1
|
Li X, Xiao X, Wang S, Wu B, Zhou Y, Deng P. Uncovering de novo polyamine biosynthesis in the gut microbiome and its alteration in inflammatory bowel disease. Gut Microbes 2025; 17:2464225. [PMID: 39924644 PMCID: PMC11812404 DOI: 10.1080/19490976.2025.2464225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
Polyamines are important gut microbial metabolites known to affect host physiology, yet the mechanisms behind their microbial production remain incompletely understood. In this study, we developed a stable isotope-resolved metabolomic (SIRM) approach to track polyamine biosynthesis in the gut microbiome. Viable microbial cells were extracted from fresh human and mouse feces and incubated anaerobically with [U-13C]-labeled inulin (tracer). Liquid chromatography-high resolution mass spectrometry analysis revealed distinct 13C enrichment profiles for spermidine (SPD) and putrescine (PUT), indicating that the arginine-agmatine-SPD pathway contributes to SPD biosynthesis in addition to the well-known spermidine synthase pathway (PUT aminopropylation). Species differences were observed in the 13C enrichments of polyamines and related metabolites between the human and mouse microbiome. By analyzing the fecal metabolomics and metatranscriptomic data from an inflammatory bowel disease (IBD) cohort, we found significantly higher polyamine levels in IBD patients compared to healthy controls. Further investigations using single-strain SIRM and in silico analyses identified Bacteroides spp. as key contributors to polyamine biosynthesis, harboring essential genes for this process and potentially driving the upregulation of polyamines in IBD. Taken together, this study expands our understanding of polyamine biosynthesis in the gut microbiome and will facilitate the development of precision therapies to target polyamine-associated diseases.
Collapse
Affiliation(s)
- Xinwei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Sun W, Ma S, Meng D, Wang C, Zhang J. Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review). Mol Med Rep 2025; 31:133. [PMID: 40116116 PMCID: PMC11948985 DOI: 10.3892/mmr.2025.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/19/2025] [Indexed: 03/23/2025] Open
Abstract
The intestinal microbiota represents a diverse population that serves a key role in colorectal cancer (CRC) and its treatment outcomes. Advancements in sequencing have revealed notable shifts in microbial composition and diversity among individuals with CRC. Concurrently, animal models have elucidated the involvement of specific microbes such as Lactobacillus fragilis, Escherichia coli and Fusobacterium nucleatum in the progression of CRC. The present review aimed to highlight contributions of intestinal microbiota to the pathogenesis of CRC, the effects of traditional treatments on intestinal microbiota and the potential for microbiota modulation as a therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Weitong Sun
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Shize Ma
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Dongdong Meng
- Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Jinbo Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| |
Collapse
|
3
|
Jimenez Gutierrez GE, Borbolla Jiménez FV, Muñoz LG, Tapia Guerrero YS, Murillo Melo NM, Cristóbal-Luna JM, Leyva Garcia N, Cordero-Martínez J, Magaña JJ. The Molecular Role of Polyamines in Age-Related Diseases: An Update. Int J Mol Sci 2023; 24:16469. [PMID: 38003659 PMCID: PMC10671757 DOI: 10.3390/ijms242216469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.
