1
|
Verdugo-Sivianes EM, Espinosa-Sánchez A, Cases I, Rojas AM, Otero-Albiol D, Romero L, Blanco JR, Carnero A. MEG8 as an antagonistic pleiotropic mechanism in breast cancer. Cell Death Discov 2024; 10:509. [PMID: 39706842 DOI: 10.1038/s41420-024-02272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Cellular senescence connects aging and cancer. Cellular senescence is a common program activated by cells in response to various types of stress. During this process, cells lose their proliferative capacity and undergo distinct morphological and metabolic changes. Senescence itself constitutes a tumor suppression mechanism and plays a significant role in organismal aging by promoting chronic inflammation. Additionally, age is one of the major risk factors for developing breast cancer. Therefore, while senescence can suppress tumor development early in life, it can also lead to an aging process that drives the development of age-related pathologies, suggesting an antagonistic pleiotropic effect. In this work, we identified Rian/MEG8 as a potential biomarker connecting aging and breast cancer for the first time. We found that Rian/MEG8 expression decreases with age; however, it is high in mice that age prematurely. We also observed decreased MEG8 expression in breast tumors compared to normal tissue. Furthermore, MEG8 overexpression reduced the proliferative and stemness properties of breast cancer cells both in vitro and in vivo by activating apoptosis. MEG8 could exemplify the antagonistic pleiotropic theory, where senescence is beneficial early in life as a tumor suppression mechanism due to increased MEG8, resulting in fewer breast tumors at an early age. Conversely, this effect could be detrimental later in life due to aging and cancer, when MEG8 is reduced and loses its tumor-suppressive role.
Collapse
Affiliation(s)
- Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, 41013, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departamento de Ciencias de la Salud y Biomédicas, Facultad de Ciencias de la Salud, Universidad Loyola Andalucía, Avda. de las Universidades s/n, 41704, Dos Hermanas, Sevilla, Spain
| | - Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, 41013, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana M Rojas
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, 41013, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Lourdes Romero
- Hospital Universitario San Pedro, 26006, Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain
| | - José Ramón Blanco
- Hospital Universitario San Pedro, 26006, Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, 41013, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
2
|
Arega S, Dey S, Pani S, Dash SR, Budhwar R, Kundu CN, Ganguly N. Determining the effect of long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) on the transcriptome profile in cervical cancer cell lines. Genomics 2024; 116:110957. [PMID: 39510199 DOI: 10.1016/j.ygeno.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the role of the long non-coding RNA Maternally Expressed Gene3 (lncRNA MEG3) gene in cervical cancer, as evidenced by its downregulation in cancerous cell lines. The study demonstrates the effects of the overexpression of lncRNA MEG3 in cervical cancer cell lines, particularly in C33A and CaSki. Through comprehensive analyses, including Next-Generation Sequencing (NGS), alterations in global mRNA expression were analyzed. In C33A cells, 67 genes were upregulated, while 303 genes were downregulated. Similarly, in CaSki cells, 221 genes showed upregulation and 248 genes displayed downregulation. Gene ontology and KEGG pathway analyses were conducted to gain insight into potential mechanisms. Furthermore, the study delves into gene regulatory networks, uncovering intricate interactions among genes. The RNA sequencing data were confirmed for eight genes: PAX3, EGR2, ROR1, NRP1, OAS2, STRA6, CA9, and EDN2 by Real-time PCR. The findings illuminate the complex landscape of gene expression alterations and pathways impacted by the overexpression of lncRNA MEG3. The impact of MEG3 on the overall cervical cancer cells' mRNA profile is reported for the first time. New biomarkers for the prognosis of cervical cancer are also reported in this study. Moreover, identifying specific genes within the regulatory networks provides valuable insights into potential therapeutic targets for managing cervical cancer.
