1
|
Guo L, Liao Y, Zhang X, Guo R, Wang Z, Yang D. Pan-cancer analysis identified CD248 as a potential target for multiple tumor types. Front Pharmacol 2025; 16:1554632. [PMID: 40276611 PMCID: PMC12018388 DOI: 10.3389/fphar.2025.1554632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Objective Tumors remain a major cause of death worldwide due to late-stage presentation and late diagnosis. Cell therapies have revolutionized the landscape in the precision treatment of tumors. However, there are still many challenges that limit the therapeutic efficacy. Additionally, cancer treatment also entails a major financial burden throughout the entire phase, making it preferable to find a specific biomarker for the early prognosis of the tumor. Methods In this study, the role of CD248 in pan-cancer was analyzed through diverse tumor-associated databases, such as the Human Protein Atlas Database, the GEPIA2 Database, the cBioPortal Database, the TIMER Database, the STRING tool, and so on. In addition, CD248 mRNA and protein levels were assessed in a series of head and neck squamous cell carcinoma (HNSC) cell lines using qRT-PCR and Western blot. Furthermore, siCD248 was used to detect the effect of CD248 on the invasion, migration, and proliferation of HNSC cells by transwell assay, scratch wound healing assay, and EdU assay, respectively. Results CD248 expression was significantly increased and correlated with advanced stage and poor prognosis in various tumors. Genetic alterations of CD248 were also associated with a poor prognosis of patients. Single-cell sequencing revealed that CD248 was mainly expressed on fibroblasts within the stroma, and its expression was positively correlated with the infiltration of immune cells in tumors. In addition, CD248 interacted with 11 common tumor biomarkers. Experiment results indicated that CD248 mRNA and protein expression were upregulated in HNSC cell lines, and inhibition of CD248 suppresses the invasion, migration, and proliferation of HNSC cells. Conclusion High CD248 expression played a crucial role in pan-cancer, including immune cell infiltration, tumor progression and metastasis, and patient prognosis. CD248 plays a crucial role in tumor cells' functions, including invasion, migration, and proliferation. All these findings indicated that CD248 may be a novel oncoprotein and a potential therapeutic target for pan-cancer.
Collapse
Affiliation(s)
- Li Guo
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Liao
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuyang Zhang
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Rongjuan Guo
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Wang
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wu J, Zhang Q, Wu J, Yang Z, Liu X, Lou C, Wang X, Peng J, Zhang J, Shang Z, Xiao J, Wang N, Zhang R, Zhou J, Wang Y, Hu Z, Zhang R, Zhang J, Zeng Z. IL-8 from CD248-expressing cancer-associated fibroblasts generates cisplatin resistance in non-small cell lung cancer. J Cell Mol Med 2024; 28:e18185. [PMID: 38396325 PMCID: PMC10891307 DOI: 10.1111/jcmm.18185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/22/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.
Collapse
Affiliation(s)
- Jieheng Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Qiaoling Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jiangwei Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zeyang Yang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xinlei Liu
- Guizhou Prenatal Diagnsis CenterThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Chunju Lou
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xuanyin Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jiangying Peng
- Department of Pharmaceutical analysisZunyi Medical UniversityZunyiGuizhouChina
| | - Jinyuan Zhang
- School of Health ManagementGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhenling Shang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jing Xiao
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Nianxue Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ruya Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Jinyao Zhou
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou ProvinceGuizhou Medical UniversityGuiyangGuizhouChina
| | - Rui Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Jian Zhang
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Zhu Zeng
- Department of ImmunologyGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and EngineeringGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
3
|
Lu S, Gan L, Lu T, Zhang K, Zhang J, Wu X, Han D, Xu C, Liu S, Yang F, Qin W, Wen W. Endosialin in Cancer: Expression Patterns, Mechanistic Insights, and Therapeutic Approaches. Theranostics 2024; 14:379-391. [PMID: 38164138 PMCID: PMC10750205 DOI: 10.7150/thno.89495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Endosialin, also known as tumor endothelial marker 1 (TEM1) or CD248, is a single transmembrane glycoprotein with a C-type lectin-like domain. Endosialin is mainly expressed in the stroma, especially in cancer-associated fibroblasts and pericytes, in most solid tumors. Endosialin is also expressed in tumor cells of most sarcomas. Endosialin can promote tumor progression through different mechanisms, such as promoting tumor cell proliferation, adhesion and migration, stimulating tumor angiogenesis, and inducing an immunosuppressive tumor microenvironment. Thus, it is considered an ideal target for cancer treatment. Several endosialin-targeted antibodies and therapeutic strategies have been developed and have shown preliminary antitumor effects. Here, we reviewed the endosialin expression pattern in different cancer types, discussed the mechanisms by which endosialin promotes tumor progression, and summarized current therapeutic strategies targeting endosialin.
