1
|
Zhu J, Wang L. The Role of lncRNA-miR-26a-mRNA Network in Cancer Progression and Treatment. Biochem Genet 2024; 62:1443-1461. [PMID: 37730965 DOI: 10.1007/s10528-023-10475-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 09/22/2023]
Abstract
The role of non-coding RNAs in regulating biological processes associated with cancer progression, such as proliferation, migration, and apoptosis, has been extensively studied. Long non-coding RNAs (lncRNAs) play a role in regulating these processes through various mechanisms, including transcriptional and post-transcriptional modifications. In post-transcriptional regulation, lncRNAs can bind to specific miRNAs and affect their function, which can either promote or inhibit cancer development. The interaction between lncRNAs, miRNAs, and mRNAs forms a network known as competitive endogenous RNA (ceRNA), which is involved in cancer progression or inhibition. One specific miRNA called miR-26a-5p has been identified as having tumor-suppressive properties. However, when lncRNAs bind to and inhibit miR-26a-5p, it can lead to cancer progression. Therefore, targeting this ceRNA network could be a promising strategy for preventing cancer development. This review will first discuss the anticancer effects of miR-26a-5p and then explore the involvement of the lncRNA-miR26a-5p-mRNA axis in cancer progression and potential targeted therapies.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Oncology, Daye People's Hospital, Daye, Hubei, 435100, China.
| | - Liya Wang
- Department of Obstetrics and Gynecology, Pengren Hospital, Daye, Hubei, 435100, China
| |
Collapse
|
2
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
3
|
Al-Noshokaty TM, Elballal MS, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Midan HM, Zaki MB, Abd-Elmawla MA, Rizk NI, Elrebehy MA, Zewail MB, Mohammed OA, Doghish AS. miRNAs driving diagnosis, prognosis and progression in Merkel cell carcinoma. Pathol Res Pract 2023; 249:154763. [PMID: 37595447 DOI: 10.1016/j.prp.2023.154763] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
4
|
Tong D, Tanaka M, Eguchi H, Okazaki Y, Muramatsu M, Arai T. COL17A1 germline variant p.Ser1029Ala and mucosal malignant melanoma: An autopsy study. Mol Clin Oncol 2022; 16:32. [PMID: 34987801 PMCID: PMC8719258 DOI: 10.3892/mco.2021.2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Collagen type XVII α1 (COL17A1) encodes a hemidesmosomal protein at the epidermal-dermal junction and its variants are implicated in blistering skin diseases. Recent experiments in rodents revealed that Col17a1 has critical roles in stem cells of epidermal origin and in melanoma carcinogenesis. In the present study, it was investigated whether germline variants in COL17A1 are associated with skin cancer and other cancer types using indexed consecutive autopsy cases from the Japanese Geriatric Single Nucleotide Polymorphism database (n=2,343; mean age, 80 years). The database included 12 patients with skin cancer. A total of 53 COL17A1 missense variants on an exome chip were analyzed. One variant, p.Ser1029Ala (rs118166857), which had a minor allele frequency of 1.0%, exhibited a nominal positive sign of association with skin cancer [Fisher's exact P=0.002, odds ratio (OR)=16.93, 95% CI: 4.44-64.64]. This variant was detected in 2/2 patients with mucosal malignant melanoma (mMM) and 1/3 patients with extramammary Paget's disease, and in none of the patients with non-melanoma cancer, e.g., squamous cell and basal cell carcinoma. Other cancer types were searched in the database and the p.Ser1029Ala variant was indicated to be nominally associated with breast cancer (P=0.006, OR=4.17, 95% CI: 1.72-10.11). In the two mMM cases, targeted exome sequencing of 55 cancer-predisposing genes (including tumor protein 53, BRCA1/2 and mismatch repair genes) detected no apparent pathogenic variants, but revealed variants of unknown significance in axin 2, DNA directed polymerase ζ catalytic subunit and contactin 6. Since COL17A1 provides a niche for melanocyte stem cells, it was hypothesized that the p.Ser1029Ala variant in the COL17A1 ectodomain may affect the microenvironment, e.g., the cell competition. This is a working hypothesis generated from human autopsy cases and warrants further epidemiological and molecular biological validation.