Collapse
Affiliation(s)
- Guadalupe Elizabeth Jimenez Gutierrez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fabiola V. Borbolla Jiménez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Luis G. Muñoz
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Yessica Sarai Tapia Guerrero
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Nadia Mireya Murillo Melo
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - José Melesio Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Department of Bioengineering, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| |
Collapse
|
4
|
Lozenov S, Krastev B, Nikolaev G, Peshevska-Sekulovska M, Peruhova M, Velikova T. Gut Microbiome Composition and Its Metabolites Are a Key Regulating Factor for Malignant Transformation, Metastasis and Antitumor Immunity. Int J Mol Sci 2023; 24:5978. [PMID: 36983053 PMCID: PMC10054493 DOI: 10.3390/ijms24065978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The genetic and metabolomic abundance of the microbiome exemplifies that the microbiome comprises a more extensive set of genes than the entire human genome, which justifies the numerous metabolic and immunological interactions between the gut microbiota, macroorganisms and immune processes. These interactions have local and systemic impacts that can influence the pathological process of carcinogenesis. The latter can be promoted, enhanced or inhibited by the interactions between the microbiota and the host. This review aimed to present evidence that interactions between the host and the gut microbiota might be a significant exogenic factor for cancer predisposition. It is beyond doubt that the cross-talk between microbiota and the host cells in terms of epigenetic modifications can regulate gene expression patterns and influence cell fate in both beneficial and adverse directions for the host's health. Furthermore, bacterial metabolites could shift pro- and anti-tumor processes in one direction or another. However, the exact mechanisms behind these interactions are elusive and require large-scale omics studies to better understand and possibly discover new therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Stefan Lozenov
- Laboratory for Control and Monitoring of the Antibiotic Resistance, National Centre for Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria;
| | - Boris Krastev
- Nadezhda Paradise Medical Center, 1330 Sofia, Bulgaria;
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, Sofia, Medical Faculty, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, 5804 Pleven, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1 str., 1407 Sofia, Bulgaria
| |
Collapse
|
5
|
Tang J, Wu X, Cheng B, Lu Y. Identification of a polyamine-related signature and six novel prognostic biomarkers in oral squamous cell carcinoma. Front Mol Biosci 2023; 10:1073770. [PMID: 36733434 PMCID: PMC9887031 DOI: 10.3389/fmolb.2023.1073770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Elevated polyamine levels are required for tumor transformation and development; however, expression patterns of polyamines and their diagnostic potential have not been investigated in oral squamous cell carcinoma (OSCC), and its impact on prognosis has yet to be determined. A total of 440 OSCC samples and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Consensus clustering was conducted to classify OSCC patients into two subgroups based on the expression of the 17 polyamine regulators. Polyamine-related differentially expressed genes (PARDEGs) among distinct polyamine clusters were determined. To create a prognostic model, PARDEGs were examined in the training cohorts using univariate-Lasso-multivariate Cox regression analyses. Six prognostic genes, namely, "CKS2," "RIMS3," "TRAC," "FMOD," CALML5," and "SPINK7," were identified and applied to develop a predictive model for OSCC. According to the median risk score, the patients were split into high-risk and low-risk groups. The predictive performance of the six gene models was proven by the ROC curve analysis of the training and validation cohorts. Kaplan-Meier curves revealed that the high-risk group had poorer prognosis. Furthermore, the low-risk group was more susceptible to four chemotherapy drugs according to the IC50 of the samples computed by the "pRRophetic" package. The correlation between the risk scores and the proportion of immune cells was calculated. Meanwhile, the tumor mutational burden (TMB) value of the high-risk group was higher. Real-time quantitative polymerase chain reaction was applied to verify the genes constructing the model. The possible connections of the six genes with various immune cell infiltration and therapeutic markers were anticipated. In conclusion, we identified a polyamine-related prognostic signature, and six novel biomarkers in OSCC, which may provide insights to identify new treatment targets for OSCC.
Collapse
Affiliation(s)
- Jiezhang Tang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Bo Cheng, ; Yajie Lu,
| | - Yajie Lu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China,*Correspondence: Bo Cheng, ; Yajie Lu,
| |
Collapse
|
6
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
7
|
Guo W, Cao P, Wang X, Hu M, Feng Y. Medicinal Plants for the Treatment of Gastrointestinal Cancers From the Metabolomics Perspective. Front Pharmacol 2022; 13:909755. [PMID: 35833022 PMCID: PMC9271783 DOI: 10.3389/fphar.2022.909755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gastrointestinal cancer (GIC), primarily including colorectal cancer, gastric cancer, liver cancer, pancreatic cancer, and esophageal cancer, is one of the most common causes of cancer-related deaths with increasing prevalence and poor prognosis. Medicinal plants have been shown to be a great resource for the treatment of GIC. Due to their complex manifestations of multi-component and multi-target, the underlying mechanisms how they function against GIC remain to be completely deciphered. Cell metabolism is of primary importance in the initialization and development of GIC, which is reported to be a potential target. As an essential supplement to the newest “omics” sciences, metabolomics focuses on the systematic study of the