Collapse
Affiliation(s)
- Shiqi Lu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lunbiao Gan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinjie Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
4
|
Wu J, Liu X, Wu J, Lou C, Zhang Q, Chen H, Yang Z, Long S, Wang Y, Shang Z, Hu Z, Zhang R, Zhang J, Zeng Z. CXCL12 derived from CD248-expressing cancer-associated fibroblasts mediates M2-polarized macrophages to promote nonsmall cell lung cancer progression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166521. [PMID: 35985448 DOI: 10.1016/j.bbadis.2022.166521] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/23/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.
Collapse
Affiliation(s)
- Jieheng Wu
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China.
| | - Xinlei Liu
- Guizhou Prenatal Diagnsis Center, The Affiliated Hospital of Guizhou Medical University, 550001 Guiyang, China
| | - Jiangwei Wu
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Chunju Lou
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Qiaoling Zhang
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Huiping Chen
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Zeyang Yang
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Shiqi Long
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Zhenling Shang
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China
| | - Zuquan Hu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Rui Zhang
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China; Department of Immunology, The Fourth Military Medical University, Xi'an 710032, China
| | - Jian Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 550001 Guiyang, China.
| | - Zhu Zeng
- Department of Immunology, Guizhou Medical University, 550025 Guiyang, China; Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
5
|
Hu J, Chen X, Lu X, Wu L, Yin L, Zhu L, Liang H, Xu F, Zhou Q. A spike protein S2 antibody efficiently neutralizes the Omicron variant. Cell Mol Immunol 2022; 19:644-646. [PMID: 35318422 PMCID: PMC8938633 DOI: 10.1038/s41423-022-00847-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jia Hu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiang Chen
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Wu
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Xu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Cicone F, Viertl D, Denoël T, Stabin MG, Prior JO, Gnesin S. Comparison of absorbed dose extrapolation methods for mouse-to-human translation of radiolabelled macromolecules. EJNMMI Res 2022; 12:21. [PMID: 35403982 PMCID: PMC9001797 DOI: 10.1186/s13550-022-00893-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. RESULTS For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). CONCLUSIONS Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/MR Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Nuclear Medicine Unit, University Hospital “Mater Domini”, Catanzaro, Italy
- University of Lausanne, Lausanne, Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Thibaut Denoël
- Department of Experimental and Clinical Medicine, and Neuroscience Research Centre, PET/MR Unit, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | | | - John O. Prior
- University of Lausanne, Lausanne, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Silvano Gnesin
- University of Lausanne, Lausanne, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
7
|
Matthaiou EI, Guo Y, Barar J, Sandaltzopoulos R, Kandalaft LE, Li C, Coukos G, Omidi Y. TEM1-targeting PEGylated PLGA shikonin nanoformulation for immunomodulation and eradication of ovarian cancer. BIOIMPACTS : BI 2022; 12:65-86. [PMID: 35087718 PMCID: PMC8783079 DOI: 10.34172/bi.2021.23511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022]
Abstract
Introduction: Tumor endothelial marker 1 (TEM1) is expressed by tumor vascular endothelial cells in various cancers. Methods: Here, we developed poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) PEGylated with polyethylene glycol (PEG) and functionalized with anti-TEM1 antibody fragment (78Fc) and loaded them with necroptosis-inducing agent shikonin (SHK) (78Fc-PLGA-SHK NPs). Results: The nanoformulation showed a smooth spherical shape (~120 nm; the ζ potential of -30 mV) with high drug entrapment and bioconjugation efficiencies (~92% and ~90%, respectively) and a sustained-release profile in serum. Having significant toxicity in vitro (e.g., MS1 and TC1 cells), the nanoformulation dramatically increased the cytotoxicity in the TC1 murine lung carcinoma subcutaneous and intravenous/metastatic models as aggressive tumor models. The injection of the 78Fc-PLGA-SHK NPs to the MS1-xenograft mice resulted in significantly higher accumulation and effects in the TEM1-positive tumor targets, while they were excreted via urine track without retaining in the liver/spleen. In the TC1 subcutaneous model, C57/BL6 mice treated with the 78Fc-PLGA-SHK NPs revealed a significant therapeutic effect. The mice, which were tumor-free after receiving the nanoformulation, were re-challenged with the TC1 cells to investigate the immune response. These animals became tumor-free a week after the injection of TC1 cells. Conclusion: Based on these findings, we propose the 78Fc-PLGA-SHK NPs as a highly effective immunostimulating nanomedicine against the TEM1-expressing cells for targeted therapy of solid tumors including ovarian cancer.
