1
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
2
|
Le Saos-Patrinos C, Loizon S, Zouine A, Turpin D, Dilhuydy MS, Blanco P, Sisirak V, Forcade E, Duluc D. Elevated levels of circulatory follicular T helper cells in chronic lymphocytic leukemia contribute to B cell expansion. J Leukoc Biol 2023; 113:305-314. [PMID: 36807447 DOI: 10.1093/jleuko/qiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an expansion of mature B cells in the bone marrow, peripheral lymphoid organs, and blood. CD4 T helper (Th) lymphocytes significantly contribute to the physiopathology of CLL, but the subset(s) of Th cell involved in CLL pathogenesis is (are) still under debate. In this study, we performed flow cytometry analysis of the circulatory T cells of untreated CLL patients and observed an increase in follicular helper T cells (Tfh), which is a subset of T cells specialized in B cell help. Elevated numbers of Tfh cells correlated with disease severity as measured by the Binet staging system. Tfh from CLL patients were activated and skewed toward a Th1 profile as evidenced by their PD-1+IL-21+IFNγ+ phenotype and their CXCR3+CCR6- chemokine receptor profile. Tfh efficiently enhanced B-CLL survival and proliferation through IL-21 but independently of IFNγ. Finally, we observed an inverse correlation between the Tfh1 and IgA and IgG serum levels in patients, suggesting a role for this Tfh subset in the immune dysfunction associated with CLL. Altogether, our data highlight an impairment in circulatory Tfh subsets in CLL patients and their critical role in CLL physiopathology.
Collapse
Affiliation(s)
| | - Séverine Loizon
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Atika Zouine
- TBM Core, UB Facsility, CNRS UMS 3427, Inserm US 005, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Delphine Turpin
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Marie-Sarah Dilhuydy
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'immunologie et immunogénétique, Centre Hospitalier Universitaire de Bordeaux, Place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Vanja Sisirak
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| | - Edouard Forcade
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France.,Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut Lévêque, Av de Magellan, 33600 Pessac, Bordeaux, France
| | - Dorothée Duluc
- Immunoconcept, CNRS UMR 5164, Université de Bordeaux, 146 rue Leo Saignat, 33076 Bordeaux, France
| |
Collapse
|
3
|
Avsec D, Škrlj Miklavčič M, Burnik T, Kandušer M, Bizjak M, Podgornik H, Mlinarič-Raščan I. Inhibition of p38 MAPK or immunoproteasome overcomes resistance of chronic lymphocytic leukemia cells to Bcl-2 antagonist venetoclax. Cell Death Dis 2022; 13:860. [PMID: 36209148 PMCID: PMC9547871 DOI: 10.1038/s41419-022-05287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a hematological neoplasm of CD19-positive mature-appearing B lymphocytes. Despite the clinical success of targeted therapies in CLL, the development of resistance diminishes their therapeutic activity. This is also true for the Bcl-2 antagonist venetoclax. We investigated the molecular mechanisms that drive venetoclax resistance in CLL, with a clear focus to provide new strategies to successfully combat it. Activation of CLL cells with IFNγ, PMA/ionomycin, and sCD40L diminished the cytotoxicity of venetoclax. We demonstrated that the metabolic activity of cells treated with 1 nM venetoclax alone was 48% of untreated cells, and was higher for cells co-treated with IFNγ (110%), PMA/ionomycin (78%), and sCD40L (62%). As of molecular mechanism, we showed that PMA/ionomycin and sCD40L triggered translocation of NFκB in primary CLL cells, while IFNγ activated p38 MAPK, suppressed spontaneous and venetoclax-induced apoptosis and induced formation of the immunoproteasome. Inhibition of immunoproteasome with ONX-0914 suppressed activity of immunoproteasome and synergized with venetoclax against primary CLL cells. On the other hand, inhibition of p38 MAPK abolished cytoprotective effects of IFNγ. We demonstrated that venetoclax-resistant (MEC-1 VER) cells overexpressed p38 MAPK and p-Bcl-2 (Ser70), and underexpressed Mcl-1, Bax, and Bak. Inhibition of p38 MAPK or immunoproteasome triggered apoptosis in CLL cells and overcame the resistance to venetoclax of MEC-1 VER cells and venetoclax-insensitive primary CLL cells. In conclusion, the p38 MAPK pathway and immunoproteasome represent novel targets to combat venetoclax resistance in CLL.
