1
|
Zhang W, Zhang X, Qiu C, Zhang Z, Su KJ, Luo Z, Liu M, Zhao B, Wu L, Tian Q, Shen H, Wu C, Deng HW. An atlas of genetic effects on the monocyte methylome across European and African populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311885. [PMID: 39211851 PMCID: PMC11361221 DOI: 10.1101/2024.08.12.24311885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the genetic architecture of DNA methylation is crucial for decoding complex disease etiology. However, current epigenomic studies are often limited by incomplete methylation coverage and heterogeneous tissue samples. Here, we present the first comprehensive, multi-ancestry human methylome atlas of purified human monocytes, generated through integrated whole-genome bisulfite sequencing and whole-genome sequencing from 298 European Americans (EA) and 160 African Americans (AA). By analyzing over 25 million methylation sites, we identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis- regions for EA and AA populations, respectively, revealing both shared (880,108 sites) and population-specific regulatory patterns. Furthermore, we developed population-specific DNAm imputation models, enabling methylome-wide association studies (MWAS) for 1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. These models were validated through multi-ancestry analysis of 41 complex traits from the Million Veteran Program. The identified meQTLs, MWAS models, and data resources are freely available at www.gcbhub.org and https://osf.io/gct57/ .
Collapse
|
2
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
3
|
Targeting the chemokine network in atherosclerosis. Atherosclerosis 2021; 330:95-106. [PMID: 34247863 DOI: 10.1016/j.atherosclerosis.2021.06.912] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 01/31/2023]
Abstract
Chemokines and their receptors represent a potential target for immunotherapy in chronic inflammation. They comprise a large family of cytokines with chemotactic activity, and their cognate receptors are expressed on all cells of the body. This network dictates leukocyte recruitment and activation, angiogenesis, cell proliferation and maturation. Dysregulation of chemokine and chemokine receptor expression as well as function participates in many pathologies including cancer, autoimmune diseases and chronic inflammation. In atherosclerosis, a lipid-driven chronic inflammation of middle-sized and large arteries, chemokines and their receptors participates in almost all stages of the disease from initiation of fatty streaks to mature atherosclerotic plaque formation. Atherosclerosis and its complications are the main driver of mortality and morbidity in cardiovascular diseases (CVD). Hence, exploring new fields of therapeutic targeting of atherosclerosis is of key importance. This review gives an overview of the recent advances on the role of key chemokines and chemokine receptors in atherosclerosis, addresses chemokine-based biomarkers at biochemical, imaging and genetic level in human studies, and highlights the clinial trials targeting atherosclerosis.
Collapse
|
4
|
Puca AA, Carrizzo A, Spinelli C, Damato A, Ambrosio M, Villa F, Ferrario A, Maciag A, Fornai F, Lenzi P, Valenti V, di Nonno F, Accarino G, Madonna M, Forte M, Calì G, Baragetti A, Norata GD, Catapano AL, Cattaneo M, Izzo R, Trimarco V, Montella F, Versaci F, Auricchio A, Frati G, Sciarretta S, Madeddu P, Ciaglia E, Vecchione C. Single systemic transfer of a human gene associated with exceptional longevity halts the progression of atherosclerosis and inflammation in ApoE knockout mice through a CXCR4-mediated mechanism. Eur Heart J 2021; 41:2487-2497. [PMID: 31289820 PMCID: PMC7340354 DOI: 10.1093/eurheartj/ehz459] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/13/2019] [Accepted: 06/22/2019] [Indexed: 12/22/2022] Open
Abstract