Collapse
Affiliation(s)
- Efthymia-Iliana Matthaiou
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Yi Guo
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,University of Shanghai, Shanghai, China
| | - Jaleh Barar
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Chunsheng Li
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,Corresponding authors: Chunsheng Li, ; Yadollah Omidi,
| | - George Coukos
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,Ludwig Institute for Cancer Research, Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Yadollah Omidi
- Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
,Corresponding authors: Chunsheng Li, ; Yadollah Omidi,
| |
Collapse
|
8
|
Copper-64-Labeled 1C1m-Fc, a New Tool for TEM-1 PET Imaging and Prediction of Lutetium-177-Labeled 1C1m-Fc Therapy Efficacy and Safety. Cancers (Basel) 2021; 13:cancers13235936. [PMID: 34885044 PMCID: PMC8657097 DOI: 10.3390/cancers13235936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The prevalence of TEM-1 in the vasculature and the stroma of solid tumors and in malignant cells of sarcomas suggests that targeting TEM-1 could have therapeutic benefit. In this context, an anti-TEM-1 companion diagnostic may assist in the personalized medicine approach, whereby TEM-1 expression is exploited as a biomarker to select patients that would most benefit from a treatment directed toward the TEM-1 antigen. In our previous works, we have selected 1C1m-Fc, a fusion protein antibody, radiolabeled it with 177Lu and demonstrated that [177Lu]Lu-1C1m-Fc has interesting therapeutic performance. To define a suitable radiopharmaceutical companion for theranostic applications, 64Cu was chosen to radiolabel the fusion protein antibody. The aim of this work was thus to determine if [64Cu]Cu-1C1m-Fc can be considered for TEM-1 PET imaging and to predict the dosimetry of the [177Lu]Lu-1C1m-Fc companion therapy. Abstract 1C1m-Fc, a promising anti-TEM-1 DOTA conjugate, was labeled with 64Cu to target cancer cells for PET imaging and predicting the efficacy and safety of a previously studied [177Lu]Lu-1C1m-Fc companion therapy. DOTA-conjugated 1C1m-Fc was characterized by mass spectrometry, thin layer chromatography and immunoreactivity assessment. PET/CT and biodistribution studies were performed in human neuroblastoma xenografted mice. Absorbed doses were assessed from biodistribution results and extrapolated to 177Lu based on the [64Cu]Cu-1C1m-Fc data. The immunoreactivity was ≥ 70% after 48 h of incubation in serum, and the specificity of [64Cu]Cu-1C1m-Fc for the target was validated. High-resolution PET/CT images were obtained, with the best tumor-to-organ ratios reached at 24 or 48 h and correlated with results of the biodistribution study. Healthy organs receiving the highest doses were the liver, the kidneys and the uterus. [64Cu]Cu-1C1m-Fc could be of interest to give an indication of 177Lu dosimetry for parenchymal organs. In the uterus and the tumor, characterized by specific TEM-1 expression, the 177Lu-extrapolated absorbed doses are overestimated because of the lack of later measurement time points. Nevertheless, 1C1m-Fc radiolabeled with 64Cu for imaging would appear as an interesting radionuclide companion for therapeutic application with [177Lu]Lu-1C1m-Fc.