Collapse
Affiliation(s)
- Damjan Avsec
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Marja Škrlj Miklavčič
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Tilen Burnik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maša Kandušer
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Maruša Bizjak
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| | - Helena Podgornik
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia ,grid.29524.380000 0004 0571 7705University Medical Centre Ljubljana, Department of Haematology, SI-1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- grid.8954.00000 0001 0721 6013University of Ljubljana, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
5
|
Datta M, Jumaa H. Immunoglobulin Gene Sequence as an Inherited and Acquired Risk Factor for Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14133045. [PMID: 35804817 PMCID: PMC9264995 DOI: 10.3390/cancers14133045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most prevalent among adult leukemias. Over the years, several research efforts discovered a lot of intricate details about the cause of the disease, its mechanism, and the prognostic factors that help to understand the progression and outcome of the disease. Mutations in the immunoglobulin gene sequences in B cells are the most important prognostic factor for CLL. The cells having no to very less mutations show aggressive disease, while those having more mutations are either fairly indolent or non-aggressive. In this review, we discussed the current gain of knowledge about these mutations and their effects in the overall disease pathology. Abstract Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease characterized by the accumulation of CD5+ CD19+ malignant B cells. Autonomous ligand-independent B-cell signaling is a key process involved in the development of CLL pathogenesis. Together with other cytogenetic alterations, mutations in the immunoglobulin heavy chain variable (IGHV) gene act as a prognostic marker for CLL, with mutated CLL (M-CLL) being far more indolent than unmutated CLL (U-CLL). Recent studies highlight the role of a specific light chain mutation, namely, IGLV3-21R110G, in the development and prognosis of CLL. Such a mutation increases the propensity of homotypic BCR–BCR interaction, leading to cell autonomous signaling. In this article, we review the current findings on immunoglobulin gene sequence mutations as a potential risk factor for developing CLL.
Collapse
|
6
|
Gomes LC, Resende RR, Parreira RC, Ferreira CN, Reis EA, Duarte RCF, Alves LCV, Araújo SSDS, Carvalho MDG, Sabino ADP. Chronic Lymphocytic Leukemia (CLL): evaluation of AKT protein kinase and microRNA gene expression related to disease pathogenesis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Variable Distribution of DOCK-D Proteins between Cytosol and Nucleoplasm in Cell Lines, Effect of Interleukin-4 on DOCK10 in B-Cell Lymphoid Neoplasms, and Validation of a New DOCK10 Antiserum for Immunofluorescence Studies. Antibodies (Basel) 2021; 10:antib10030033. [PMID: 34449554 PMCID: PMC8395434 DOI: 10.3390/antib10030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Dedicator-of-cytokinesis (DOCK), a family of guanine-nucleotide exchange factors (GEFs), comprises four subfamilies, named from A to D. DOCK-D comprises DOCK9, DOCK10, and DOCK11. The GEF activity involves translocation from the cytoplasm to the plasma membrane (PM), as assessed by the transfection of tagged proteins. However, the cellular localization of endogenous DOCK proteins is poorly understood. In this paper, to gain a better understanding of the role of the DOCK-D proteins, we studied their distribution between cytosol and nucleoplasm in 11 cell lines. DOCK-D proteins were distributed with variable cytosolic or nuclear predominance, although the latter was common for DOCK9 and DOCK11. These results suggest that the DOCK-D proteins may perform new nuclear functions, which remain to be discovered. Furthermore, we found that DOCK10 levels are increased by interleukin-4 (IL-4) in B-cell lymphoid neoplasms other than chronic lymphocytic leukemia (CLL) such as mantle cell lymphoma and diffuse large B-cell lymphoma. We also found evidence for an induction of the cytosolic levels of DOCK10 by IL-4 in CLL. Finally, we obtained a valid DOCK10 antiserum for immunofluorescence (IF) microscopy that, as an antibody against the hemagglutinin (HA) tag, marked PM ruffles and filopodia in HeLa cells with inducible expression of HA-DOCK10.
Collapse
|
8
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
9
|
Xin R, Chen Z, Fu J, Shen F, Zhu Q, Huang F. Xanomeline Protects Cortical Cells From Oxygen-Glucose Deprivation via Inhibiting Oxidative Stress and Apoptosis. Front Physiol 2020; 11:656. [PMID: 32595528 PMCID: PMC7303960 DOI: 10.3389/fphys.2020.00656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Xanomeline, a muscarinic acetylcholine receptor agonist, is one of the first compounds that was found to be effective in the treatment of schizophrenics and attenuating behavioral disturbances of patients with Alzheimer's disease (AD). However, its role in ischemia-induced injury due to oxygen and glucose deprivation (OGD) remains unclear. Primary rat neuronal cells were exposed to OGD and treated with xanomeline. The effects of xanomeline on apoptosis, cell viability, lactate dehydrogenase (LDH) levels, and reactive oxygen species (ROS) were determined using an Annexin V Apoptosis Detection Kit, a non-radioactive cell counting kit-8 (CCK-8) assay, colorimetric LDH cytotoxicity assay kit, and a dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay, respectively, and the expressions of Sirtuin 1, haem oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), poly ADP-ribose polymerase (PARP), and hypoxia-inducible factor α (HIF-1α) as well as the level of phosphorylated kinase B (p-Akt) were determined by Western blotting. Compared with the control, xanomeline pretreatment increased the viability of isolated cortical neurons and decreased the LDH release induced by OGD. Compared with OGD-treated cells, xanomeline inhibited apoptosis, reduced ROS production, attenuated the OGD-induced HIF-1α increase and partially reversed the reduction of HO-1, Sirtuin-1, Bcl-2, PARP, and p-Akt induced by OGD. In conclusion, xanomeline treatment protects cortical neuronal cells possibly through the inhibition of apoptosis after OGD.
Collapse
Affiliation(s)
- Rujuan Xin
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Fu
- Department of Pharmacy, Ninghai First Hospital, Zhejiang, China
| | - Fuming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|