small exogenous and endogenous metabolites involved in extensive biochemical metabolic pathways of living system. In good agreement with the systemic perspective of medicinal plants, metabolomics offers a new insight into the efficacy assessment and action mechanism investigation of medicinal plants as adjuvant therapeutics for GIC therapy. In this review, the metabolomics investigations on metabolism-targeting therapies for GIC in the recent 10 years were systematically reviewed from five aspects of carbohydrate, lipid, amino acid, and nucleotide metabolisms, as well as other altered metabolisms (microbial metabolism, inflammation, and oxidation), with particular attention to the potential of active compounds, extracts, and formulae from medicinal plants. Meanwhile, the current perspectives and future challenges of metabolism-targeting therapies of medicinal plants for GIC were also discussed. In conclusion, the understanding of the action mechanisms of medicinal plants in GIC from the metabolomics perspective will contribute to the clinical application of potential candidates from the resourceful medicinal plants as novel and efficient adjuvant therapeutics for GIC therapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Min Hu, ; Yibin Feng,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Min Hu, ; Yibin Feng,
| |
Collapse
|
8
|
DeFelice BC, Fiehn O, Belafsky P, Ditterich C, Moore M, Abouyared M, Beliveau AM, Farwell DG, Bewley AF, Clayton SM, Archard JA, Pavlic J, Rao S, Kuhn M, Deng P, Halmai J, Fink KD, Birkeland AC, Anderson JD. Polyamine Metabolites as Biomarkers in Head and Neck Cancer Biofluids. Diagnostics (Basel) 2022; 12:diagnostics12040797. [PMID: 35453845 PMCID: PMC9024570 DOI: 10.3390/diagnostics12040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Novel, non-invasive diagnostic biomarkers that facilitate early intervention in head and neck cancer are urgently needed. Polyamine metabolites have been observed to be elevated in numerous cancer types and correlated with poor prognosis. The aim of this study was to assess the concentration of polyamines in the saliva and urine from head and neck cancer (HNC) patients, compared to healthy controls. Methods: Targeted metabolomic analysis was performed on saliva and urine from 39 HNC patient samples and compared to 89 healthy controls using a quantitative, targeted liquid chromatography mass spectrometry approach. Results: The metabolites N1-acetylspermine (ASP), N8-acetylspermidine (ASD) and N1,N12-diacetylspermine (DAS) were detected at significantly different concentrations in the urine of HNC patients as compared to healthy controls. Only ASP was detected at elevated levels in HNC saliva as compared to healthy controls. Conclusion: These data suggest that assessment of polyamine-based metabolite biomarkers within the saliva and urine warrants further investigation as a potential diagnostic in HNC patients.
Collapse
Affiliation(s)
- Brian C. DeFelice
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA; (B.C.D.); (O.F.)
| | - Peter Belafsky
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Constanze Ditterich
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Michael Moore
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Marianne Abouyared
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Angela M. Beliveau
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - D. Gregory Farwell
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Arnaud F. Bewley
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Shannon M. Clayton
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Joehleen A. Archard
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Jordan Pavlic
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Shyam Rao
- Department of Radiation Oncology, University of California, Davis, CA 95616, USA;
| | - Maggie Kuhn
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
| | - Peter Deng
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Julian Halmai
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Kyle D. Fink
- Department of Neurology, University of California, Davis, CA 95616, USA; (P.D.); (J.H.); (K.D.F.)
| | - Andrew C. Birkeland
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
- Correspondence: (A.C.B.); (J.D.A.)
| | - Johnathon D. Anderson
- Department of Otolaryngology-Head and Neck Surgery, University of California, Davis, CA 95616, USA; (P.B.); (C.D.); (M.M.); (M.A.); (A.M.B.); (D.G.F.); (A.F.B.); (S.M.C.); (J.A.A.); (J.P.); (M.K.)
- Correspondence: (A.C.B.); (J.D.A.)
| |
Collapse
|
9
|
D'Amico F, Barone M, Tavella T, Rampelli S, Brigidi P, Turroni S. Host microbiomes in tumor precision medicine: how far are we? Curr Med Chem 2022; 29:3202-3230. [PMID: 34986765 DOI: 10.2174/0929867329666220105121754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
The human gut microbiome has received a crescendo of attention in recent years, due to the countless influences on human pathophysiology, including cancer. Research on cancer and anticancer therapy is constantly looking for new hints to improve the response to therapy while reducing the risk of relapse. In this scenario, the gut microbiome and the plethora of microbial-derived metabolites are considered a new opening in the development of innovative anticancer treatments for a better prognosis. This narrative review summarizes the current knowledge on the role of the gut microbiome in the onset and progression of cancer, as well as in response to chemo-immunotherapy. Recent findings regarding the tumor microbiome and its implications for clinical practice are also commented on. Current microbiome-based intervention strategies (i.e., prebiotics, probiotics, live biotherapeutics and fecal microbiota transplantation) are then discussed, along with key shortcomings, including a lack of long-term safety information in patients who are already severely compromised by standard treatments. The implementation of bioinformatic tools applied to microbiomics and other omics data, such as machine learning, has an enormous potential to push research in the field, enabling the prediction of health risk and therapeutic outcomes, for a truly personalized precision medicine.