Collapse
|
9
|
Fierle JK, Brioschi M, de Tiani M, Wetterwald L, Atsaves V, Abram-Saliba J, Petrova TV, Coukos G, Dunn SM. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. CELL REPORTS MEDICINE 2021; 2:100362. [PMID: 34467246 PMCID: PMC8385295 DOI: 10.1016/j.xcrm.2021.100362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023]
Abstract
Tumor endothelial marker 1 (TEM1) is an emerging cancer target with a unique dual expression profile. First, TEM1 is expressed in the stroma and neo-vasculature of many human carcinomas but is largely absent from healthy adult tissues. Second, TEM1 is expressed by tumor cells of mesenchymal origin, notably sarcoma. Here, we present two fully human anti-TEM1 single-chain variable fragment (scFv) reagents, namely, 1C1m and 7G22, that recognize distinct regions of the extracellular domain and possess substantially different affinities. In contrast to other, well-described anti-TEM1 binders, these fragments confer cytolytic activity when expressed as 2nd generation chimeric antigen receptors (CARs). Moreover, both molecules selectively redirect human T cell effector functions toward TEM1+ tumor cells when incorporated into experimental soluble bispecific trivalent engagers that we term TriloBiTEs (tBs). Furthermore, systemic delivery of 1C1m-tB prevents the establishment of Ewing sarcoma tumors in a xenograft model. Our observations confirm TEM1 as a promising target for cancer immunotherapy and illustrate the prospective translational potential of certain scFv-based reagents.
Collapse
Affiliation(s)
- Julie K Fierle
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Matteo Brioschi
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Mariastella de Tiani
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Laureline Wetterwald
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Vasileios Atsaves
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Johan Abram-Saliba
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland.,Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Steven M Dunn
- LAbCore Immunoglobulin Discovery Platform, Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
10
|
Biological evaluation of new TEM1 targeting recombinant antibodies for radioimmunotherapy: In vitro, in vivo and in silico studies. Eur J Pharm Biopharm 2020; 158:233-244. [PMID: 33271301 DOI: 10.1016/j.ejpb.2020.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
The tumour endothelial marker 1 (TEM1/endosialin/CD248) is a receptor overexpressed in several human solid tumours and silenced in normal adult tissues, representing a suitable and potentially safe target for radioimmunotherapy of sarcoma. To develop new tools with improved TEM1 targeting properties, a new panel of antibody fragments was for the first time evaluated preclinically following 125I radiolabelling. The antibody fragment 1C1m-Fc, with the highest human/murine TEM1 binding affinity, was extensively characterized in vitro and in vivo in a Ewing's sarcoma human xenograft mouse model. In silico studies were also performed to elucidate the influence of a single amino acid mutation in the complementarity-determining region (CDR3) of the heavy chain, upon affinity maturation of the parental clone 1C1-Fc. From this study, 1C1m-Fc emerged as a promising candidate for the development of TEM1-targeted radioimmunoconjugates, namely to be further explored for theranostic applications with other suitable medical radionuclides.
Collapse
|
11
|
Cicone F, Denoël T, Gnesin S, Riggi N, Irving M, Jakka G, Schaefer N, Viertl D, Coukos G, Prior JO. Preclinical Evaluation and Dosimetry of [ 111In]CHX-DTPA-scFv78-Fc Targeting Endosialin/Tumor Endothelial Marker 1 (TEM1). Mol Imaging Biol 2020; 22:979-991. [PMID: 31993928 PMCID: PMC7343747 DOI: 10.1007/s11307-020-01479-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Endosialin/tumor endothelial marker-1 (TEM1) is an attractive theranostic target expressed by the microenvironment of a wide range of tumors, as well as by sarcoma and neuroblastoma cells. We report on the radiolabeling and preclinical evaluation of the scFv78-Fc, a fully human TEM1-targeting antibody fragment cross-reactive with mouse TEM1. PROCEDURES The scFv78-Fc was conjugated with the chelator p-SCN-Bn-CHX-A"-DTPA, followed by labeling with indium-111. The number of chelators per molecule was estimated by mass spectrometry. A conventional saturation assay, extrapolated to infinite antigen concentration, was used to determine the immunoreactive fraction of the radioimmunoconjugate. The radiopharmaceutical biodistribution was assessed in immunodeficient mice grafted with Ewing's sarcoma RD-ES and neuroblastoma SK-N-AS human TEM1-positive tumors. The full biodistribution studies were preceded by a dose-escalation experiment based on the simultaneous administration of the radiopharmaceutical with increasing amounts of unlabeled scFv78-Fc. Radiation dosimetry extrapolations to human adults were obtained from mouse biodistribution data according to established methodologies and additional assumptions concerning the impact of the tumor antigenic sink in the cross-species translation. RESULTS [111In]CHX-DTPA-scFv78-Fc was obtained with a radiochemical purity > 98 % after 1 h incubation at 42 °C and ultrafiltration. It showed good stability in human serum and > 70 % immunoreactive fraction. Biodistribution data acquired in tumor-bearing mice confirmed fast blood clearance and specific tumor targeting in both xenograft models. The radiopharmaceutical off-target uptake was predominantly abdominal. After a theoretical injection of [111In]CHX-DTPA-scFv78-Fc to the reference person, the organs receiving the highest absorbed dose would be the spleen (0.876 mGy/MBq), the liver (0.570 mGy/MBq) and the kidneys (0.298 mGy/MBq). The total body dose and the effective dose would be 0.058 mGy/MBq and 0.116 mSv/MBq, respectively. CONCLUSIONS [111In]CHX-DTPA-scFv78-Fc binds specifically to endosialin/TEM1 in vitro and in vivo. Dosimetry estimates are in the range of other monoclonal antibodies radiolabeled with indium-111. [111In]CHX-DTPA-scFv78-Fc could be potentially translated into clinic.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Experimental and Clinical Medicine, Unit of Nuclear Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.
