1
|
Zhang S, Guo J, He Y, Su Z, Feng Y, Zhang L, Jun Z, Weng X, Yuan Y. Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment. J Zhejiang Univ Sci B 2025; 26:107-123. [PMID: 40015932 PMCID: PMC11867785 DOI: 10.1631/jzus.b2300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 03/01/2025]
Abstract
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Jianmin Guo
- School of Life Sciences, South University of Science and Technology, Shenzhen 518055, China
| | - Yuting He
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Zhi'ang Su
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Yao Feng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Zou Jun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
2
|
Fonseca TS, Martins RM, Rolo AP, Palmeira CM. SNHG1: Redefining the Landscape of Hepatocellular Carcinoma through Long Noncoding RNAs. Biomedicines 2024; 12:1696. [PMID: 39200161 PMCID: PMC11351223 DOI: 10.3390/biomedicines12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used in the management of HCC, has limited sensitivity and specificity, making early detection and effective management more difficult. Thus, new management approaches in diagnosis and prognosis are needed to improve the outcome and survival of HCC patients. SNHG1 is a long noncoding RNA mainly expressed in the cell and cytoplasm of cells and is consistently upregulated in tissues and cell lines of HCC, where it acts as an important regulator of various processes: modulation of p53 activity, sponging of microRNAs with consequent upregulation of their target mRNAs, regulation of fatty acid, iron and glucose metabolism, and interaction with immune cells. The deregulation of these processes results in abnormal cell division, angiogenesis, and apoptosis, thus promoting various aspects of tumorigenesis, including proliferation, invasion, and migration of cells. Clinically, a higher expression of SNHG1 predicts poorer clinical outcomes by significantly correlating with bigger, less differentiated, and more aggressive tumors, more advanced disease stages, and lower overall survival in HCC patients. This article comprehensively summarizes the current understanding of the multifaceted roles of SNHG1 in the pathogenesis of HCC, while also highlighting its clinicopathological correlations, therefore concluding that it has potential as a biomarker in HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Tiago S. Fonseca
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Rui Miguel Martins
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- Department of Surgery, Portuguese Oncology Institute, 3000-075 Coimbra, Portugal
| | - Anabela P. Rolo
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
3
|
Wu Y, Liu L, He F, Zhang Y, Jiang W, Cao Z, Xu X, Gong J. Long noncoding RNA small nucleolar RNA host gene 1 as a potential novel biomarker for intraperitoneal free cancer cells in colorectal cancer. iScience 2024; 27:110228. [PMID: 38993673 PMCID: PMC11237925 DOI: 10.1016/j.isci.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent cancer with intraperitoneal free cancer cells (IFCCs) playing a significant role in prognosis, especially during surgeries. The identification of IFCCs is crucial for determining the stage and treatment of patients with CRC. Existing methods for IFCC detection, such as conventional cytology, immunocytochemistry (ICC), and polymerase chain reaction (PCR), have limitations in sensitivity and specificity. This study investigates the potential of long noncoding RNA (lncRNA) SNHG1 as a biomarker for detecting IFCCs in patients with CRC. Testing on a cohort of 91 patients with CRC and 26 patients with gastrointestinal benign disease showed that SNHG1 outperformed CEA in distinguishing CRC cells and detecting IFCCs across different disease stages. SNHG1 demonstrated higher sensitivity (76.1% vs. 43.1%) and specificity (68.4% vs. 52.3%) than CEA for IFCC detection in patients with CRC, suggesting its promising role as a clinical method for identifying IFCCs in CRC.
Collapse
Affiliation(s)
- Yudi Wu
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Liang Liu
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fangxun He
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yujie Zhang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhixin Cao
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiangshang Xu
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jianping Gong
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
4
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
5
|
Li T, Huang M, Sun N, Hua X, Chen R, Xie Q, Huang S, Du M, Zhao Y, Lin Q, Xu J, Han X, Zhao Y, Tian Z, Zhang Y, Chen W, Shen X, Huang C. Tumorigenesis of basal muscle invasive bladder cancer was mediated by PTEN protein degradation resulting from SNHG1 upregulation. J Exp Clin Cancer Res 2024; 43:50. [PMID: 38365726 PMCID: PMC10874020 DOI: 10.1186/s13046-024-02966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.
Collapse
Affiliation(s)
- Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengxiang Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yazhen Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyun Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
6
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zeng H, Zhou S, Cai W, Kang M, Zhang P. LncRNA SNHG1: role in tumorigenesis of multiple human cancers. Cancer Cell Int 2023; 23:198. [PMID: 37684619 PMCID: PMC10492323 DOI: 10.1186/s12935-023-03018-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023] Open
Abstract
Small nucleolar RNA host gene 1 (SNHG1) is an important member of the SNHG family. This family is composed of a group of host genes that can be processed into small nucleolar RNAs and play important biological functions. In an oncogenic role, the SNHG1 expression is increased in various cancers, which has immense application prospects in the diagnosis, treatment, and prognosis of malignant tumors. In this review, we have summarized the role and molecular mechanism of SNHG1 in the development of various cancers. In addition, we have emphasized the clinical significance of SNHG1 in cancers in our article. This molecule is expected to be a new marker for potential usage in the diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Huang Zeng
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Shouang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weiqiang Cai
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
| |
Collapse
|
8
|
Huldani H, Gandla K, Asiri M, Romero-Parra RM, Alsalamy A, Hjazi A, Najm MAA, Fawaz A, Hussien BM, Singh R. A comprehensive insight into the role of small nucleolar RNAs (snoRNAs) and SNHGs in human cancers. Pathol Res Pract 2023; 249:154679. [PMID: 37567032 DOI: 10.1016/j.prp.2023.154679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Long non-coding RNAs (lncRNAs), which comprise most non-coding RNAs (ncRNAs), have recently become a focus of cancer research. How many functional ncRNAs exist is still a matter of debate. Although insufficient evidence supports that most lncRNAs function as transcriptional by-products, it is widely known that an increasing number of lncRNAs play essential roles in cells. Small nucleolar RNAs (snoRNAs), 60-300 nucleotides in length, have been better studied than long non-coding RNAs (lncRNAs) and are predominantly present in the nucleolus. Most snoRNAs are encoded in introns of protein- and non-protein-coding genes called small nucleolar RNA host genes (SNHGs). In this article, we explore the biology and characteristics of SNHGs and their role in developing human malignancies. In addition, we provide an update on the ability of these snoRNAs to serve as prognostic and diagnostic variables in various forms of cancer.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya Deemed to be University, Hanamkonda, India.
| | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ali Alsalamy
- College of Medical Technology, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Albab Fawaz
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
9
|
Bhardwaj A, Liyanage SI, Weaver DF. Cancer and Alzheimer's Inverse Correlation: an Immunogenetic Analysis. Mol Neurobiol 2023; 60:3086-3099. [PMID: 36797545 DOI: 10.1007/s12035-023-03260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023]
Abstract
Numerous studies have demonstrated an inverse link between cancer and Alzheimer's disease (AD), with data suggesting that people with Alzheimer's have a decreased risk of cancer and vice versa. Although other studies have investigated mechanisms to explain this relationship, the connection between these two diseases remains largely unexplained. Processes seen in cancer, such as decreased apoptosis and increased cell proliferation, seem to be reversed in AD. Given the need for effective therapeutic strategies for AD, comparisons with cancer could yield valuable insights into the disease process and perhaps result in new treatments. Here, through a review of existing literature, we compared the expressions of genes involved in cell proliferation and apoptosis to establish a genetic basis for the reciprocal association between AD and cancer. We discuss an array of genes involved in the aforementioned processes, their relevance to both diseases, and how changes in those genes produce varying effects in either disease.
Collapse
Affiliation(s)
- Aditya Bhardwaj
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - S Imindu Liyanage
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Discovery Tower, Krembil Brain Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada.
