1
|
Zeng C, Qi G, Shen Y, Li W, Zhu Q, Yang C, Deng J, Lu W, Liu Q, Jin J. DPEP1 promotes drug resistance in colon cancer cells by forming a positive feedback loop with ASCL2. Cancer Med 2022; 12:412-424. [PMID: 35670012 PMCID: PMC9844606 DOI: 10.1002/cam4.4926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance is an important factor affecting the efficacy of chemotherapy in patients with colon cancer. However, clinical markers for diagnosing drug resistance of tumor cells are not only a few in number, but also low in specificity, and the mechanism of action of tumor cell drug resistance remains unclear. METHODS Dipeptidase 1 (DPEP1) expression was analyzed using the cancer genome atlas (TCGA) and genotype-Tissue Expression pan-cancer data. Survival analysis was performed using the survival package in R software to assess the prognostic value of DPEP1 expression in colon cancer. Correlation and Venn analyses were adopted to identify key genes. Immunohistochemistry, western blot, qRT-PCR, Co-immunoprecipitation, and dual-luciferase reporter experiments were carried out to explore the underlying associations between DPEP1 and Achaete scute-like 2 (ASCL2). MTT assays were used to evaluate the role of DPEP1 and ASCL2 in colon cancer drug resistance. RESULTS DPEP1 was highly expressed in colon cancer tissues. DPEP1 expression correlated negatively with disease-specific survival but not with overall survival. Bioinformatics analysis and experiments showed that the expressions of DPEP1 and ASCL2 in colon cancer tissues were markedly positively correlated. Mechanistic research indicated that DPEP1 enhanced the stability of protein ASCL2 by inhibiting its ubiquitination-mediated degradation. In turn, ASCL2 functioned as a transcription factor to activate the transcriptional activity of the DPEP1 gene and boost its expression. Furthermore, DPEP1 also could enhance the expression of colon cancer stem cell markers (LGR5, CD133, and CD44), which strengthened the tolerance of colon cancer cells to chemotherapy drugs. CONCLUSIONS Our findings reveal that the DPEP1 enhances the stemness of tumor cells by forming a positive feedback loop with ASCL2 to improve resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Guoping Qi
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina
| | - Ying Shen
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenjing Li
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qi Zhu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Chunxia Yang
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianzhong Deng
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Wenbin Lu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Qian Liu
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| | - Jianhua Jin
- Department of OncologyWujin Hospital Affiliated with Jiangsu UniversityChangzhouJiangsu ProvinceChina,Department of OncologyWujin Clinical College of Xuzhou Medical UniversityChangzhouJiangsu ProvinceChina
| |
Collapse
|
2
|
Xiu M, Zeng X, Shan R, Wen W, Li J, Wan R. The oncogenic role of HBXIP. Biomed Pharmacother 2020; 133:111045. [PMID: 33378953 DOI: 10.1016/j.biopha.2020.111045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B X-interacting protein (HBXIP) is a conserved protein of 19 kDa that was originally identified as a binding partner of hepatitis B virus X protein. Emerging evidence indicates that HBXIP is highly expressed in a variety of cancers and is correlated with poor clinical outcomes in cancer patients. HBXIP plays a critical role in cancer progression, but the underlying mechanisms are still unclear. In this review, we primarily focus on publications investigating HBXIP in cancer research, including its expression and clinical significance in cancer patients, its role as a coactivator of transcription factors in cancer cells, its inhibitory effects on the mitochondrial cytochrome c-caspase apoptotic pathway, as well as its roles in promoting mitosis and drug resistance in cancer cells, its regulatory effects on cancer metabolism, and its relationships with other signaling pathways or microRNAs in cancer. This review aims to compile and summarize existing knowledge of the functions of HBXIP in cancer, which provides a comprehensive reference for future studies on the oncogenic mechanisms of HBXIP.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China; Second Clinical Medical College, Nanchang University, China
| | - Xiaohong Zeng
- Imaging Department, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2020; 122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenbo Zhang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Liu Q, Deng J, Yang C, Wang Y, Shen Y, Zhang H, Ding Z, Zeng C, Hou Y, Lu W, Jin J. DPEP1 promotes the proliferation of colon cancer cells via the DPEP1/MYC feedback loop regulation. Biochem Biophys Res Commun 2020; 532:520-527. [PMID: 32896379 DOI: 10.1016/j.bbrc.2020.08.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/18/2022]
Abstract
DPEP1 is highly expressed in the colorectal carcinoma tissues and colon cancer cells. However, the function and underlying mechanism of DPEP1 in the colon cancer cells are still poorly understood. Here, we found that transcription factor MYC could occupy on the DPEP1 promoter and activate its activities, and DPEP1 was up-regulated by MYC proteins in mRNA and protein levels in a dose-dependent manner in colon cancer cells. The expression levels of DPEP1 were positively correlated with that of MYC in colorectal tumor tissues. Moreover, Laser confocal images and Co-immunoprecipitation (Co-IP) revealed that DPEP1 and MYC proteins could bind to each other in the colon cancer cells. In turn, DPEP1 could enhance the stability of MYC proteins by extending the half-life of MYC proteins in colon cancer cells. Thus, DPEP1 and MYC proteins might form a positive feedback loop to maintain their high expression levels in colon cancer cells. In function, the MTT, EdU, Clone Formation assays and xenograft tumors assays demonstrated that DPEP1 could boost the proliferation of colon cancer cells through the DPEP1/MYC positive feedback loop in vitro and in vivo. Theoretically, DPEP1 may serve as a colon cancer biomarker and a novel target of colorectal carcinogenesis therapy.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Jianzhong Deng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Chunxia Yang
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Yue Wang
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Ying Shen
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Hua Zhang
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Zhixiang Ding
- Department of Clinical Laboratory, Changzhou Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Cheng Zeng
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China
| | - Yongzhong Hou
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Institute of Life Sciences of the Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenbin Lu
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated with Jiangsu University, Jiangsu Province, 213017, China; Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Jiangsu Province, 213017, China.
| |
Collapse
|
5
|
HBXIP: a potential prognosis biomarker of colorectal cancer which promotes invasion and migration via epithelial-mesenchymal transition. Life Sci 2020; 245:117354. [PMID: 31987874 DOI: 10.1016/j.lfs.2020.117354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Hepatitis B X-interacting protein (HBXIP) is highly expressed in many cancers, but the correlation between the expression of HBXIP and the clinical significance and underlying molecular mechanisms in colorectal cancer (CRC) is still unclear. We selected 186 specimens from CRC patients for analyzing the relationship between the expression of HBXIP and the clinical-pathological features by immunohistochemistry. Migration and invasion experiments were performed to examine the effect of HBXIP on CRC cell metastasis. Besides, we also explored the possible molecular mechanism of HBXIP regulation of CRC cell metastasis by Western blot. Our data indicated that the HBXIP was overexpressed in CRC tissues. High HBXIP expression was correlated with metastasis and shorter survival times in patients with CRC and served as an independent factor for poor prognosis. Moreover, HBXIP promotes CRC metastasis by enhancing the epithelial-mesenchymal transition (EMT) process. Our findings provide the first evidence that HBXIP induces EMT to promote metastasis and predicts the poor prognosis of CRC. Therefore, HBXIP may become a new target for CRC treatment.
Collapse
|