| | - Thibaut Denoël
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolo Riggi
- Experimental Pathology Service, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Gopinadh Jakka
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, CH-1066, Epalinges, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
de Gooyer JM, Versleijen-Jonkers YMH, Hillebrandt-Roeffen MHS, Frielink C, Desar IME, de Wilt JHW, Flucke U, Rijpkema M. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep 2020; 10:2915. [PMID: 32076024 PMCID: PMC7031512 DOI: 10.1038/s41598-020-59735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023] Open
Abstract
Myxofibrosarcoma(MFS) is the most common soft tissue sarcoma(STS) in elderly patients. Surgical resection remains the main treatment modality but tumor borders can be difficult to delineate with conventional clinical methods. Incomplete resections are a common problem and local recurrence remains a clinical issue. A technique that has shown great potential in improving surgical treatment of solid tumors is tumor targeted imaging and image-guided surgery with near-infrared fluorescence. To facilitate this technique, it is essential to identify a biomarker that is highly and homogenously expressed on tumor cells, while being absent on healthy non-malignant tissue. The purpose of this study was to identify suitable molecular targets for tumor-targeted imaging of myxofibrosarcoma. Ten potential molecular targets for tumor targeted imaging were investigated with immunohistochemical analysis in myxofibrosarcoma tissue (n = 34). Results were quantified according to the immunoreactive score(IRS). Moderate expression rates were found for uPAR, PDGFRa and EMA/MUC1. High expression rates of VEGF and TEM1 were seen. Strong expression was most common for TEM1 (88.2%). These results confirms that TEM1 is a suitable target for tumor-targeted imaging of myxofibrosarcoma. Keywords Image-guided surgery; Immunohistochemistry; Molecular imaging; Myxofibrosarcoma; Soft tissue sarcoma; Tumor endothelial marker 1(TEM1), Vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Jan Marie de Gooyer
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands. .,Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands.
| | | | | | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud university medical center, Nijmegen, the Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Cicone F, Gnesin S, Denoël T, Stora T, van der Meulen NP, Müller C, Vermeulen C, Benešová M, Köster U, Johnston K, Amato E, Auditore L, Coukos G, Stabin M, Schaefer N, Viertl D, Prior JO. Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice. EJNMMI Res 2019; 9:53. [PMID: 31187358 PMCID: PMC6560118 DOI: 10.1186/s13550-019-0524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter 152Tb [(T1/2 = 17.5 h, Eβ+mean = 1140 keV (20.3%)]. Image-based absorbed dose estimates were compared with those obtained from the extrapolation to 152Tb of a classical biodistribution experiment using the same antibody fragment labeled with 111In. 152Tb was produced by proton-induced spallation in a tantalum target, followed by mass separation and cation exchange chromatography. The endosialin-targeting scFv78-Fc fusion protein was conjugated with the chelator p-SCN-Bn-CHX-A”-DTPA, followed by labeling with either 152Tb or 111In. Micro-PET images of four immunodeficient female mice bearing RD-ES tumor xenografts were acquired 4, 24, and 48 h after the i.v. injection of 152Tb-CHX-DTPA-scFv78-Fc. After count/activity camera calibration, time-integrated activity coefficients (TIACs) were obtained for the following compartments: heart, lungs, liver, kidneys, intestines, tumor, and whole body, manually segmented on CT. For comparison, radiation dose estimates of 152Tb-CHX-DTPA-scFv78-Fc were extrapolated from mice dissected 4, 24, 48, and 96 h after the injection of 111In-CHX-DTPA-scFv78-Fc (3–5 mice per group). Imaging-derived and biodistribution-derived organ TIACs were used as input in the 25 g mouse model of OLINDA/EXM® 2.0, after appropriate mass rescaling. Tumor absorbed doses were obtained using the OLINDA2 sphere model. Finally, the relative percent difference (RD%) between absorbed doses obtained from imaging and biodistribution were calculated. Results RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, − 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively). Conclusions MicroPET-based dosimetry of 152Tb is feasible, and the comparison with organ harvesting resulted in acceptable dose discrepancies for body districts that can be segmented on CT. These encouraging results warrant additional validation using radiolabeled biomolecules with a different biodistribution pattern.