Collapse
Affiliation(s)
- Solomon Arega
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India.
| | - Suchanda Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sunil Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Somya Ranjan Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd, Bangalore 560043, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Niladri Ganguly
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
3
|
Nissinen L, Haalisto J, Riihilä P, Piipponen M, Kähäri VM. Clustering of RNA co-expression network identifies novel long non-coding RNA biomarkers in squamous cell carcinoma. Sci Rep 2024; 14:16864. [PMID: 39043845 PMCID: PMC11266547 DOI: 10.1038/s41598-024-67808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as important players in cancer progression. Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with increasing incidence worldwide. The prognosis of the metastatic cSCC is poor, and currently there are no established biomarkers to predict metastasis risk or specific therapeutic targets for advanced or metastatic cSCC. To elucidate the role of lncRNAs in cSCC, RNA sequencing of patient derived cSCC cell lines and normal human epidermal keratinocytes was performed. The correlation analysis of differentially expressed lncRNAs and protein-coding genes revealed six distinct gene clusters with one of the upregulated clusters featuring genes associated with cell motility. Upregulation of the expression of lncRNAs linked to cSCC cell motility in cSCC and head and neck SCC (HNSCC) cells was confirmed using qRT-PCR. Elevated expression of HOTTIP and LINC00543 was also noted in SCC tumors in vivo and was associated with poorer prognosis in HNSCC and lung SCC cohorts within TCGA data, respectively. Altogether, these findings uncover a novel set of lncRNAs implicated in cSCC cell locomotion. These lncRNAs may serve as potential novel biomarkers and as putative therapeutic targets for locally advanced and metastatic cSCC.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Josefiina Haalisto
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520, Turku, Finland.
- FICAN West Cancer Centre Research Laboratory, University of Turku and Turku University Hospital, FI-20520, Turku, Finland.
| |
Collapse
|
4
|
Xie X, Sinha S. Quantitative estimates of the regulatory influence of long non-coding RNAs on global gene expression variation using TCGA breast cancer transcriptomic data. PLoS Comput Biol 2024; 20:e1012103. [PMID: 38838009 PMCID: PMC11198904 DOI: 10.1371/journal.pcbi.1012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received attention in recent years for their regulatory roles in diverse biological contexts including cancer, yet large gaps remain in our understanding of their mechanisms and global maps of their targets. In this work, we investigated a basic unanswered question of lncRNA systems biology: to what extent can gene expression variation across individuals be attributed to lncRNA-driven regulation? To answer this, we analyzed RNA-seq data from a cohort of breast cancer patients, explaining each gene's expression variation using a small set of automatically selected lncRNA regulators. A key aspect of this analysis is that it accounts for confounding effects of transcription factors (TFs) as common regulators of a lncRNA-mRNA pair, to enrich the explained gene expression for lncRNA-mediated regulation. We found that for 16% of analyzed genes, lncRNAs can explain more than 20% of expression variation. We observed 25-50% of the putative regulator lncRNAs to be in 'cis' to, i.e., overlapping or located proximally to the target gene. This led us to quantify the global regulatory impact of such cis-located lncRNAs, which was found to be substantially greater than that of trans-located lncRNAs. Additionally, by including statistical interaction terms involving lncRNA-protein pairs as predictors in our regression models, we identified cases where a lncRNA's regulatory effect depends on the presence of a TF or RNA-binding protein. Finally, we created a high-confidence lncRNA-gene regulatory network whose edges are supported by co-expression as well as a plausible mechanism such as cis-action, protein scaffolding or competing endogenous RNAs. Our work is a first attempt to quantify the extent of gene expression control exerted globally by lncRNAs, especially those located proximally to their regulatory targets, in a specific biological (breast cancer) context. It also marks a first step towards systematic reconstruction of lncRNA regulatory networks, going beyond the current paradigm of co-expression networks, and motivates future analyses assessing the generalizability of our findings to additional biological contexts.