- Departments of Medicine and Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Balasubramanian R, Vinod PK. Inferring miRNA sponge modules across major neuropsychiatric disorders. Front Mol Neurosci 2022; 15:1009662. [PMID: 36385761 PMCID: PMC9650411 DOI: 10.3389/fnmol.2022.1009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The role of non-coding RNAs in neuropsychiatric disorders (NPDs) is an emerging field of study. The long non-coding RNAs (lncRNAs) are shown to sponge the microRNAs (miRNAs) from interacting with their target mRNAs. Investigating the sponge activity of lncRNAs in NPDs will provide further insights into biological mechanisms and help identify disease biomarkers. In this study, a large-scale inference of the lncRNA-related miRNA sponge network of pan-neuropsychiatric disorders, including autism spectrum disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), was carried out using brain transcriptomic (RNA-Seq) data. The candidate miRNA sponge modules were identified based on the co-expression pattern of non-coding RNAs, sharing of miRNA binding sites, and sensitivity canonical correlation. miRNA sponge modules are associated with chemical synaptic transmission, nervous system development, metabolism, immune system response, ribosomes, and pathways in cancer. The identified modules showed similar and distinct gene expression patterns depending on the neuropsychiatric condition. The preservation of miRNA sponge modules was shown in the independent brain and blood-transcriptomic datasets of NPDs. We also identified miRNA sponging lncRNAs that may be potential diagnostic biomarkers for NPDs. Our study provides a comprehensive resource on miRNA sponging in NPDs.
Collapse
|
11
|
Therapy-resistant and -sensitive lncRNAs, SNHG1 and UBL7-AS1 promote glioblastoma cell proliferation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2623599. [PMID: 35313638 PMCID: PMC8933655 DOI: 10.1155/2022/2623599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/23/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022]
Abstract
The current treatment options for glioblastoma (GBM) can result in median survival of 15-16 months only, suggesting the existence of therapy-resistant factors. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play an essential role in the development of various brain tumors, including GBM. This study aimed to identify therapy-resistant and therapy-sensitive GBM associated lncRNAs and their role in GBM. We conducted a genome-wide transcriptional survey to explore the lncRNA landscape in 195 GBM brain tissues. Cell proliferation was evaluated by CyQuant assay and Ki67 immunostaining. Expression of MAD2L1 and CCNB2 was analyzed by western blotting. We identified 51 lncRNAs aberrantly expressed in GBM specimens compared with either normal brain samples or epilepsy non-tumor brain samples. Among them, 27 lncRNAs were identified as therapy-resistant lncRNAs that remained dysregulated after both radiotherapy and chemoradiotherapy; while 21 lncRNAs were identified as therapy-sensitive lncRNAs whose expressions were reversed by both radiotherapy and chemoradiotherapy. We further investigated the potential functions of the therapy-resistant and therapy-sensitive lncRNAs and demonstrated their relevance to cell proliferation. We also found that the expressions of several lncRNAs, including SNHG1 and UBL7-AS1, were positively correlated with cell-cycle genes’ expressions. Finally, we experimentally confirmed the function of a therapy-resistant lncRNA, SNHG1, and a therapy-sensitive lncRNA, UBL7-AS1, in promoting cell proliferation in GBM U138MG cells. Our in vitro results demonstrated that knockdown of SNHG1 and UBL7-AS1 showed an additive effect in reducing cell proliferation in U138MG cells.
Collapse
|
12
|
LncSNHG1 Promoted CRC Proliferation through the miR-181b-5p/SMAD2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4181730. [PMID: 35310912 PMCID: PMC8933095 DOI: 10.1155/2022/4181730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Objective To investigate the effects of LncRNA SNHG1 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) of colorectal cancer cells (CRCs). Methods 4 pairs of CRC tissue samples and their corresponding adjacent samples were analyzed by the human LncRNA microarray chip. The expression of LncSNHG1 in CRC cell lines was verified by qRT-PCR. Colony formation assays and CCK8 assays were applied to study the changes in cell proliferation. The transwell assay and wound healing experiments were used to verify the cell invasion and migration. EMT progression was confirmed finally. Results LncSNHG1 was overexpressed both in CRC tissues and cell lines, while the miR-181b-5p expression was decreased in CRC cell lines. After knock-down of LncSNHG1, the proliferation, invasion, and migration of HT29 and SW620 cells were all decreased. Meanwhile, LncSNHG1 enhanced EMT progress through regulation of the miR-181b-5p/SMAD2 axis. Conclusion LncSNHG1 promotes colorectal cancer cell proliferation and invasion through the miR-181b-5p/SMAD2 axis.
Collapse
|
13
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:2166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
Affiliation(s)
| | - Seungil Ro
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA;
| |
Collapse
|
14
|
Wang J, Zhang XY, Xu DY. Zebrafish xenograft model for studying the function of lncRNA SNHG4 in the proliferation and migration of colorectal cancer. J Gastrointest Oncol 2022; 13:210-220. [PMID: 35284103 PMCID: PMC8899727 DOI: 10.21037/jgo-21-832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/30/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The zebrafish xenograft model has become a reliable in vivo model for human cancer research. Compared to a mouse model, the zebrafish xenograft has many advantages, including optical transparency, intuitive in vivo observation, and speed. Long noncoding RNAs (lncRNAs) have been identified as crucial regulatory factors in the progression of colorectal cancer (CRC). The biological function of lncRNA small nucleolar RNA host gene 4 (SNHG4) in CRC is still unclear. METHODS We analyzed the expression of SNHG4 in CRC patient samples by the Gene Expression Profiling Interactive Analysis (GEPIA) software. The quantitative real time-polymerase chain reaction (qRT-PCR) was used to verify in CRC cell lines. The colony formation assay was used to study the cell proliferation, and we used the transwell assay to detect the migration ability. Then the zebrafish xenograft models were used to confirm these roles of SNHG4 in vivo. Moreover, we detected epithelial mesenchymal transition (EMT) related genes by qRT-PCR. RESULTS We found the expression of SNHG4 was upregulated in CRC patient samples by analyzing GEPIA software, which was also verified in CRC cell lines. We also found that silencing SNHG4 inhibited the proliferation and migration of CRC cells, and its roles were verified in zebrafish xenografts in vivo. Further, we found that the expression of E-cadherin was significantly upregulated and N-cadherin was downregulated when knocking-down SNHG4 in CRC cells. CONCLUSIONS Our findings demonstrated that SNHG4 played oncogenic roles in CRC, which could be a potential target for treatment of CRC patients, and the results strongly revealed that zebrafish xenograft could be used for functional research of lncRNAs in human cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of General Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Zhang
- Department of General Surgery, The Affiliated Huai’an Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong-Yan Xu
- Department of Gastroenterology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
15
|
Growth arrest-specific 5 lncRNA as a valuable biomarker of chemoresistance in osteosarcoma. Anticancer Drugs 2022; 33:278-285. [PMID: 35045526 DOI: 10.1097/cad.0000000000001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and teenagers, and it is characterised by drug resistance and high metastatic potential. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) as oncogenes or tumour suppressors as well as new biomarkers and therapeutic targets in osteosarcoma. The growth arrestspecific 5 (GAS5) lncRNA can function as a tumour suppressor in several cancers. The present study aimed to validate GAS5 and other chemoresistanceassociated lncRNAs as biomarkers in a cohort of primary osteosarcoma samples, to obtain predictive information on resistance or sensitivity to treatment. The GAS5 and a panel of lncRNAs related to chemoresistance [SNGH1, FOXD2-AS1, deleted in lymphocytic leukemia (DLEU2) and LINC00963] were evaluated in a cohort of osteosarcoma patients enrolled at the Careggi University Hospital. Total RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections and the expression levels of the lncRNAs were quantified by qPCR. A bioinformatic analysis on deposited RNA-seq data was performed to validate the qPCR results. Clustering analysis shows that GAS5 could be linked to the expression of isoforms 02 and 04 of the lncRNA DLEU2, whereas the DLEU2 isoform 08 is linked to the lncRNA LINC00963. We found that GAS5 is significantly increased in patients with a good prognosis and is expressed differently between chemosensitive and chemoresistant osteosarcoma patients. However, the results obtained are not concordant with the in-silico analysis performed on the TARGET osteosarcoma dataset. In the future, we would enlarge the case series, including different disease settings.