Collapse
Affiliation(s)
- Daike Tong
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masashi Tanaka
- Department of Neurology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
5
|
Is the regulation by miRNAs of NTPDase1 and ecto-5'-nucleotidase genes involved with the different profiles of breast cancer subtypes? Purinergic Signal 2021; 18:123-133. [PMID: 34741235 DOI: 10.1007/s11302-021-09824-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.
Collapse
|
6
|
Jamwal RS, Mahajan N, Bhat GR, Bhat A, Shah R, Verma S, Sharma M, Sharma B, Qadri RA, Kumar R, Bhat A. REV3L single nucleotide variants lead to increased susceptibility towards non-small cell lung cancer in the population of Jammu and Kashmir. Cancer Epidemiol 2021; 75:102047. [PMID: 34655923 DOI: 10.1016/j.canep.2021.102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common lung cancer, accounting for 80-85% of all lung cancer cases. Various genetic studies have associated REV3L (Protein reversion less 3-like) gene mutations, which encodes the catalytic subunit of error prone translesion synthesis polymerase zeta with cancer, including lung cancer; however, no such data is available from any North Indian population. In this study we attempted to screen the North Indian population of Jammu and Kashmir (J&K) for the potential role of REV3L gene polymorphisms in NSCLC. METHODS A total of four REV3L single nucleotide variants were selected for genotyping based on the available literature. The genotyping was carried out by using the TaqMan allele discrimination assay in 500 subjects (200 NSCLC patients and 300 age and sex matched healthy controls). The association of variants with NSCLC was evaluated by logistic regression. RESULTS Out of the four REV3L variants genotyped; rs1002481, rs462779, and rs465646 were found significantly associated with NSCLC risk under the recessive model, with an Odds Ratio (OR) of 3.52(2.14-5.8 at 95% CI, p-value = 0.00000062), 3.7 (1.8-7.6 at 95% CI, p-value = 0.00031), and 2.2 (1.47-3.37 at 95% CI, p-value = 0.0003), respectively. DISCUSSION Our data supports a strong association between variants rs1002481, rs462779, rs465646 and NSCLC, indicating a potential role of these REV3L variants in increasing the risk for the development of NSCLC in the studied population. Although a first report from any Indian population, these variants have been previously reported to be associated with lung and colorectal cancers in different world populations. Our data along with the existing data supports the notation that these variants can be used as potential genetic predisposition markers. AVAILABILITY OF DATA AND MATERIALS Data generated and analysed during study is not available publicly but can be made available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
| | - Nikita Mahajan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
| | - Gh Rasool Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
| | - Amrita Bhat
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
| | - Ruchi Shah
- Department of Biotechnology, University of Kashmir, Jammu & Kashmir, India.
| | - Sonali Verma
- Indian Council of Medical Research-Centre for Advanced Research, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India.
| | - Minerva Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
| | - Bhawani Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Jammu & Kashmir, India.
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India; Indian Council of Medical Research-Centre for Advanced Research, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India.
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu & Kashmir, India.