Collapse
Affiliation(s)
- Xiaoman Xie
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Liu J, Qi Y, Hou S, Zhang S, Wang Z. Linc01116 Silencing Inhibits the Proliferation and Invasion, Promotes Apoptosis of Chordoma Cells via Regulating the Expression of Mir-9-5p/PKG1. Curr Mol Med 2024; 24:1056-1071. [PMID: 37489776 DOI: 10.2174/1566524023666230719121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Long intergenic non-protein coding RNA 1116 (LINC01116) plays a carcinogenic role in a variety of cancers. The study aims to investigate the roles of LINC01116 and hsa-miR-9-5p (miR-9-5p) and fathom their interaction in chordoma. METHODS The predicted binding sites between miR-9-5p with LINC01116 and phosphoglycerate kinase 1 (PGK1) by starBase were confirmed through dual-luciferase reporter assay. The behaviors of chordoma cells undergoing transfection with siLINC01116 or miR-9-5p inhibitor were determined by Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and flow cytometry assays. The glucose consumption, lactate production, and adenosine triphosphate (ATP) production of chordoma cells were examined with specific kits. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to determine relevant gene expressions in chordoma cells. RESULTS Silencing of LINC01116 facilitated the apoptosis and expressions of Bcl-2- associated X (Bax), cleaved caspase-3 (C caspase-3) and miR-9-5p while repressing the cell cycle, viability, proliferation, invasion, glucose consumption, lactate production, ATP production, and expressions of PGK1 and Bcl-2. Meanwhile, LINC01116 sponged miR-9-5p, which could target PGK1. Moreover, the miR-9-5p inhibitor acted contrarily and reversed the role of siLINC01116 in chordoma cells. Besides, LINC01116 downregulation facilitated apoptosis and attenuated the proliferation and invasion of chordoma cells as well as PGK1 expression by upregulating miR-9-5p expression. CONCLUSION LINC01116/miR-9-5p plays a regulatory role in the progression of chordoma cells and is a potential biomarker for chordoma.
Collapse
Affiliation(s)
- Junqi Liu
- Department of Otorhinolaryngology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Yan Qi
- Department of Otorhinolaryngology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Siyuan Hou
- Department of Otorhinolaryngology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Siyuan Zhang
- Department of Otorhinolaryngology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| |
Collapse
|
6
|
Martinez Moreno M, Wang E, Schroeder C, Sullivan P, Gokaslan Z. Shedding light on emerging therapeutic targets for chordoma. Expert Opin Ther Targets 2023; 27:705-713. [PMID: 37647357 DOI: 10.1080/14728222.2023.2248382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Despite encouraging advances in radiation and surgical treatment, chordomas remain resistant to chemotherapy and local recurrence is common. Although the primary mechanism of recurrence is local, metastatic disease occurs in a small subset of patients. Recurrence may also occur along the surgical trajectory if care is not taken to fully excise the open biopsy pathway. There is increasing morbidity with reoperation upon disease recurrence, and radiation is an option for cytoreduction in primary disease or for recurrent disease, although toxicity may be observed with high-dose therapies. Given these challenges, targeted chemotherapeutic agents for postoperative adjuvant treatment are needed. AREAS COVERED In this review, we summarize the genetic drivers of chordoma and the state of the current research in chordoma immunotherapy and epigenetics. EXPERT OPINION Chordoma is a heterogenous tumor that should be targeted from different angles and the study of its characteristics, from molecular to immunological to epigenetic, is necessary. Combining different approaches, such as studying noninvasive patient methylation patterns with tissue-based molecular and drug screening, can transform patient care by guiding treatment decisions based on prognostic mechanisms from different sources, while helping individualize surgical planning and treatment.