Collapse
|
16
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
17
|
Tang Q, Li Z, Han W, Cheng S, Wang Y. High expression of lncRNA SNHG1 in prostate cancer patients and inhibition of SNHG1 suppresses cell proliferation and promotes apoptosis. INDIAN J PATHOL MICR 2021; 63:575-580. [PMID: 33154308 DOI: 10.4103/ijpm.ijpm_612_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective This study aimed to investigate the expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in prostate cancer (PCa) patients and to assess the effects of SNHG1 on PCa cell proliferation and apoptosis. Materials and Methods A total of 134 PCa patients were randomly included from patients who underwent surgical resection at our hospital from October 2015 to December 2016. The SNHG1 expression levels in PCa tissues and paired adjacent non-cancerous tissues were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The association of the SNHG1 expression with clinical-pathological features of PCa patients was summarized and evaluated. A short interfering (si) RNA targeting SNHG1 and pcDNA3.1-SNHG1 were transfected into PC3 and DU145 PCa cell lines, and transfection efficiency was verified by qRT-PCR. Cell proliferation and apoptosis were assessed by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. Results The SNHG1 expression was significantly upregulated in PCa tumor tissues compared with paired adjacent non-cancerous tissues. The SNHG1 expression was obviously associated with the TNM stage, Gleason Score, lymph node invasion, and long-term metastasis mortality rate. Silencing of SNHG1 inhibited cell proliferation and promoted apoptosis in PC3 and DU145 PCa cell lines in vitro, while overexpression of SNHG1 led to opposite results. Conclusion LncRNA SNHG1 was upregulated and associated with aggressive malignant behavior in PCa progression. SNHG1 might serve as a potential prognostic biomarker and potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Qi Tang
- Department of Urology, The Second Affiliated Hospital, University of South China; Department of Urology, The Third People's Hospital of Yongzhou City, Hunan, China
| | - Zhen Li
- Department of Urinary Surgery, Hospital of Xi'an, Xi'an China, China
| | - Weijun Han
- Department of Urinary Surgery, Tongren Hospital of Shanhai, Shanghai, China
| | - Shujie Cheng
- Department of Surgery, Bao Ji Tr aditional Chinese Medicine Hospital of Baoji, Baoji, Shannxi, China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital, University of South China, Hunan, China
| |
Collapse
|
18
|
Wang S, Han H, Meng J, Yang W, Lv Y, Wen X. Long non-coding RNA SNHG1 suppresses cell migration and invasion and upregulates SOCS2 in human gastric carcinoma. Biochem Biophys Rep 2021; 27:101052. [PMID: 34179518 PMCID: PMC8214191 DOI: 10.1016/j.bbrep.2021.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Gastric carcinoma (GC) is one of the most common malignancies and the third leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) may be an important class of functional regulators involved in human gastric cancers development. In this study, we investigated the clinical significance and function of lncRNA SNHG1 in GC. SNHG1 was significantly downregulated in GC tumor tissues compared with adjacent noncancerous tissues. Overexpression of SNHG1 in BGC-823 cells remarkably inhibited not only cell proliferation, migration, invasion in vitro, but also tumorigenesis and lung metastasis in the chick embryo chorioallantoic membrane (CAM) assay in vivo. Conversely, inhibition of SNHG1 by transfection of siRNA in AGS cells resulted in opposite phenotype changes. Mechanically, SNHG1 was found interacted with ILF3, NONO and SFPQ. RNA-seq combined with bioinformatic analysis identified a serial of downstream genes of SNHG1, including SOCS2, LOXL2, LTBP3, LTBP4. Overexpression of SNHG1 induced SOCS2 expression whereas knockdown of SNHG1 decreased SOCS2 expression. In addition, knockdown of SNHG1 promoted the activation of JAK2/STAT signaling pathway. Taken together, our data suggested that SNHG1 suppressed aggressive phenotype of GC cells and regulated SOCS2/JAK2/STAT pathway. SNHG1 was significantly downregulated in GC tumor tissues. SNHG1 suppressed proliferation and migration of GC cells. SNHG1 localized in nucleus of GC cells and interacted with ILF3, NONO and SFPQ. SNHG1 regulate SOCS2 expression in GC cell lines and JAK2/STAT signaling pathway in AGS cells.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Haibo Han
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Junling Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Wei Yang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Yunwei Lv
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| | - Xianzi Wen
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Ma H, Dong A. Dysregulation of lncRNA SNHG1/miR-145 axis affects the biological function of human carotid artery smooth muscle cells as a mechanism of carotid artery restenosis. Exp Ther Med 2021; 21:423. [PMID: 33777187 PMCID: PMC7967805 DOI: 10.3892/etm.2021.9867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Carotid angioplasty and stenting have developed into reliable options for patients with carotid stenosis. However, postoperative restenosis remains a serious and unresolved problem. Restenosis is partly caused by the proliferation of vascular smooth muscle cells. As certain long non-coding RNAs (lncRNAs) affect cell proliferation and migration, the present study aimed to investigate them as novel biomarkers for restenosis development and to further reveal the potential underlying mechanisms. The expression of lncRNA small nucleolar RNA host gene 1 (SNHG1) and microRNA145 (miR-145) in human carotid artery smooth muscle cells (hHCtASMCs) was analyzed using reverse transcription-quantitative PCR. In addition, a luciferase reporter assay was performed to investigate the interaction between SNHG1 and miR-145. The effects of the SNHG1/miR-145 axis on the proliferation and migration of hHCtASMCs were evaluated by Cell Counting Kit-8 and Transwell assays. Serum SNHG1 and miR-145 expression levels were increased and decreased, respectively, in patients with restenosis (all P<0.001). High SNHG1 and low miR-145 were identified as risk factors for restenosis onset (all P<0.01). Furthermore, decreasing SNHG1 expression levels in hHCtASMCs inhibited cell proliferation and migration. The luciferase reporter assay and expression results demonstrated that miR-145 may be a target of SNHG1 and mediated the effects of SNHG1 on hHCtASMC proliferation and migration. The results obtained suggested that abnormal expression of SNHG1 and miR-145 may be risk factors for restenosis. The present study revealed that the SNHG1/miR-145 axis regulates hHCtASMC proliferation and migration, indicating its potential for restenosis prevention and treatment.
Collapse
Affiliation(s)
- Huanhuan Ma
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Aiqin Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
20
|
Grubelnik G, Boštjančič E, Aničin A, Dovšak T, Zidar N. MicroRNAs and Long Non-Coding RNAs as Regulators of NANOG Expression in the Development of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:579053. [PMID: 33643897 PMCID: PMC7906007 DOI: 10.3389/fonc.2020.579053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
NANOG is a stem cell transcription factor that is believed to play an important role in the development of oral squamous cell carcinoma (OSCC), but there is limited data regarding the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of NANOG expression. We therefore analyzed expression of NANOG, NANOG-regulating miRNAs and lncRNAs in OSCC cancerogenesis, using oral biopsy samples from 66 patients including normal mucosa, dysplasia, and OSCC. Expression analysis of NANOG, miR-34a, miR-145, RoR, SNHG1, AB209630, and TP53 was performed using qPCR and immunohistochemistry for NANOG protein detection. NANOG protein showed no staining in normal mucosa, very weak in low-grade dysplasia, and strong staining in high-grade dysplasia and OSCC. NANOG, miR-145, RoR, and SNHG1 showed up-regulation, TP53 and miR-34a showed down-regulation, and AB209630 showed variable expression during cancerogenesis. NANOG mRNA was up-regulated early in cancerogenesis, before strong protein expression can be detected. NANOG was in correlation with miR-145 and RoR. Our results suggest that miRNAs and lncRNAs, particularly miR-145 and RoR, might be important post-transcription regulatory mechanisms of NANOG in OSCC cancerogenesis. Furthermore, NANOG protein detection has a diagnostic potential for oral high-grade dysplasia, distinguishing it from low-grade dysplasia and non-neoplastic reactive lesions.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandar Aničin
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Dovšak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Maxillofacial and Oral Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Torsin LI, Petrescu GED, Sabo AA, Chen B, Brehar FM, Dragomir MP, Calin GA. Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance. Int J Mol Sci 2021; 22:ijms22020581. [PMID: 33430133 PMCID: PMC7827606 DOI: 10.3390/ijms22020581] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, for seemingly every type of cancer, dysregulated levels of non-coding RNAs (ncRNAs) are reported and non-coding transcripts are expected to be the next class of diagnostic and therapeutic tools in oncology. Recently, alterations to the ncRNAs transcriptome have emerged as a novel hallmark of cancer. Historically, ncRNAs were characterized mainly as regulators and little attention was paid to the mechanisms that regulate them. The role of modifications, which can control the function of ncRNAs post-transcriptionally, only recently began to emerge. Typically, these modifications can be divided into reversible (i.e., chemical modifications: m5C, hm5C, m6A, m1A, and pseudouridine) and non-reversible (i.e., editing: ADAR dependent, APOBEC dependent and ADAR/APOBEC independent). The first research papers showed that levels of these modifications are altered in cancer and can be part of the tumorigenic process. Hence, the aim of this review paper is to describe the most common regulatory modifications (editing and chemical modifications) of the traditionally considered “non-functional” ncRNAs (i.e., microRNAs, long non-coding RNAs and circular RNAs) in the context of malignant disease. We consider that only by understanding this extra regulatory layer it is possible to translate the knowledge about ncRNAs and their modifications into clinical practice.