Aims Here, we aimed to determine the therapeutic effect of longevity-associated variant (LAV)-BPIFB4 gene therapy on atherosclerosis. Methods and results ApoE knockout mice (ApoE−/−) fed a high-fat diet were randomly allocated to receive LAV-BPIFB4, wild-type (WT)-BPIFB4, or empty vector via adeno-associated viral vector injection. The primary endpoints of the study were to assess (i) vascular reactivity and (ii) atherosclerotic disease severity, by Echo-Doppler imaging, histology and ultrastructural analysis. Moreover, we assessed the capacity of the LAV-BPIFB4 protein to shift monocyte-derived macrophages of atherosclerotic mice and patients towards an anti-inflammatory phenotype. LAV-BPIFB4 gene therapy rescued endothelial function of mesenteric and femoral arteries from ApoE−/− mice; this effect was blunted by AMD3100, a CXC chemokine receptor type 4 (CXCR4) inhibitor. LAV-BPIFB4-treated mice showed a CXCR4-mediated shift in the balance between Ly6Chigh/Ly6Clow monocytes and M2/M1 macrophages, along with decreased T cell proliferation and elevated circulating levels of interleukins IL-23 and IL-27. In vitro conditioning with LAV-BPIFB4 protein of macrophages from atherosclerotic patients resulted in a CXCR4-dependent M2 polarization phenotype. Furthermore, LAV-BPIFB4 treatment of arteries explanted from atherosclerotic patients increased the release of atheroprotective IL-33, while inhibiting the release of pro-inflammatory IL-1β, inducing endothelial nitric oxide synthase phosphorylation and restoring endothelial function. Finally, significantly lower plasma BPIFB4 was detected in patients with pathological carotid stenosis (>25%) and intima media thickness >2 mm. Conclusion Transfer of the LAV of BPIFB4 reduces the atherogenic process and skews macrophages towards an M2-resolving phenotype through modulation of CXCR4, thus opening up novel therapeutic possibilities in cardiovascular disease. ![]()
Collapse
Affiliation(s)
- Annibale Alessandro Puca
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy.,Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Chiara Spinelli
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Antonio Damato
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | | | - Francesco Villa
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Ferrario
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Anna Maciag
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy
| | | | | | - Giulio Accarino
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | | | - Maurizio Forte
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| | - Gaetano Calì
- Department of Endocrinology and Experimental Oncology Institute, CNR, Via Sergio Pansini, 80131 Naples, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,Società Italiana per lo Studio della Arteriosclerosi (SISA) Centro Aterosclerosi, Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Vanvitelli 32, 20129 Milan, Italy.,IRCCS Multimedica Hospital, 20099 Sesto San Giovanni Milan, Italy
| | - Monica Cattaneo
- Ageing Unit, IRCCS MultiMedica, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Valentina Trimarco
- Department of Advanced Biomedical Sciences, University Federico II of Naples, 80131 Naples, Italy
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Francesco Versaci
- UOC Cardiologia Ospedale Santa Maria Goretti, 04100 Latina, Italy.,Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli (Na), Italy.,Department of Advanced Biomedicine, Federico II University, 80131 Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, via Faggiana, 40100 Latina, Italy
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, UK
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy.,IRCCS Neuromed, Loc. Camerelle, 86077 Pozzilli (IS), Italy
| |
Collapse
|
5
|
Miao G, Zhao X, Wang B, Zhang L, Wang G, Zheng N, Liu J, Xu Z, Zhang L. TLR2/CXCR4 coassociation facilitatesChlamydia pneumoniaeinfection-induced atherosclerosis. Am J Physiol Heart Circ Physiol 2020; 318:H1420-H1435. [DOI: 10.1152/ajpheart.00011.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have both been shown to be involved in atherosclerosis. We demonstrate for the first time the presence of TLR2/CXCR4 coassociation during C. pneumoniae infection-induced atherosclerosis. Amazingly, blocking of both TLR2 and CXCR4 significantly retards and even almost reverses this infection-induced atherosclerosis. Our work reveals new mechanisms about C. pneumoniae infection-induced atherosclerosis and identifies potential new therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ningbo Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Upadhye A, Srikakulapu P, Gonen A, Hendrikx S, Perry HM, Nguyen A, McSkimming C, Marshall MA, Garmey JC, Taylor AM, Bender TP, Tsimikas S, Holodick NE, Rothstein TL, Witztum JL, McNamara CA. Diversification and CXCR4-Dependent Establishment of the