Collapse
Affiliation(s)
| | - Elaina Wang
- Rhode Island Hospital, Brown University, Providence, USA
| | | | - Patricia Sullivan
- Rhode Island Hospital, Brown University, Providence, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ziya Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
8
|
Yang M, Liu SC, Hao DJ, Yan L, Liu ZK, Yin XH. RP11-867G2.8 promotes EMT and chordoma malignant phenotypes by enhancing FUT4 mRNA stability and translation. Am J Cancer Res 2022; 12:1264-1281. [PMID: 35411246 PMCID: PMC8984897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023] Open
Abstract
Chordoma is a rare bone tumor, and the recurrence rate of chordoma is high, the treatment is difficult, and the prognosis is poor. Therefore, it is of great significance to find key target genes for the treatment of chordoma. Microarray was used to analyze the significant gene associated with chordoma. Western blot and RT-PCR were used to detect protein and mRNA expression levels of RP11-867G2.8 and FUT4. Fluorescence in situ hybridization (FISH) assay was used to locate the position of RP11-867G2.8 in chordoma cells. MTT assay, colony formation assay, transwell assay and Xenograft Mouse Model were used to clarify the function of RP11-867G2.8 and FUT4. RNA pull-down, RNA immunoprecipitation, RNA stability assay and polysome profiling analysis were used to clarify the relationship between RP11-867G2.8 and FUT4. We found that RP11-867G2.8 is highly expressed in chordoma tissues and cells, and RP11-867G2.8 overexpression promotes the malignant biological behavior of chordoma cells. RP11-867G2.8 overexpression alters the expression pattern of genes modulating signaling pathway. FUT4 is accumulated in chordoma tissues, and RP11-867G2.8 is antisense RNA of FUT4. RP11-867G2.8 can bind to FUT4 mRNA, increasing FUT4 mRNA stability and facilitating translation of FUT4. RP11-867G2.8 binds to EIF4B and PABPC1, which increases the translation of FUT4. Further studies found that FUT4 silence counteracts the effect of RP11-867G2.8 in vivo and in vitro. Our results suggest that RP11-867G2.8 promotes the development and progression of chordoma by up-regulating the expression of FUT4.
Collapse
Affiliation(s)
- Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| | - Shi Chang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| | - Ding Jun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| | - Liang Yan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| | - Zhong Kai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| | - Xin Hua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Wen H, Fu Y, Zhu Y, Tao S, Shang X, Li Z, You T, Zhang W. Long non-coding RNA KRT8P41/miR-193a-3p/FUBP1 axis modulates the proliferation and invasion of chordoma cells. J Bone Oncol 2021; 31:100392. [PMID: 34712553 PMCID: PMC8529087 DOI: 10.1016/j.jbo.2021.100392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
lncRNA KRT8P41 potentially serves as an oncogenic lncRNA in chordoma. miR-193a binds to lncRNA KRT8P41 and FUBP1 3′UTR. LncRNA KRT8P41/miR-193a axis modulates chordoma cell aggressiveness through FUBP1.
Chordomas are low-grade malignancies accounting for 1–4% of primary bone malignancies. Moreover, local recurrences increase the rate of metastasis. Our previous study identified the far upstream element (FUSE)-binding protein 1 (FUBP1) as a biomarker and potential therapeutic target for chordoma. In this study, lncRNA KRT8P41 was identified as a lncRNA positively correlated with FUBP1. In chordoma patients, higher lncRNA KRT8P41 expression was correlated with a poorer prognosis. LncRNA KRT8P41 silencing significantly inhibited chordoma cell proliferation and invasion. miR-193a was negatively correlated with lncRNA KRT8P41 and FUBP1; lncRNA KRT8P41 inhibited miR-193a expression, and miR-193a inhibited FUBP1 expression. Furthermore, miR-193a directly bound to lncRNA KRT8P41 and FUBP1 and lncRNA KRT8P41 competed with FUBP1 for miR-193a binding and relieved miR-193a-mediated FUBP1 inhibition. LncRNA KRT8P41 silencing inhibited, whereas miR-193a inhibition promoted chordoma cell proliferation and invasion; the inhibition of miR-193a attenuated the roles of lncRNA KRT8P41. Within chordoma tissues, the expression of miR-193a was decreased, and the expression of FUBP1 increased compared to normal control tissues. LncRNA KRT8P41 exhibited a positive correlation with FUBP1 and a negative correlation with miR-193a in vivo. Therefore, it was concluded that lncRNA KRT8P41, miR-193a-3p, and FUBP1 form a lncRNA-miRNA-mRNA axis, modulating the proliferation and invasion of chordoma cells.