Collapse
Affiliation(s)
- Ligia I. Torsin
- Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania;
| | - George E. D. Petrescu
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Alexandru A. Sabo
- Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany;
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China
| | - Felix M. Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (G.E.D.P.); (F.M.B.)
- Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Correspondence: or (M.P.D.); (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.)
| |
Collapse
|
22
|
Qi X, Lin Y, Liu X, Chen J, Shen B. Biomarker Discovery for the Carcinogenic Heterogeneity Between Colon and Rectal Cancers Based on lncRNA-Associated ceRNA Network Analysis. Front Oncol 2020; 10:535985. [PMID: 33194594 PMCID: PMC7662689 DOI: 10.3389/fonc.2020.535985] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide. Emerging evidence has revealed that risk factors and metastatic patterns differ greatly between colon and rectal cancers. However, the molecular mechanism underlying their pathogenic differences remains unclear. Therefore, we here aimed to identify non-coding RNA biomarkers based on lncRNA-associated ceRNA network (LceNET) to elucidate the carcinogenic heterogeneity between colon and rectal cancers. Methods A global LceNET in human was constructed by employing experimental evidence-based miRNA-mRNA and miRNA-lncRNA interactions. Then, four context-specific ceRNA networks related to cancer initiation and metastasis were extracted by mapping differentially expressed lncRNAs, miRNAs and mRNAs to the global LceNET. Notably, a novel network-based bioinformatics model was proposed and applied to identify lncRNA/miRNA biomarkers and critical ceRNA triplets for understanding the carcinogenic heterogeneity between colon and rectal cancers. Moreover, the identified biomarkers were further validated by their diagnostic/prognostic performance, expression pattern and correlation analysis. Results Based on network modeling, lncRNA KCNQ1OT1 (AUC>0.85) and SNHG1 (AUC>0.94) were unveiled as common diagnostic biomarkers for the initiation and metastasis of colon and rectal cancers. qRT-PCR analysis uncovered that these lncRNAs had significantly higher expression level in CRC cell lines with high metastatic potential. In particular, KCNQ1OT1 and SNHG1 function in colon and rectal cancers via different ceRNA mechanisms. For example, KCNQ1OT1/miR-484/ANKRD36 axis was involved in the initiation of colon cancer, while KCNQ1OT1/miR-181a-5p/PCGF2 axis was implicated in the metastasis of rectal cancer; the SNHG1/miR-484/ORC6 axis played a role in colon cancer, while SNHG1/miR-423-5p/EZH2 and SNHG1/let-7b-5p/ATP6V1F axes participated in the initiation and metastasis of rectal cancer, respectively. In these ceRNA triplets, miR-484, miR-181a-5p, miR-423-5p and let-7b-5p were identified as miRNA biomarkers with excellent distinguishing ability between normal and tumor tissues, and ANKRD36, PCGF2, EZH2 and ATP6V1F were closely related to the prognosis of corresponding cancer. Conclusion The landscape of lncRNA-associated ceRNA network not only facilitates the exploration of non-coding RNA biomarkers, but also provides deep insights into the oncogenetic heterogeneity between colon and rectal cancers, thereby contributing to the optimization of diagnostic and therapeutic strategies of CRC.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China.,Center for Systems Biology, Soochow University, Suzhou, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou, China.,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou, China.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
LncRNA SNHG1 was down-regulated after menopause and participates in postmenopausal osteoporosis. Biosci Rep 2020; 39:220723. [PMID: 31693735 PMCID: PMC6851504 DOI: 10.1042/bsr20190445] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/01/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
The functions of long (>200 nt) non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) have only been investigated in cancer biology. We found that plasma LncRNA SNHG1 was down-regulated in postmenopausal than in premenopausal females. Among postmenopausal females, the ones with postmenopausal osteoporosis showed much lower expression levels of plasma lncRNA SNHG1. A 6-year follow-up study on postmenopausal females revealed that plasma lncRNA SNHG1 decreased in females with postmenopausal osteoporosis but not in healthy postmenopausal females. Levels of plasma lncRNA SNHG1 at 12 months before diagnosis is sufficient to distinguish postmenopausal osteoporosis patients from healthy controls. After treatment, plasma lncRNA SNHG1 were significantly up-regulated. Therefore, lncRNA SNHG1 was down-regulated after menopause and plasma level of lncRNA SNHG1 may serve as a biomarker for the diagnosis and treatment of postmenopausal osteoporosis.
Collapse
|
24
|
Pidíkova P, Reis R, Herichova I. miRNA Clusters with Down-Regulated Expression in Human Colorectal Cancer and Their Regulation. Int J Mol Sci 2020; 21:E4633. [PMID: 32610706 PMCID: PMC7369991 DOI: 10.3390/ijms21134633] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of microRNA (miRNA) expression has been extensively studied with respect to colorectal cancer (CRC), since CRC is one of the leading causes of cancer mortality worldwide. Transcriptional control of miRNAs creating clusters can be, to some extent, estimated from cluster position on a chromosome. Levels of miRNAs are also controlled by miRNAs "sponging" by long non-coding RNAs (ncRNAs). Both types of miRNA regulation strongly influence their function. We focused on clusters of miRNAs found to be down-regulated in CRC, containing miR-1, let-7, miR-15, miR-16, miR-99, miR-100, miR-125, miR-133, miR-143, miR-145, miR-192, miR-194, miR-195, miR-206, miR-215, miR-302, miR-367 and miR-497 and analysed their genome position, regulation and functions. Only evidence provided with the use of CRC in vivo and/or in vitro models was taken into consideration. Comprehensive research revealed that down-regulated miRNA clusters in CRC are mostly located in a gene intron and, in a majority of cases, miRNA clusters possess cluster-specific transcriptional regulation. For all selected clusters, regulation mediated by long ncRNA was experimentally demonstrated in CRC, at least in one cluster member. Oncostatic functions were predominantly linked with the reviewed miRNAs, and their high expression was usually associated with better survival. These findings implicate the potential of down-regulated clusters in CRC to become promising multi-targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Paulína Pidíkova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| | - Richard Reis
- First Surgery Department, University Hospital, Comenius University in Bratislava, 811 07 Bratislava, Slovakia;
| | - Iveta Herichova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia;
| |
Collapse
|
25
|
Li J, Zeng T, Li W, Wu H, Sun C, Yang F, Yang M, Fu Z, Yin Y. Long non-coding RNA SNHG1 activates HOXA1 expression via sponging miR-193a-5p in breast cancer progression. Aging (Albany NY) 2020; 12:10223-10234. [PMID: 32497022 PMCID: PMC7346023 DOI: 10.18632/aging.103123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. Long non-coding RNA small nucleolar RNA host gene 1 (SNHG1) has been reported to be involved in human diseases, including cancer. Here, we found that SNHG1 expression was significantly upregulated in human breast cancer tissues and cell lines. We explored the function of SNHG1 in breast cancer cells using in vitro and in vivo experiments and found that SNHG1 promotes breast cancer metastasis and proliferation. The potential molecular mechanism of SNHG1 in breast cancer cells may involve SNHG1 acting as a sponge of miR-193a-5p to activate the expression of the oncogene HOXA1. In summary, our study reveals a novel SNHG1/miR-193a-5p/HOXA1 competing endogenous RNA regulatory pathway in breast cancer progression and may provide new strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengzhu Yang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital, Gynecology and Obstetrics Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Song G, Xi G, Li Y, Zhao Y, Qi C, Song L, Xiao B, Ma C. Double triggers, nasal induction of a Parkinson's disease mouse model. Neurosci Lett 2020; 724:134869. [PMID: 32114119 DOI: 10.1016/j.neulet.2020.134869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022]
Abstract
Animal models of Parkinson's disease (PD), a chronic and progressive neurodegenerative disease of the central nervous system (CNS), play a key role in investigating the pathogenesis and developing new therapeutic strategies of PD. However, this goal has been limited by certain weaknesses in the available animal models of PD, e.g., induction by either pro-inflammatory or neurotoxic reagents, or they are too time-/effort-consuming. Here, we report a double triggers, nasal induction of a PD mouse model that mimics the clinical, pathological features and pathogenesis of PD by intranasal (i.n.) administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) combined with lipopolysaccharide (LPS). After administration once every three days for 7 consecutive weeks, these mice displayed enhanced motor dysfunction, loss of dopaminergic neurons, α-synuclein accumulation, as well as activation of microglia and astrocytes in the substantia nigra pars compacta compared with mice that were administered MPTP or LPS alone. This study provides a novel and basic research tool for investigating the pathogenesis and therapeutic intervention of PD.