Collapse
Affiliation(s)
- Francesco Cicone
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland.
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, CH, Switzerland
| | - Thibaut Denoël
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | | | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland.,Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Christiaan Vermeulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute (PSI), Villigen, CH, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, FR, France
| | | | - Ernesto Amato
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, IT, Italy
| | - Lucrezia Auditore
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, IT, Italy
| | - George Coukos
- Department of Oncology and Ludwig Center for Cancer Research, Lausanne, CH, Switzerland
| | | | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, CH, Switzerland
| |
Collapse
|
14
|
Guo Y, Hu J, Wang Y, Peng X, Min J, Wang J, Matthaiou E, Cheng Y, Sun K, Tong X, Fan Y, Zhang PJ, Kandalaft LE, Irving M, Coukos G, Li C. Tumour endothelial marker 1/endosialin-mediated targeting of human sarcoma. Eur J Cancer 2018; 90:111-121. [PMID: 29304474 DOI: 10.1016/j.ejca.2017.10.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tumour endothelial marker 1 (TEM1/endosialin/CD248) is a tumour-restricted cell-surface protein expressed by human sarcomas. We previously developed a high-affinity human single-chain variable fragment (scFv)-Fc fusion protein (78Fc) against TEM1 and demonstrated its specific binding to human and mouse TEM1. PATIENT AND METHODS Clinical sarcoma specimens were collected between 2000 and 2015 at the Hospital of the University of Pennsylvania, as approved by the institutional review board and processed by standard formalin-fixed paraffin embedded techniques. We analysed TEM1 expression in 19 human sarcoma subtypes (n = 203 specimens) and eight human sarcoma-cell lines. Near-infrared (NIR) imaging of tumour-bearing mice was used to validate 78Fc binding to TEM1+ sarcoma in vivo. Finally, we tested an immunotoxin conjugate of anti-TEM1 78Fc with saporin (78Fc-Sap) for its therapeutic efficacy against human sarcoma in vitro and in vivo. RESULTS TEM1 expression was identified by immunohistochemistry in 96% of human sarcomas, of which 81% expressed TEM1 both on tumour cells and the tumour vasculature. NIR imaging revealed specific in vivo targeting of labelled 78Fc to TEM1+ sarcoma xenografts. Importantly, 78Fc-Sap was effective in killing in vitro TEM1+ sarcoma cells and eliminated human sarcoma xenografts without apparent toxicity in vivo. CONCLUSION TEM1 is an important therapeutic target for human sarcoma, and the high-affinity TEM1-specific scFv fusion protein 78Fc is suitable for further clinical development for therapeutic applications in sarcoma.
Collapse
Affiliation(s)
- Y Guo
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - J Hu
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Y Wang
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - X Peng
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - J Min
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - J Wang
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - E Matthaiou
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Y Cheng
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - K Sun
- Department of Pathology, People's Hospital, Peking University, PR China; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - X Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University, PR China
| | - Y Fan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - P J Zhang
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - L E Kandalaft
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University of Lausanne, 1007-CH, Switzerland
| | - M Irving
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University of Lausanne, 1007-CH, Switzerland
| | - G Coukos
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University of Lausanne, 1007-CH, Switzerland.
| | - C Li
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
15
|
Mach JP. Recombinant Monoclonal Antibodies, from Tumor Targeting to Cancer Immunotherapy: A Critical Overview. Mol Biol 2017. [DOI: 10.1134/s0026893317060115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|