Collapse
Affiliation(s)
- Hai Wen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yang Fu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Yapeng Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Siyue Tao
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, China
| | - Zhongqi Li
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Tao You
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230036, China
| |
Collapse
|
10
|
Wang B, Zhang K, Meng S, Shao X, Zhou Z, Mao H, Zhu Z, Chen H, Yang H, Chen K. LncRNA-NONHSAT024778 promote the proliferation and invasion of chordoma cell by regulating miR-1290/Robo1 axis. Int J Biol Sci 2021; 17:796-806. [PMID: 33767589 PMCID: PMC7975704 DOI: 10.7150/ijbs.54091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Chordoma is a malignant bone tumor originating from the embryonic remnants of the notochord. lncRNAs act as competing endogenous RNAs (ceRNAs) and play a critical role in tumor pathology. However, the biological role of lncRNA-NONHSAT024778 and the underlying molecular mechanism in chordoma remains unknown. qRT-PCR was used to analyze the expression changes of NONHSAT024778 and miR-1290 in chordoma tissues and cell lines. Bioinformatics analysis and luciferase reporter assay were applied to detect the targeting binding effect between NONHSAT024778 and miR-1290, and between Robo1 and miR-1290. The effect of NONHSAT024778 on chordoma cell proliferation and invasion and its regulation of miR-1290 by acting as a ceRNA were also investigated. An increased NONHSAT024778 expression was correlated with a decreased miR-1290 level in chordoma tissues. NONHSAT024778 knockdown suppressed the proliferation and invasion of chordoma cells. miR-1290 restored expression rescued the carcinogenic function of NONHSAT024778. Bioinformatics analysis showed that NONHSAT024778 acted as ceRNA to regulate Robo1 via sponging miR-1290 in chordoma cells, thereby promoting chordoma cell malignant progression. In vivo results confirmed the anti-tumor effects of NONHSAT024778 knockdown activating miR-1290 to inhibit the oncogene Robo1. NONHSAT024778 is substantially overexpressed, whereas miR-1290 is decreased in chordoma tissue. NONHSAT024778-miR-1290-Robo1 axis plays a critical role in chordoma tumorigenesis and might be a potential predictive biomarker for the diagnosis and therapeutic target among patients with chordoma.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Sen Meng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaofeng Shao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Zhangzhe Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Ziqiang Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Kangwu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Li L, Lv G, Wang B, Ma H. Long Non-Coding RNA KCNQ1OT1 Promotes Multidrug Resistance in Chordoma by Functioning as a Molecular Sponge of miR-27b-3p and Subsequently Increasing ATF2 Expression. Cancer Manag Res 2020; 12:7847-7853. [PMID: 32922083 PMCID: PMC7457737 DOI: 10.2147/cmar.s250611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chordoma, a rare bone tumor, occurs most commonly at the sacrococcygeal and skull base region. To date, chemotherapy is used to treat patients with advanced-stage chordoma. However, multidrug resistance (MDR) greatly hinders the effect of chemotherapy in chordoma. Here, we studied the correlation between KCNQ1OT1 and chemotherapy resistance. Methods RT-PCR assay was used to examine KCNQ1OT1, miR-27b-3p, and ATF2 mRNA expression. CCK8 assay was exercised to detect IC50 values of cisplatin in chordoma cells. ATF2 protein expression was detected by Western blot. Results KCNQ1OT1 was increased in chemotherapy-resistant patients and cisplatin-resistant cells, and downregulation of KCNQ1OT1 expression weakened MDR in chordoma. In addition, KCNQ1OT1 promoted MDR in chordoma by sponging miR-27b-3p and subsequently increasing ATF2 expression. Conclusion KCNQ1OT1 is proved to be strikingly raised in the chemotherapy-resistant group and to promote MDR in chordoma. Our findings demonstrated the role of the KCNQ1OT1/miR-27b-3p/ATF2 axis in MDR of chordoma, which provides new insight into the molecular mechanism of chordoma MDR, and may determine the effect of therapy after receiving chemotherapy by detecting the expression of KCNQ1OT1 in serum.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