Collapse
Affiliation(s)
- Guobin Song
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Guoping Xi
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Yijin Zhao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Caixia Qi
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China
| | - Lijuan Song
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, 037009, China; Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
27
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Xiong X, Feng Y, Li L, Yao J, Zhou M, Zhao P, Huang F, Zeng L, Yuan L. Long non‑coding RNA SNHG1 promotes breast cancer progression by regulation of LMO4. Oncol Rep 2020; 43:1503-1515. [PMID: 32323846 PMCID: PMC7107776 DOI: 10.3892/or.2020.7530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) was reported to be a critical regulator of tumorigenesis and is frequently deregulated in several cancer types. However, the exact mechanism by which SNHG1 contributes to breast cancer progression has not been fully elucidated. The identification of the molecular mechanism of SNHG1 is important for understanding the development of breast cancer and for improving the prognosis of the patients with this disease. In the present study, increased expression levels of SNHG1 were noted in breast cancer tumors following analysis of differentially expressed lncRNAs between 1,063 tumor and 102 normal tissues derived from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. This finding was further validated using 50 pairs of normal and tumor tissues that were collected from patients with breast cancer. Notably, SNHG1 expression was significantly correlated with estrogen receptor (ER)/progesterone receptor (PR) negative status (ER−/PR−) and advanced clinical stage in breast cancer tissues. Knockdown of SNHG1 led to cell growth arrest, cell cycle redistribution and cell migration inhibition of breast cancer cells. The miRDB database predicted that miR-573 interacts with SNHG1. RT-PCR confirmed the negative regulation of miR-573 levels by SNHG1 in breast cancer cells and the Dual-luciferase reporter assay confirmed their complementary binding. The repression of miR-573 by SNGH1 decreased LIM domain only 4 (LMO4) mRNA and protein expression levels in the breast cancer cell lines tested and induced the expression of cyclin D1 and cyclin E. In vitro experiments indicated that LMO4 overexpression could reverse siSNHG1-induced cell growth arrest, cell cycle redistribution and inhibition of cell migration in breast cancer cells. Moreover, the tumor xenograft model indicated that SNHG1 knockdown inhibited MDA-MB-231 growth in vivo and LMO4 overexpression reversed the tumor growth inhibition induced by SNHG1 knockdown. The present study demonstrated that SNHG1 acts as a novel oncogene in breast cancer via the SNHG/miR-573/LMO4 axis and that it could be a promising therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Yao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Meirong Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Piao Zhao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Feilong Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
29
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
30
|
Taherian-Esfahani Z, Taheri M, Dashti S, Kholghi-Oskooei V, Geranpayeh L, Ghafouri-Fard S. Assessment of the expression pattern of mTOR-associated lncRNAs and their genomic variants in the patients with breast cancer. J Cell Physiol 2019; 234:22044-22056. [PMID: 31062358 DOI: 10.1002/jcp.28767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a fundamental component of a signaling pathway that is involved in the pathogenesis of breast cancer via different mechanisms. This pathway is functionally linked with a number of small nucleolar RNA host genes (SNHGs). In the present project, we have searched for the expression quantitative trait loci (eQTLs) within SNHGs that are possibly involved in the pathogenesis of breast cancer. Following this in silico step, we have assessed expression levels of mTOR and four SNHGs in malignant and nonmalignant samples obtained from 80 patients with breast cancer. We also genotyped rs4615861 of SNHG3 and rs3087978 of SNHG5 in the peripheral blood of patients. SNHG12 expression was not detected in any of the assessed malignant or nonmalignant tissues. So this gene was excluded from further steps. Expression of mTOR and other three long noncoding RNAs (lncRNAs) were significantly increased in the malignant tissues compared with the nonmalignant tissues. When classifying patients into down-/upregulation categorized based on the transcript levels of each gene in malignant tissue versus nonmalignant tissues, we noticed associations between expression of SNHG1 and stage (p = 0.03), expression of SNHG5 and grade (p = 0.05), as well as between expression of SNHG3 and history of oral contraceptive use (p = 0.04). We also detected higher levels of SNHG3 expression in estrogen receptor/progesterone receptor (ER/PR) negative tumors compared with the ER/PR positive tumors (p = 0.003 and p = 0.01, respectively). Moreover, there was a trend toward higher expression of this lncRNA in HER2-positive tumors compared with the HER2-negative ones (p = 0.07). Combination of transcript levels of all genes could differentiate malignant tissues from nonmalignant tissues with the diagnostic power of 69% (p = 0.0001). The rs3087978 was associated with the expression of mTOR in malignant tissues in a way that TT and TG genotypes were associated with the higher and lower levels of expressions, respectively (p = 0.01). The current study underscores the significance of SNHGs in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi-Oskooei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Geranpayeh
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Yang H, Jiang Z, Wang S, Zhao Y, Song X, Xiao Y, Yang S. Long non-coding small nucleolar RNA host genes in digestive cancers. Cancer Med 2019; 8:7693-7704. [PMID: 31691514 PMCID: PMC6912041 DOI: 10.1002/cam4.2622] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) do not have protein coding capacities, they are involved in the pathogenesis of many types of cancers, including hepatocellular carcinoma, cervical cancer, and gastric cancer. Notably, the roles of lncRNAs are vital in nearly every aspect of tumor biology. Long non-coding small nucleolar RNA host genes (lnc-SNHGs) are abnormally expressed in multiple cancers, including urologic neoplasms, respiratory tumors, and digestive cancers, and play vital roles in these cancers. These host genes could participate in tumorigenesis by regulating proliferation, migration, invasion and apoptosis of tumor cells. This review focuses on the overview of the roles that lnc-SNHGs play in the formation and progression of digestive cancers.