Collapse
Affiliation(s)
- Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Monica Barone
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Teresa Tavella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiome Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
10
|
Zhang W, An Y, Qin X, Wu X, Wang X, Hou H, Song X, Liu T, Wang B, Huang X, Cao H. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges. Front Oncol 2021; 11:739648. [PMID: 34733783 PMCID: PMC8558397 DOI: 10.3389/fonc.2021.739648] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence from studies in humans and animal models has elucidated that gut microbiota, acting as a complex ecosystem, contributes critically to colorectal cancer (CRC). The potential mechanisms often reported emphasize the vital role of carcinogenic activities of specific pathogens, but in fact, a series of metabolites produced from exogenous dietary substrates or endogenous host compounds occupy a decisive position similarly. Detrimental gut microbiota-derived metabolites such as trimethylamine-N-oxide, secondary bile acids, hydrogen sulfide and N-nitroso compounds could reconstruct the ecological composition and metabolic activity of intestinal microorganisms and formulate a microenvironment that opens susceptibility to carcinogenic stimuli. They are implicated in the occurrence, progression and metastasis of CRC through different mechanisms, including inducing inflammation and DNA damage, activating tumorigenic signaling pathways and regulating tumor immunity. In this review, we mainly summarized the intimate relationship between detrimental gut microbiota-derived metabolites and CRC, and updated the current knowledge about detrimental metabolites in CRC pathogenesis. Then, multiple interventions targeting these metabolites for CRC management were critically reviewed, including diet modulation, probiotics/prebiotics, fecal microbiota transplantation, as well as more precise measures such as engineered bacteria, phage therapy and chemopreventive drugs. A better understanding of the interplay between detrimental microbial metabolites and CRC would hold great promise against CRC.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xinyu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
11
|
Coradduzza D, Azara E, Medici S, Arru C, Solinas T, Madonia M, Zinellu A, Carru C. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1162:122468. [PMID: 33370684 DOI: 10.1016/j.jchromb.2020.122468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Many scientific contributions recognize polyamines as important biomarkers for the diagnosis and treatment of cancer. Several authors have suggested the use of LC/MS instruments as an elective method for their measurement, providing good detection limits and specificity; however, many of these procedures suffer from long chromatographic run times, high detection limits and lengthy and expensive sample pre-treatment steps. METHODS UHPLC coupled with high-resolution Orbitrap mass spectrometry (UHPLC/Orbitrap) was set up for the identification and separation ofpolyamines, together with some of their metabolites and catabolites, in the plasma of healthy and prostate cancer human patients. Thirteen metabolites were measured in deproteinized plasma samples through a new analytical approach known as the parallel reaction monitoring (PRM) for targeted quantitative analysis. RESULTS The calibration curves were linear and R2 ranged from 0.9913 to 0.9995 for all analytes. LOQ values are between 0.382 and 25 ng mL-1 and LOD values are between 0.109 and 7.421 ng mL-1. The method shows an accuracy and precision for intra-day and inter-day < 15% RSD and R.E.% for all the QC samples. The matrix effect calculated at different concentration levels did not exceed 15%. CONCLUSIONS The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
Collapse
Affiliation(s)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
12
|
Kamathewatta NJB, Deay DO, Karaca BT, Seibold S, Nguyen TM, Tomás B, Richter ML, Berrie CL, Tamerler C. Self-Immobilized Putrescine Oxidase Biocatalyst System Engineered with a Metal Binding Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11908-11917. [PMID: 32921059 DOI: 10.1021/acs.langmuir.0c01986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flavin oxidases are valuable biocatalysts for the oxidative synthesis of a wide range of compounds, while at the same time reduce oxygen to hydrogen peroxide. Compared to other redox enzymes, their ability to use molecular oxygen as an electron acceptor offers a relatively simple system that does not require a dissociable coenzyme. As such, they are attractive targets for adaptation as cost-effective biosensor elements. Their functional immobilization on surfaces offers unique opportunities to expand their utilization for a wide range of applications. Genetically engineered peptides have been demonstrated as enablers of the functional assembly of biomolecules at solid material interfaces. Once identified as having a high affinity for the material of interest, these peptides can provide a single step bioassembly process with orientation control, a critical parameter for functional immobilization of the enzymes. In this study, for the first time, we explored the bioassembly of a putrescine oxidase enzyme using