12
|
Li L, Lv G, Wang B, Ma H. Long Noncoding RNA LINC00525 Promotes the Aggressive Phenotype of Chordoma Through Acting as a microRNA-505-3p Sponge and Consequently Raising HMGB1 Expression. Onco Targets Ther 2020; 13:9015-9027. [PMID: 32982292 PMCID: PMC7490091 DOI: 10.2147/ott.s268678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Purposes Long intergenic non-protein coding RNA 525 (LINC00525), a long noncoding RNA, has been implicated in the carcinogenesis and progression of many human cancer types. However, the detailed roles of LINC00525 in chordoma and the underlying mechanisms are not fully understood. Here, we aimed to determine whether LINC00525 could modulate the oncogenicity of chordoma cells and to elucidate in detail the molecular events underlying these tumor-promoting activities. Methods Reverse-transcription quantitative polymerase chain reactions were performed to assess LINC00525 expression in chordoma. The effects of LINC00525 silencing on chordoma cell proliferation, apoptosis, migration, and invasiveness in vitro and tumor growth in vivo were respectively tested using CCK-8 assay, flow cytometry, migration and invasion assays, and xenograft experiments. Results High LINC00525 expression levels were detected in chordoma tissues. The proliferative, migratory, and invasive abilities of chordoma cells in vitro and their tumor growth in vivo were suppressed by the LINC00525 knockdown, whereas apoptosis was induced by it. Mechanistically, LINC00525 acted as a molecular sponge of microRNA-505-3p (miR-505-3p) and upregulated the expression of high mobility group box 1 (HMGB1), which is directly targeted by miR-505-3p. Rescue assays indicated that increasing the output of miR-505-3p-HMGB1 axis attenuated the effects of LINC00525 depletion on chordoma cells. Conclusion LINC00525, a pro-oncogenic long noncoding RNA, promotes chordoma progression by regulating the miR-505-3p-HMGB1 axis. The LINC00525-miR-505-3p-HMGB1 pathway may be a novel therapeutic target in chordoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
13
|
Bai J, Zhai Y, Wang S, Li M, Zhang S, Li C, Gui S, Li Q, Zhang Y. LncRNA and mRNA expression profiles reveal the potential roles of lncRNA contributing to regulating dural penetration in clival chordoma. Aging (Albany NY) 2020; 12:10809-10826. [PMID: 32533822 PMCID: PMC7346080 DOI: 10.18632/aging.103294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
Chordoma is a rare bone cancer originating from embryologic notochordal remnants. Clival chordomas show different dural penetration ability, with serious dural penetration exhibiting poorer prognosis. The molecular mechanism of dural penetration is not clear. We analyzed lncRNA and mRNA profiles in 12 chordoma patients with different degrees of dural penetration using expression microarrays. The differentially expressed lncRNAs and mRNAs were used to construct a lncRNA-mRNA co-expression network. LncRNAs were classified into lincRNA, enhancer-like lncRNA, or antisense lncRNA. Biological functions for lncRNAs were predicted according to the lncRNA-mRNA network and adjacent coding genes by pathway analysis. The 2760 lncRNAs and 3988 mRNAs were differentially expressed in chordomas between two groups of patients with and without dural penetration. Possible pathway involvement of the significance among the 55 lncRNAs located in the lncRNA-mRNA network, 24 lincRNAs, 7 enhancer-like lncRNAs, and 14 antisense lncRNAs include cell adhesion, metastasis, invasion, proliferation, and apoptosis. Expression of 10 lncRNAs and mRNAs, and epidermal growth factor mRNA with two identified lncRNAs were subsequently verified by qRT-PCR in chordoma tissues. Our report predicts the biological functions of many lncRNAs which may be used as diagnostic and prognostic biomarkers as well as therapeutic targets during the process of dural penetration in chordoma.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yixuan Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Shuai Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Mingxuan Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shuheng Zhang
- Department of Neurosurgery, Anshan Central Hospital, Anshan 114001, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