| |
Collapse
|
7
|
Otmani K, Lewalle P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front Oncol 2021; 11:708765. [PMID: 34722255 PMCID: PMC8554338 DOI: 10.3389/fonc.2021.708765] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that have been identified as important posttranscriptional regulators of gene expression. miRNAs production is controlled at multiple levels, including transcriptional and posttranscriptional regulation. Extensive profiling studies have shown that the regulation of mature miRNAs expression plays a causal role in cancer development and progression. miRNAs have been identified to act as tumor suppressors (TS) or as oncogenes based on their modulating effect on the expression of their target genes. Upregulation of oncogenic miRNAs blocks TS genes and leads to tumor formation. In contrast, downregulation of miRNAs with TS function increases the translation of oncogenes. Several miRNAs exhibiting TS properties have been studied. In this review we focus on recent studies on the role of TS miRNAs in cancer cells and the tumor microenvironment (TME). Furthermore, we discuss how TS miRNA impacts the aggressiveness of cancer cells, with focus of the mechanism that regulate its expression. The study of the mechanisms of miRNA regulation in cancer cells and the TME may paved the way to understand its critical role in the development and progression of cancer and is likely to have important clinical implications in a near future. Finally, the potential roles of miRNAs as specific biomarkers for the diagnosis and the prognosis of cancer and the replacement of tumor suppressive miRNAs using miRNA mimics could be promising approaches for cancer therapy.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Jules Bordet Institute, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
8
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [PMID: 32940190 DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
9
|
Huang Z, Xu Y, Wan M, Zeng X, Wu J. miR-340: A multifunctional role in human malignant diseases. Int J Biol Sci 2021; 17:236-246. [PMID: 33390846 PMCID: PMC7757049 DOI: 10.7150/ijbs.51123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs of approximately 22 nucleotides in length, which function by binding to the 3' UTR sequences of their target mRNAs. It has been reported that dysregulated miRNAs play pivotal roles in numerous diseases, including cancers, such as gastric, breast, colorectal, ovarian, and other cancers. Recent research efforts have been devoted to translating these basic discoveries into clinical applications that could improve the therapeutic outcome in patients with cancer. Early studies have shown that miR-340 may act either as an oncogene or a tumor suppressor by targeting genes related to proliferation, apoptosis, and metastasis, as well as those associated with diagnosis, treatment, chemoresistance, and prognosis. miR-340 has been shown to have a role in other diseases, such as autoimmune diseases, acute stroke, and alcoholic steatohepatitis. Nevertheless, the roles of miR-340 in human malignancies are still unclear, and the associated mechanisms are complex, involving a variety of signaling pathways, such as Wnt/β-catenin and the JAK-STAT pathways. Herein, we review the crucial roles of miR-340 in human cancers through the analysis of the latest research studies, with the aim of clarifying miR-340 function in malignant disease diagnosis, treatment, and prognosis, and to propose further investigations.
Collapse
Affiliation(s)
- Zheng Huang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, P.R. China
| | - Yesha Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Maoping Wan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Xixi Zeng
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| | - Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P.R. China
| |
Collapse
|
10
|
Saha P, Mandal T, Talukdar AD, Kumar D, Kumar S, Tripathi PP, Wang QE, Srivastava AK. DNA polymerase eta: A potential pharmacological target for cancer therapy. J Cell Physiol 2020; 236:4106-4120. [PMID: 33184862 DOI: 10.1002/jcp.30155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In the last two decades, intensive research has been carried out to improve the survival rates of cancer patients. However, the development of chemoresistance that ultimately leads to tumor relapse poses a critical challenge for the successful treatment of cancer patients. Many cancer patients experience tumor relapse and ultimately die because of treatment failure associated with acquired drug resistance. Cancer cells utilize multiple lines of self-defense mechanisms to bypass chemotherapy and radiotherapy. One such mechanism employed by cancer cells is translesion DNA synthesis (TLS), in which specialized TLS polymerases bypass the DNA lesion with the help of monoubiquitinated proliferating cell nuclear antigen. Among all TLS polymerases (Pol η, Pol ι, Pol κ, REV1, Pol ζ, Pol μ, Pol λ, Pol ν, and Pol θ), DNA polymerase eta (Pol η) is well studied and majorly responsible for the bypass of cisplatin and UV-induced DNA damage. TLS polymerases contribute to chemotherapeutic drug-induced mutations as well as therapy resistance. Therefore, targeting these polymerases presents a novel therapeutic strategy to combat chemoresistance. Mounting evidence suggests that inhibition of Pol η may have multiple impacts on cancer therapy such as sensitizing cancer cells to chemotherapeutics, suppressing drug-induced mutagenesis, and inhibiting the development of secondary tumors. Herein, we provide a general introduction of Pol η and its clinical implications in blocking acquired drug resistance. In addition; this review addresses the existing gaps and challenges of Pol η mediated TLS mechanisms in human cells. A better understanding of the Pol η mediated TLS mechanism will not merely establish it as a potential pharmacological target but also open possibilities to identify novel drug targets for future therapy.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupam D Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Deepak Kumar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Andhra Pradesh, India