Collapse
Affiliation(s)
- Huan Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Zheng Jiang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shuang Wang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yongbing Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Xiaomei Song
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
32
|
Zhang X, Zhang X, Shen L, Song L, Wu J, Cao G, Chen X, Zhu B. Comprehensive analysis of differentially expressed lncRNAs as diagnostic and prognostic markers for colorectal cancer. Exp Ther Med 2019; 18:4481-4489. [PMID: 31772638 DOI: 10.3892/etm.2019.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/02/2019] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Recent studies had revealed the important roles of long non-coding RNAs (lncRNAs) in a variety of human cancers, including CRC. However, the molecular mechanisms associated with CRC remain largely undetermined. In the current study, the GSE21510 dataset was analyzed to identify differentially expressed mRNAs and lncRNAs in CRC samples. The Database for Annotation, Visualization and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway bioinformatics analysis. Furthermore, protein-protein interaction networks were constructed to reveal interactions among differentially expressed proteins. Kaplan-Meier analysis was subsequently performed to determine the association between key lncRNA expression and the overall survival of patients with CRC. A total of 107 upregulated lncRNAs and 43 downregulated lncRNAs were identified in CRC. A lncRNA mediated co-expression network was also constructed in CRC. Bioinformatics analysis indicated that lncRNAs were associated with a series of biological processes, including 'xenobiotic glucuronidation', 'rRNA processing', 'sister chromatid cohesion', 'cell proliferation', 'mitotic nuclear division' and 'cell cycle regulation'. Furthermore, a higher expression of small nucleolar RNA host gene 17, tetratricopeptide repeat domain 2B-antisense RNA (AS) 1, erythrocyte membrane protein band 4.1 like 4A-AS2, deleted in lymphocytic leukemia 2, and a lower expression of muscle blind like splicing regulator 1-AS1 and LOC389332 were associated with shorter overall survival time in CRC samples. The present study provides useful information that can be used in the identification of novel biomarkers for CRC.
Collapse
Affiliation(s)
- Xunlei Zhang
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xingsong Zhang
- Department of Pathology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lili Shen
- Department of Oncology, Haimen People's Hospital, Nantong, Jiangsu 226100, P.R. China
| | - Li Song
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Guangxin Cao
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Xin Chen
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Bin Zhu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
33
|
Fu Y, Yin Y, Peng S, Yang G, Yu Y, Guo C, Qin Y, Zhang X, Xu W, Qin Y. Small nucleolar RNA host gene 1 promotes development and progression of colorectal cancer through negative regulation of miR-137. Mol Carcinog 2019; 58:2104-2117. [PMID: 31469189 PMCID: PMC6852404 DOI: 10.1002/mc.23101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Small nucleolar RNA host gene 1 (SNHG1) is critical in the progression of cancers. However, the mechanism by which SNHG1 regulates the progression of colorectal cancer (CRC) remains unclear. Expressions of SNHG1 and miR‐137 in CRC tissues and cell lines were evaluated by quantitative real‐time polymerase chain reaction. A luciferase reporter gene assay was conducted to investigate miR‐137 target. Additionally, RNA pull‐down assay was performed to explore the physical association between miR‐137, SNHG1, and RNA induced silencing complex (RISC). Cell cycling and invasion were examined by flow cytometry (FCM) and transwell assays. The in vivo carcinogenic activity of SNHG1 was examined using murine xenograft models. Expression of RICTOR, serine/threonine kinase 1 (AKT), serum and glucocorticoid‐inducible kinase 1 (SGK1), p70S6K1, and LC3II/LC3I ratio was examined by Western blot analysis. SNHG1 upregulation was observed in CRC tissues and cell lines, which was associated with the lymph node metastasis, advanced TNM stage and poorer prognosis. SNHG1 increased RICTOR level in CRC via sponging miR‐137. In addition, SNHG1 silencing inhibited CRC cell proliferation and migration in vitro and in vivo. SNHG1 regulated RICTOR expression by sponging miR‐137 and promoted tumorgenesis in CRC.
Collapse
Affiliation(s)
- Yang Fu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhan Yin
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sanfei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Changqing Guo
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiefu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, Shanghai, China
| | - Yiyu Qin
- Research Centre of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| |
Collapse
|
34
|
Dong B, Chen X, Zhang Y, Zhu C, Dong Q. The prognostic value of lncRNA SNHG1 in cancer patients: a meta-analysis. BMC Cancer 2019; 19:780. [PMID: 31391030 PMCID: PMC6686246 DOI: 10.1186/s12885-019-5987-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increasing evidence revealed that high expression level of lncRNA SNHG1 was associated with the unfavorable prognosis of cancer and maybe used as a valuable biomarker for cancer patients. The present meta->analysis is to analyze existing data to reveal potential clinical application of SNHG1 on cancer prognosis and tumor progression. All of the included studies were collected through a variety of retrieval strategies. And the articles were qualified by MOOSE and PRISMA checklists. METHODS Up to Mar 20, 2018, literature collection was performed by comprehensive search through electronic databases, including the Cochrane library, PubMed, Embase, Web of science, Springer, Science direct, and three Chinese databases: CNKI, Weipu, and Wanfang. We analyzed 14 studies that met the criteria, and concluded that the increased SHNG1 level was correlated with poor OS and tumor progression. RESULTS The combined results indicated that elevated SNHG1 expression level was significantly associated with poor OS (HR = 2.06, 95% CI: 1.69-2.52, P < 0.01) and PFS (HR = 2.78, 95% CI: 1.69-4.55, P < 0.01) in various cancers. Moreover, the promoted SNHG1 expression was also associated with tumor progression ((III/IV vs. I/II: HR = 1.89, 95% CI: 1.53-2.34, P < 0.01). In stratified analyses, a significantly unfavorable association of elevated lncRNA SNHG1 and OS was observed in both digestive system (HR = 2.04, 95% CI: 1.56-2.68, P < 0.01) and non-digestive system (HR = 2.09, 95% CI: 1.55-2.83, P < 0.01) cancer patients. CONCLUSIONS The present analysis indicated that the increased SNHG1 is associated with poor OS in patients with general tumors and may be served as a useful prognostic biomarker.
Collapse
Affiliation(s)
- Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Yunyuan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
| | - Chengzhan Zhu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of QingDao University, Qingdao, 266003 China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003 China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of QingDao University, Qingdao, 266003 China
| |
Collapse
|
35
|
Yu Y, Yang J, Yang S, Li Q, Zhang M, Wang L, Ji G, Miao L. Expression level and clinical significance of SNHG1 in human cancers: a meta-analysis. Onco Targets Ther 2019; 12:3119-3127. [PMID: 31114252 PMCID: PMC6497895 DOI: 10.2147/ott.s184803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
Background: As reported by numerous research studies, the expression levels of SNHG1 (small nucleolar RNA host gene 1) are increased in different kinds of tumours, revealing that SNHG1 is likely to perform a crucial function in cancer prevalence and progression. Moreover, a mounting degree of evidence suggests that increased SNHG1 expression also has an association with poor medical outcomes among cancer patients. Materials and methods: Collection of qualifying research studies was performed through the retrieval of keywords in PubMed and Web of Science, up to March 20, 2018. This quantitative meta-analysis was carried out using Stata SE12.0 software and aimed at exploring the connection between the expression level of SNHG1 and clinicopathology. Results: Ten research studies, involving an aggregate of 715 patients, met the inclusion criteria. As suggested by the findings of the current meta-analysis, with regard to prognosis, the patients with high expression of SNHG1 had poorer overall survival (OS) (HR =3.36, 95% CI: 2.42, 4.67) and, with regard to their clinicopathology, increased SNHG1 was associated with advanced TNM stage (RR =1.88, 95% CI: 1.58, 2.24), poorly differentiated histological grade (RR =1.38, 95% CI:1.09, 1.76), and positive lymph node metastasis (RR =1.80, 95% CI: 1.42, 2.29). Conclusion: As revealed by this meta-analysis, elevated SNHG1 expression is typical in various types of cancer. In addition, elevated SNHG1 expression is likely to function as an advanced predictive element of poor prognosis and lymph node metastasis in various cancer types. Nonetheless, to date, it remains essential to carry out larger-size and better-designed research studies for the confirmation of our findings.