14
|
Yao J, Wu X. Upregulation Of miR-149-3p Suppresses Spinal Chordoma Malignancy By Targeting Smad3. Onco Targets Ther 2019; 12:9987-9997. [PMID: 31819495 PMCID: PMC6875263 DOI: 10.2147/ott.s222380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose Dysregulation of miRNAs plays an important role in the malignancy of different tumors including chordoma. Expression of miR-149-3p was earlier reported to be downregulated in chordoma tissue. However, its biological role remains to be unrevealed in chordoma, especially in spinal chordoma. Methods Expression of miR-149-3p and Smad3 was detected by RT-qPCR and Western blot. Chordoma malignancy was evaluated by cell proliferation, migration, invasion, and apoptosis using MTT assay, transwell assay, flow cytometry analyzing apoptosis rate, and Western blot-determined expression of Bcl-2, Bax, and cleaved caspase 3, respectively. The target binding between miR-149-3p and Smad3 was predicted by TargetScan Human website and confirmed by luciferase reporter assay and RNA immunoprecipitation. Xenograft tumors were generated, and expression of miR-149-3p and Smad3 was investigated in vivo. Results miR-149-3p was downregulated in spinal chordoma tissues and cells, and its overexpression promoted chordoma cell apoptosis and inhibited proliferation, migration, and invasion in U-CH1 and MUG-Chor1 cells. Unexpectedly, Smad3 was a downstream target of miR-149-3p and negatively correlated with miR-149-3p expression in chordoma tissues. Besides, Smad3 was upregulated in chordoma tissues and its silencing had a similar effect as miR-149-3p overexpression in U-CH1 and MUG-Chor1 cells. Moreover, Smad3 upregulation could partially reverse the tumor-suppressive effect of miR-149-3p in chordoma cells. In vivo, the tumorigenesis of U-CH1 and MUG-Chor1 cells was impaired by upregulated miR-149-3p through decreasing Smad3 expression. Conclusion miR-149-3p could serve as a tumor suppressor in spinal chordoma through targeting and downregulating Smad3.
Collapse
Affiliation(s)
- Jie Yao
- Department of Spine, The Orthopedic Hospital of Zhengzhou, Zhengzhou, Henan 450099, People's Republic of China
| | - Xuejian Wu
- Department of Orthopaedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
15
|
Integrated Analysis of lncRNA and mRNA Transcriptomes Reveals New Regulators of Ubiquitination and the Immune Response in Silica-Induced Pulmonary Fibrosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6305065. [PMID: 30756084 PMCID: PMC6348882 DOI: 10.1155/2019/6305065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Objectives As an epigenetic player, long noncoding RNAs (LncRNAs) have been reported to participate in multiple biological processes; however, their biological functions in silica-induced pulmonary fibrosis (SIPF) occurrence and development remain incompletely understood. Methods Five case/control pairs were used to perform integrated transcriptomes analysis of lncRNA and mRNA. Prediction of lncRNA and mRNA functions was aided by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Additionally, we constructed a coexpression network of lncRNAs and mRNAs to identify targets of regulation. Results In total, 1069 differentially expressed mRNAs and 366 lncRNAs were identified with the changes more than 2 times (p<0.05), of which 351 downregulated mRNA and 31 downregulated lncRNA were <0.5 (p<0.05) and those of 718 upregulated mRNAs and 335 upregulated lncRNA were >2 (p<0.05). The levels of 10 lncRNAs were measured via qRT-PCR; the results were consistent with the microarray data. Four genes named of FEM1B, TRIM39, TRIM32, and KLHL15 were enriched significantly with ubiquitination and immune response. Cytokine-cytokine receptor interaction was the most significantly enriched KEGG pathway in both mRNAs and lncRNAs. The coexpression network revealed that a single lncRNA can interact with multiple mRNAs, and vice versa. Conclusions lncRNA and mRNA expression were aberrant in patients with SIPF compared to controls, indicating that differentially expressed lncRNAs and mRNAs may play critical roles in SIPF development. Our study affords new insights into the molecular mechanisms of SIPF and identifies potential biomarkers and targets for SIPF diagnosis and treatment.
Collapse
|