| | - Prem P Tripathi
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amit K Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
11
|
Algaber A, Al-Haidari A, Madhi R, Rahman M, Syk I, Thorlacius H. MicroRNA-340-5p inhibits colon cancer cell migration via targeting of RhoA. Sci Rep 2020; 10:16934. [PMID: 33037251 PMCID: PMC7547089 DOI: 10.1038/s41598-020-73792-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is the third most common cancer and a significant cause of cancer-related deaths worldwide. Metastasis is the most insidious aspect of cancer progression. Convincing data suggest that microRNAs (miRs) play a key function in colon cancer biology. We examined the role of miR-340-5p in regulating RhoA expression as well as cell migration and invasion in colon cancer cells. Levels of miR-340-5p and RhoA mRNA varied inversely in serum-free and serum-grown HT-29 and AZ-97 colon cancer cells. It was found transfection with miR-340-5p not only decreased expression of RhoA mRNA and protein levels in HT-29 cells but also reduced colon cancer cell migration and invasion. Bioinformatics analysis predicted one putative binding sites at the 3'-UTR of RhoA mRNA. Targeting this binding site with a specific blocker reversed mimic miR-340-5p-induced inhibition of RhoA activation and colon cancer cell migration and invasion. These novel results suggest that miR-340-5p is an important regulator of colon cancer cell motility via targeting of RhoA and further experiments are warranted to evaluate the role of miR-340-5p in colon cancer metastasis.
Collapse
Affiliation(s)
- Anwar Algaber
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Amr Al-Haidari
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Raed Madhi
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Milladur Rahman
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Ingvar Syk
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden
| | - Henrik Thorlacius
- Section for Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, 20502, Malmö, Sweden.
| |
Collapse
|
12
|
Ma X, Tang TS, Guo C. Regulation of translesion DNA synthesis in mammalian cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:680-692. [PMID: 31983077 DOI: 10.1002/em.22359] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/29/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The genomes of all living cells are under endogenous and exogenous attacks every day, causing diverse genomic lesions. Most of the lesions can be timely repaired by multiple DNA repair pathways. However, some may persist during S-phase, block DNA replication, and challenge genome integrity. Eukaryotic cells have evolved DNA damage tolerance (DDT) to mitigate the lethal effects of arrested DNA replication without prior removal of the offending DNA damage. As one important mode of DDT, translesion DNA synthesis (TLS) utilizes multiple low-fidelity DNA polymerases to incorporate nucleotides opposite DNA lesions to maintain genome integrity. Three different mechanisms have been proposed to regulate the polymerase switching between high-fidelity DNA polymerases in the replicative machinery and one or more specialized enzymes. Additionally, it is known that proliferating cell nuclear antigen (PCNA) mono-ubiquitination is essential for optimal TLS. Given its error-prone property, TLS is closely associated with spontaneous and drug-induced mutations in cells, which can potentially lead to tumorigenesis and chemotherapy resistance. Therefore, TLS process must be tightly modulated to avoid unwanted mutagenesis. In this review, we will focus on polymerase switching and PCNA mono-ubiquitination, the two key events in TLS pathway in mammalian cells, and summarize current understandings of regulation of TLS process at the levels of protein-protein interactions, post-translational modifications as well as transcription and noncoding RNAs. Environ. Mol. Mutagen. 61:680-692, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaolu Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Caixia Guo
- CAS Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Chen Q, Hou J, Wu Z, Zhao J, Ma D. miR-145 Regulates the sensitivity of esophageal squamous cell carcinoma cells to 5-FU via targeting REV3L. Pathol Res Pract 2019; 215:152427. [PMID: 31072625 DOI: 10.1016/j.prp.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/28/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of miR-145 was associated with chemotherapy in multitype cancers. However, the underlying role and molecular mechanism of miR-145 in the sensitivity of esophageal squamous cell carcinoma (ESCC) to 5-FU remained largely unknown. Cell viability was determined by Cell Counting Kit-8 (CCK-8) assay. Gene expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Protein expression levels were evaluated by Western blot. TargetScan was used for the prediction of binding sites for miRNA in mRNAs. The interaction between mRNA 3' UTR and miRNA was verified by dual luciferase reporter assay. The results showed that miR-145 was downregulated in ESCC tumor tissues and cells, while REV3L was upregulated in ESCC tumor tissues. Overexpression of miR-145 decreased REV3L mRNA and protein level in ESCC cell line KYSE150, while decreased miR-145 increased REV3L mRNA and protein level in esophageal epithelium cell line (HEEC). In addition, the luciferase activity of ESCC cells was decreased after the treatment of miR-145 mimic and mRNA 3'UTR-WT. Overexpressed miR-145 significantly inhibited cell viability and elevated cell apoptosis rate upon 5-FU treatment. Additionally, transfection of miR-145 mimic further altered expression of key genes involved in cell apoptosis (Bcl-2, Bax, Caspase3) in ESCC cells treated with 5-FU. miR-145 might be a therapeutic target for the treatment of ESCC.
