found to serve as an oncogenic long noncoding RNA (lncRNA) in most types of human cancer. The role of AFAP1-AS1 in retinoblastoma remains unknown. The purpose of the present study is to explore the clinical significance and biological function of AFAP1-AS1 in retinoblastoma. Levels of AFAP1-AS1 expression were measured in retinoblastoma tissues and cell lines. Loss-of-function study was performed to observe the effects of AFAP1-AS1 on retinoblastoma cell proliferation, cell cycle, migration, and invasion. In our results, AFAP1-AS1 expression was elevated in retinoblastoma tissues and cell lines, and associated with tumor size, choroidal invasion, and optic nerve invasion. Moreover, high expression of AFAP1-AS1 was an independent unfavorable prognostic factor in retinoblastoma patients. The experiment in vitro suggested down-regulation of AFAP1-AS1 inhibited retinoblastoma cell proliferation, migration and invasion, and blocked cell cycle. In conclusion, AFAP1-AS1 functions as an oncogenic lncRNA in retinoblastoma.
Collapse
|
28
|
Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 2018; 17:79. [PMID: 29626935 PMCID: PMC5889847 DOI: 10.1186/s12943-018-0827-8] [Citation(s) in RCA: 761] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are connected at the 3′ and 5′ ends by exon or intron cyclization, forming a complete ring structure. circRNA is more stable and conservative than linear RNA and abounds in various organisms. In recent years, increasing numbers of reports have found that circRNA plays a major role in the biological functions of a network of competing endogenous RNA (ceRNA). circRNAs can compete together with microRNAs (miRNAs) to influence the stability of target RNAs or their translation, thus, regulating gene expression at the transcriptional level. circRNAs are involved in biological processes such as tumor cell proliferation, apoptosis, invasion, and migration as ceRNAs. circRNAs, therefore, represent promising candidates for clinical diagnosis and treatment. Here, we review the progress in studying the role of circRNAs as ceRNAs in tumors and highlight the participation of circRNAs in signal transduction pathways to regulate cellular functions.
Collapse
|
29
|
The role of exosomal non-coding RNAs in cancer metastasis. Oncotarget 2017; 9:12487-12502. [PMID: 29552328 PMCID: PMC5844764 DOI: 10.18632/oncotarget.23552] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
An increasing number of studies has confirmed that many cells can secrete vesicles or exosomes in eukaryotes, which contain important nucleic acids, proteins and lipids and play important roles in cell communication and tumor metastasis. This paper summarizes the comprehensive function of exosomal non-coding RNAs. Although some studies have shown that exosomes mediate tumor signal transduction, the functional mechanism of the tumor metastasis remains to be elucidated. In this paper, we reviewed the role of exosomal non-coding RNAs in mediating cancer metastasis in the tumor microenvironment to provide new ideas for the study of tumor pathophysiology.
Collapse
|