Bone Marrow B-1a Cell Pool Governs Atheroprotective IgM Production Linked to Human Coronary Atherosclerosis. Circ Res 2019; 125:e55-e70. [PMID: 31549940 DOI: 10.1161/circresaha.119.315786] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE B-1 cell-derived natural IgM antibodies against oxidation-specific epitopes on low-density lipoprotein are anti-inflammatory and atheroprotective. Bone marrow (BM) B-1a cells contribute abundantly to IgM production, yet the unique repertoire of IgM antibodies generated by BM B-1a and the factors maintaining the BM B-1a population remain unexplored. CXCR4 (C-X-C motif chemokine receptor 4) has been implicated in human cardiovascular disease and B-cell homeostasis, yet the role of B-1 cell CXCR4 in regulating atheroprotective IgM levels and human cardiovascular disease is unknown. OBJECTIVE To characterize the BM B-1a IgM repertoire and to determine whether CXCR4 regulates B-1 production of atheroprotective IgM in mice and humans. METHODS AND RESULTS Single-cell sequencing demonstrated that BM B-1a cells from aged ApoE-/- mice with established atherosclerosis express a unique repertoire of IgM antibodies containing increased nontemplate-encoded nucleotide additions and a greater frequency of unique heavy chain complementarity determining region 3 sequences compared with peritoneal cavity B-1a cells. Some complementarity determining region 3 sequences were common to both compartments suggesting B-1a migration between compartments. Indeed, mature peritoneal cavity B-1a cells migrated to BM in a CXCR4-dependent manner. Furthermore, BM IgM production and plasma IgM levels were reduced in ApoE-/- mice with B-cell-specific knockout of CXCR4, and overexpression of CXCR4 on B-1a cells increased BM localization and plasma IgM against oxidation specific epitopes, including IgM specific for malondialdehyde-modified LDL (low-density lipoprotein). Finally, in a 50-subject human cohort, we find that CXCR4 expression on circulating human B-1 cells positively associates with plasma levels of IgM antibodies specific for malondialdehyde-modified LDL and inversely associates with human coronary artery plaque burden and necrosis. CONCLUSIONS These data provide the first report of a unique BM B-1a cell IgM repertoire and identifies CXCR4 expression as a critical factor selectively governing BM B-1a localization and production of IgM against oxidation specific epitopes. That CXCR4 expression on human B-1 cells was greater in humans with low coronary artery plaque burden suggests a potential targeted approach for immune modulation to limit atherosclerosis.
Collapse
Affiliation(s)
- Aditi Upadhye
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville
| | - Prasad Srikakulapu
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Ayelet Gonen
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Heather M Perry
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Anh Nguyen
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Chantel McSkimming
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Melissa A Marshall
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - James C Garmey
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Angela M Taylor
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| | - Timothy P Bender
- Department of Microbiology, Immunology, Cancer Biology (A.U., T.P.B.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Nichol E Holodick
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Thomas L Rothstein
- Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo MI (N.E.H., T.L.R.)
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla (A.G., S.H., S.T., J.L.W.)
| | - Coleen A McNamara
- From the Cardiovascular Research Center (A.U., P.S., H.M.P., A.N., C.M., M.A.M., J.C.G, A.M.T., C.A.M.), University of Virginia, Charlottesville.,Beirne B. Carter Center for Immunology Research (T.P.B., C.A.M.), University of Virginia, Charlottesville.,Department of Medicine (A.M.T., C.A.M.), University of Virginia, Charlottesville
| |
Collapse
|
7
|
Affiliation(s)
- Angelo Maffei
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Località Camerelle, Pozzilli, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Località Camerelle, Pozzilli, Italy
- Department of Molecular Medicine, “Sapienza” University of Rome, viale Regina Elena 324, Rome, Italy
| |
Collapse
|