Collapse
Affiliation(s)
- Yang Yu
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Shengquan Yang
- Department of Orthopaedics, The No. 1 People's Hospital of Yancheng, Yancheng, Jiangsu Province, People's Republic of China
| | - Quanpeng Li
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Mingjiong Zhang
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lijuan Wang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Guozhong Ji
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Lin Miao
- Medical Centre for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
36
|
Wang Y, Lu T, Wo Y, Sun X, Li S, Miao S, Dong Y, Leng X, Jiao W. Identification of a putative competitive endogenous RNA network for lung adenocarcinoma using TCGA datasets. PeerJ 2019; 7:e6809. [PMID: 31065463 PMCID: PMC6485208 DOI: 10.7717/peerj.6809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying the oncogenesis and progression of lung adenocarcinoma (LUAD) are currently unclear. The discovery of competitive endogenous RNA (ceRNA) regulatory networks has provided a new direction for the treatment and prognosis of patients with LUAD. However, the mechanism of action of ceRNA in LUAD remains elusive. In the present study, differentially expressed mRNAs, microRNAs (miRs) and long non-coding RNAs from the cancer genome atlas database were screened. CeRNAs for LUAD were then identified using online prediction software. Among the ceRNAs identified, family with sequence similarity 83 member A (FAM83A), miR-34c-5p, KCNQ1OT1 and FLJ26245 were observed to be significantly associated with the overall survival of patients with LUAD. Of note, FAM83A has potential significance in drug resistance, and may present a candidate biomarker for the prognosis and treatment of patients with LUAD.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yang Wo
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuncheng Miao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yanting Dong
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoliang Leng
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
37
|
Yu J, Yan Y, Hua C, Ming L. Upregulation of lncRNA SNHG1 is associated with metastasis and poor prognosis in cancers: A meta-analysis. Medicine (Baltimore) 2019; 98:e15196. [PMID: 31008944 PMCID: PMC6494252 DOI: 10.1097/md.0000000000015196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating evidence suggested that the expression level of long noncoding RNA small nucleolar RNA host gene 1 (lncRNA SNHG1) was upregulated in various cancers, and high expression of SNHG1 was associated with metastasis and prognosis in patients with cancer.The relationship between SNHG1 expression and metastasis or prognosis in malignant tumors was investigated in this meta-analysis. METHODS A systematic search was performed in PubMed, Web of Science, and Cochrane Library from inception until May 31, 2018. Hazard ratio (HR) or odds ratio (OR) with 95% confidence intervals (95% CIs) were calculated to demonstrate prognostic value of SNHG1 using Stata 12.0 software. RESULTS A total of 10 studies including 1129 patients were finally enrolled in the meta-analysis based on the inclusion and exclusion criteria. Increased SNHG1 expression was significantly associated with lymph node metastasis (OR = 3.28, 95% CI = 2.02-5.33) and advanced TNM stage (OR = 0.26, 95% CI = 0.16-0.43). Moreover, high expression of SNHG1 could predict poor overall survival (HR = 2.32, 95% CI = 1.90-2.83), event-free survival (HR = 1.58, 95% CI = 1.06-2.35), recurrence-free survival (HR = 2.15, 95% CI = 1.23-3.77), progression-free survival (HR = 2.75, 95% CI = 1.70-4.46), and disease-free survival (HR = 1.93, 95% CI = 1.10-3.40) in patients with cancer. CONCLUSION The present meta-analysis demonstrated that upregulation of lncRNA SNHG1 might serve as a useful prognostic biomarker in various cancers.
Collapse
Affiliation(s)
- Jing Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Yunmeng Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Chunlan Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, Zhengzhou, China
| |
Collapse
|
38
|
Thin KZ, Tu JC, Raveendran S. Long non-coding SNHG1 in cancer. Clin Chim Acta 2019; 494:38-47. [PMID: 30849309 DOI: 10.1016/j.cca.2019.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) consist of a cluster of RNAs having >200 nucleotides lacking protein-coding function. Recent studies indicate that lncRNAs are involved in various cellular processes and their aberrant expression may lead to tumour development and progression. They may also serve as oncogenes or tumour suppressor genes in other diseases. In this review, we emphasize current investigations involving clinical management, tumour progression and the molecular mechanism of SNHG1 in human cancer. MATERIALS AND METHODS We investigate and summarize recent studies regarding the biologic functions and mechanisms of lncRNA SNHG1 in tumorigenesis. Related studies were obtained through a systematic search of google scholar, PubMed, Embase and Cochrane Library. RESULTS SNHG1 is a novel oncogenic lncRNA aberrantly expressed in different diseases including colorectal, liver, lung, prostate, gastric and esophageal cancers as well as ischemic stroke, nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, neuroblastoma, renal cell carcinoma and osteosarcoma. Upregulation of SNHG1 was significantly associated with advanced tumour stage, tumour size, TNM stage and decreased overall survival. Furthermore, aberrant expression of SNHG1 contributes to cell proliferation, metastasis, migration and invasion of cancer cells. CONCLUSION SNHG1 likely acts as a useful tumour biomarker for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Khaing Zar Thin
- Department of Medical Laboratory Technology, University of Medical Technology, Yankin Hill Road, 19(th) Street, Patheingyi Township, Mandalay, Myanmar; Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jian Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Sudheesh Raveendran
- Department of Radiology & Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang, Hubei province, Wuhan 430071, China.
| |
Collapse
|
39
|
Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel) 2019; 10:genes10010052. [PMID: 30654440 PMCID: PMC6356509 DOI: 10.3390/genes10010052] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
In contrast to the amazing exponential growth in knowledge related to long non-coding RNAs (lncRNAs) involved in cell homeostasis or dysregulated pathological states, little is known so far about the links between the chemical modifications occurring in lncRNAs and their function. Generally, ncRNAs are post-transcriptional regulators of gene expression, but RNA modifications occurring in lncRNAs generate an additional layer of gene expression control. Chemical modifications that have been reported in correlation with lncRNAs include m⁶A, m⁵C and pseudouridylation. Up to date, several chemically modified long non-coding transcripts have been identified and associated with different pathologies, including cancers. This review presents the current level of knowledge on the most studied cancer-related lncRNAs, such as the metastasis associated lung adenocarcinoma transcript 1 (MALAT1), the Hox transcript antisense intergenic RNA (HOTAIR), or the X-inactive specific transcript (XIST), as well as more recently discovered forms, and their potential roles in different types of cancer. Understanding how these RNA modifications occur, and the correlation between lncRNA changes in structure and function, may open up new therapeutic possibilities in cancer.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Simona Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Andreea Daniela Lazar
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 050096 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
40
|
Do H, Kim W. Roles of Oncogenic Long Non-coding RNAs in Cancer Development. Genomics Inform 2018; 16:e18. [PMID: 30602079 PMCID: PMC6440676 DOI: 10.5808/gi.2018.16.4.e18] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as RNAs that are longer than 200 nucleotides and cannot be translated into protein. Several studies have demonstrated that lncRNAs are directly or indirectly involved in a variety of biological processes and in the regulation of gene expression. In addition, lncRNAs have important roles in many diseases including cancer. It has been shown that abnormal expression of lncRNAs is observed in several human solid tumors. Several studies have shown that many lncRNAs can function as oncogenes in cancer development through the induction of cell cycle progression, cell proliferation and invasion, anti-apoptosis, and metastasis. Oncogenic lncRNAs have the potential to become promising biomarkers and might be potent prognostic targets in cancer therapy. However, the biological and molecular mechanisms of lncRNA involvement in tumorigenesis have not yet been fully elucidated. This review summarizes studies on the regulatory and functional roles of oncogenic lncRNAs in the development and progression of various types of cancer.