a gold binding peptide tag. The enzyme was genetically engineered to incorporate a gold binding peptide with an expectation of an effective display of the peptide tag to interact with the gold surface. In this work, the functional activity and expression were investigated, along with the selectivity of the binding of the peptide-tagged enzyme. The fusion enzyme was characterized using multiple techniques, including protein electrophoresis, enzyme activity, and microscopy and spectroscopic methods, to verify the functional expression of the tagged protein with near-native activity. Binding studies using quartz crystal microbalance (QCM), nanoparticle binding studies, and atomic force microscopy studies were used to address the selectivity of the binding through the peptide tag. Surface binding AFM studies show that the binding was selective for gold. Quartz crystal microbalance studies show a strong increase in the affinity of the peptide-tagged protein over the native enzyme, while activity assays of protein bound to nanoparticles provide evidence that the enzyme retained catalytic activity when immobilized. In addition to showing selectivity, AFM images show significant differences in the height of the molecules when immobilized through the peptide tag compared to immobilization of the native enzyme, indicating differences in orientation of the bound enzyme when attached via the affinity tag. Controlling the orientation of surface-immobilized enzymes would further improve their enzymatic activity and impact diverse applications, including oxidative biocatalysis, biosensors, biochips, and biofuel production.
Collapse
Affiliation(s)
| | - Dwight O Deay
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Banu Taktak Karaca
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biology and Genetics, Biruni University, İstanbul 34010, Turkey
| | - Steve Seibold
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tyler M Nguyen
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon Tomás
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cindy L Berrie
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
14
|
Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS. Biomolecules 2019; 9:biom9120779. [PMID: 31779105 PMCID: PMC6995533 DOI: 10.3390/biom9120779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Polyamines are involved in the regulation of many cellular functions and are promising biomarkers of numerous physiological conditions. Since the concentrations of these compounds in biological fluids are low, sample extraction is one of the most critical steps of their analysis. Here, we developed a comprehensive, sensitive, robust, and high-throughput LC-MS/MS stable-isotope dilution method for the simultaneous determination of 19 metabolites related to polyamine metabolism, including polyamines, acetylated and diacetylated polyamines, precursors, and catabolites from liquid biopsies. The sample extraction was optimized to remove interfering compounds and to reduce matrix effects, thus being useful for large clinical studies. The method consists of two-step liquid-liquid extraction with a Folch extraction and ethyl acetate partitioning combined with dansyl chloride derivatization. The developed method was applied to a small gender-related trial concerning human serum and urine samples from 40 obese subjects. Sex differences were found for cadaverine, putrescine, 1,3-diaminopropane, γ-aminobutyric acid, N8-acetylspermidine, and N-acetylcadaverine in urine; N1-acetylspermine in serum; and spermine in both serum and urine. The results demonstrate that the developed method can be used to analyze biological samples for the study of polyamine metabolism and its association with human diseases.
Collapse
|
15
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|
16
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
17
|
Nirzhor SSR, Khan RI, Neelotpol S. The Biology of Glial Cells and Their Complex Roles in Alzheimer's Disease: New Opportunities in Therapy. Biomolecules 2018; 8:biom8030093. [PMID: 30201881 PMCID: PMC6164719 DOI: 10.3390/biom8030093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
Even though Alzheimer's disease (AD) is of significant interest to the scientific community, its pathogenesis is very complicated and not well-understood. A great deal of progress has been made in AD research recently and with the advent of these new insights more therapeutic benefits may be identified that could help patients around the world. Much of the research in AD thus far has been very neuron-oriented; however, recent studies suggest that glial cells, i.e., microglia, astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells (NG2 glia), are linked to the pathogenesis of AD and may offer several potential therapeutic targets against AD. In addition to a number of other functions, glial cells are responsible for maintaining homeostasis (i.e., concentration of ions, neurotransmitters, etc.) within the central nervous system (CNS) and are crucial to the structural integrity of neurons. This review explores the: (i) role of glial cells in AD pathogenesis; (ii) complex functionalities of the components involved; and (iii) potential therapeutic targets that could eventually lead to a better quality of life for AD patients.
Collapse
|