Collapse
Affiliation(s)
- Hyunhee Do
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Wanyeon Kim
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| |
Collapse
|
41
|
Li Z, Li X, Chen C, Li S, Shen J, Tse G, Chan MTV, Wu WKK. Long non-coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2018; 51:e12483. [PMID: 30039593 PMCID: PMC6528936 DOI: 10.1111/cpr.12483] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the major cause of low back pain which incurs a significant public-health and economic burden. The aetiology of IDD is complex, with developmental, genetic, biomechanical and biochemical factors contributing to the disease development. Deregulated phenotypes of nucleus pulposus cells, including aberrant differentiation, apoptosis, proliferation and extracellular matrix deposition, are involved in the initiation and progression of IDD. Non-coding RNAs, including long non-coding RNAs (lncRNAs), have recently been identified as important regulators of gene expression. Research into their roles in IDD has been very active over the past 5 years. Our review summarizes current research regarding the roles of deregulated lncRNAs (eg, RP11-296A18.3, TUG1, HCG18) in modulating nucleus pulposus cell functions in IDD. These exciting findings suggest that specific modulation of lncRNAs or their downstream signalling pathways might be an attractive approach for developing novel therapeutics for IDD.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Chong Chen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shugang Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Gary Tse
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Matthew T. V. Chan
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- Department of Anaesthesia and Intensive Care and State Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
42
|
Xiao B, Huang Z, Zhou R, Zhang J, Yu B. The Prognostic Value of Expression of the Long Noncoding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) in Patients with Solid Malignant Tumors: A Systematic Review and Meta-Analysis. Med Sci Monit 2018; 24:5462-5472. [PMID: 30080819 PMCID: PMC6091164 DOI: 10.12659/msm.911687] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is expressed in solid malignant tumors. The aim of this systematic review and meta-analysis was to determine whether expression of the lncRNA SNHG1 was associated with prognosis in patients with malignancy. MATERIAL AND METHODS A literature review from Jan 1970 to July 2018 identified publications in the English language. Databases searched included: PubMed, OVID, Web of Science, the Cochrane Database, Embase, EBSCO, Google Scholar. Systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Newcastle-Ottawa Scale (NOS) assessment tool for risk of bias was used. RESULTS Eight publications (570 patients) and eight solid tumors were identified, including osteosarcoma, colorectal cancer, hepatocellular carcinoma, non-small cell lung cancer, esophageal cancer, ovarian cancer, glioma, and gastric cancer. Meta-analysis showed that expression of the lncRNA SNHG1 was significantly correlated with reduced overall survival (OS) (HR=1.917; 95% CI, 1.58-2.31) (P<0.001). Subgroup analysis showed that lncRNA SNHG1 expression was significantly correlated with TNM stage (OR=3.99; 95% CI, 2.48-6.43) and lymph node metastasis (OR=3.12; 95% CI, 1.95-4.98). There were no significant correlations between lncRNA SNHG1 expression and patient gender, tumor subtype, or tumor size. CONCLUSIONS Systematic literature review and meta-analysis identified eight publications that included 570 patients with eight types of solid malignant tumor, and showed that the expression of the lncRNA SNHG1 was significantly associated with worse clinical outcome.
Collapse
Affiliation(s)
- Bufan Xiao
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhaohao Huang
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ruihao Zhou
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jingtao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
43
|
Small nucleolar RNA host gene 1: A new biomarker and therapeutic target for cancers. Pathol Res Pract 2018; 214:1247-1252. [PMID: 30107989 DOI: 10.1016/j.prp.2018.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs), a group of transcripts with length greater than 200 nucleotides, have been involved in multiple pathophysiological processes of the human body, especially in tumorigenesis and progression of cancers. The aberrant expression of lncRNAs processes crucial functions involved in proliferation, apoptosis and metastatic capacity of cancers. Recent studies have revealed that small nucleolar RNA host gene 1 (SNHG1), a long non-coding RNA transcribed from UHG, was located in chromosome 11. Aberrant expression of SNHG1 has been demonstrated to be associated with various sites of cancers such as glioma, esophageal cancer, gastric cancer and many others, and its deregulation could be related to survival and prognosis of cancer patients. Pertinent to clinical practice, SNHG1 might act as a prognostic biomarker for tumors and might even serve as potential target for therapy. In this review, we summarized current researches concerning the role of SNHG1 in tumor progression and discussed its mechanisms involved. MATERIALS AND METHODS In this review, we summarized and figured out recent studies concerning the expression and biological mechanisms of SNHG1in tumor development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. RESULTS SNHG1 was a valuable cancer-related lncRNA that the expression level was up-regulation in a variety of malignancies, including glioma, esophageal cancer, lung cancer, gastric cancer, hepatocellular carcinoma, colorectal carcinoma, prostate cancer, cervical cancer, osteosarcoma, neuroblastoma, nasopharyngeal carcinoma. The aberrant expressions of SNHG1 have shown to contribute to proliferation, migration, and invasion of cancer cells. CONCLUSIONS SNHG1 represents promising novel biomarkers for various cancer types and have a great potential to be effectively used in clinical practice in the near future.
Collapse
|
44
|
Long Noncoding RNA SNHG1 Promotes Neuroinflammation in Parkinson's Disease via Regulating miR-7/NLRP3 Pathway. Neuroscience 2018; 388:118-127. [PMID: 30031125 DOI: 10.1016/j.neuroscience.2018.07.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorders. Neuroinflammation plays an important role in the pathogenesis of PD. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was elevated in the brain specimens of PD patients and MPP+-treated SH-SY5Y cells. The expression of mouse Snhg1 and miR-7 was firstly determined in lipopolysaccharide (LPS)-induced BV2 cells. The role and mechanism of SNHG1 in the neuroinflammation of PD were investigated using gain- and loss-of function approaches both in vitro and in vivo. Snhg1 expression was elevated, whereas miR-7 reduced in LPS-induced BV2 cells. Upregulation of Snhg1 elevated, and Snhg1 knockdown suppressed LPS-induced BV2 microglial activation and inflammation. miR-7 reversed, while anti-miR-7 further enhanced the effects of Snhg1 on BV2 cells. Furthermore, we found that Snhg1 functioned as a competing endogenous RNA for miR-7 to regulate nod-like receptor protein 3 (NLRP3) expression, leading to the activation of NLRP3 inflammasome. In the microglial culture supernatant transfer model, knockdown of Snhg1 or NLRP3 in LPS-stimulated BV2 cells inhibited primary neurons from apoptosis and elevated caspase-3 activity. Additionally, Snhg1 was increased in MPTP-induced PD mouse models. Downregulation of Snhg1 elevated miR-7 expression, suppressed the activation of microglia and NLRP3 inflammasome as well as dopaminergic neuron loss in the midbrain substantia nigra pars compacta in MPTP-treated mice. In conclusion, our study suggests that SNHG1 promotes neuroinflammation in the pathogenesis of PD via modulating miR-7/NLRP3 pathway.
Collapse
|
45
|
Epigenetic silencing of tumor suppressor gene CDKN1A by oncogenic long non-coding RNA SNHG1 in cholangiocarcinoma. Cell Death Dis 2018; 9:746. [PMID: 29970899 PMCID: PMC6030364 DOI: 10.1038/s41419-018-0768-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022]
Abstract
Cholangiocarcinoma (CCA) is the as the most frequently observed biliary tract malignancy, which has low survival rate in addition to constrained treatment options; nevertheless, the fundamental molecular phenomenon underlying malignant progression of CCA is quite ambiguous. Recently long non-coding RNAs (lncRNAs) have been found to have significant regulatory functions in several human cancers. Herein, we have figured out that lncRNA SNHG1, with substantially enhanced expression in CCA, is capable of acting as the oncogenic molecule of CCA. As revealed by our data, SNHG1 knockdown extensively inhibited CCA cell migration as well as proliferation in vitro and in vivo. In addition, in accordance with the findings of the RNA-Seq analysis, SNHG1 knockdown exhibited a significant impact on the target genes that were linked to cell migration and regulation of cell proliferation, in addition to the apoptotic phenomenon. In a mechanistic manner, we also showed that SNHG1 bound to the histone methyltransferase enhancer of the zeste homolog 2 (EZH2, which is regarded as the catalytic subunit of the polycomb repressive complex 2 (PRC2), which is an extremely conserved protein complex regulating gene expression with the help of methylating lysine 27 on histone H3), specifying the histone alteration pattern on the target genes, including CDKN1A, and, as a result, altered the CCA cell biology. These data verified a major function of the epigenetic regulation of SNHG1 in CCA oncogenesis, in addition to its likely function as a target for CCA interruption.
Collapse
|
46
|
|