Collapse
Affiliation(s)
- Qing Chen
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Juan Hou
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - Jie Zhao
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China
| | - De Ma
- Department of Oncology, Jingjiang Peoples' Hospital, Jingjiang, 214500, China.
| |
Collapse
|
14
|
Song F, Wei M, Wang J, Liu Y, Guo M, Li X, Luo J, Zhou J, Wang M, Guo D, Chen L, Sun G. Hepatitis B virus-regulated growth of liver cancer cells occurs through the microRNA-340-5p-activating transcription factor 7-heat shock protein A member 1B axis. Cancer Sci 2019; 110:1633-1643. [PMID: 30891870 PMCID: PMC6501011 DOI: 10.1111/cas.14004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer with poor prognosis. Hepatitis B virus (HBV) is one of the leading causes of HCC, but the precise mechanisms by which this infection promotes cancer development are not fully understood. Recently, miR‐340‐5p, a microRNA (miRNA) that has been identified as a cancer suppressor gene, was found to inhibit the migration and invasion of liver cancer cells. However, the effect of miR‐340‐5p on cell proliferation and apoptosis in HBV‐associated HCC remains unknown. In our study, we show that miR‐340‐5p plays an important role during HBV infection and hepatocellular carcinoma development. Specifically, this miRNA directly binds to the mRNA encoding activating transcription factor 7 (ATF7), a protein that both promotes cell proliferation and suppresses apoptosis through its interaction with heat shock protein A member 1B (HSPA1B). We further found that miR‐340‐5p is downregulated by HBV, which enhances ATF7 expression, leading to enhanced cell proliferation and inhibition of apoptosis. Notably, ATF7 is upregulated in HCC tissue, suggesting that HBV may target miR‐340‐5p in vivo to promote ATF7/HSPA1B‐mediated proliferation and apoptosis and regulate liver cancer progression. This work helps to elucidate the complex interactions between HBV and host miRNAs and further suggests that miR‐340‐5p may represent a promising candidate for the development of improved therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Feifei Song
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingcong Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolu Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junying Zhou
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
15
|
Zhao L, Zhang X, Wu Z, Huang K, Sun X, Chen H, Jin M. The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:509-519. [PMID: 30753994 PMCID: PMC6370596 DOI: 10.1016/j.omtn.2018.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
The influenza A virus poses serious public health challenges worldwide. Strikingly, small noncoding microRNAs (miRNAs) that modulate gene expression are closely involved in antiviral responses, although the underlying mechanisms are essentially unknown. We now report that microRNA-340 (miR340) is downregulated following influenza A and other RNA virus infections, implying that host cells deplete miR340 as an antiviral defense mechanism. Accordingly, the inhibition or knockdown of endogenous miR340 clearly prevents the infection of cultured cells, whereas the forced expression of miR340 significantly enhances virus replication. Using next-generation sequencing, we found that miR340 attenuates cellular antiviral immunity. Moreover, mechanistic studies defined miR340 as a repressor of RIG-I and OAS2, critical factors for the establishment of an antiviral response. Collectively, these data indicate that host cells may lower their viral loads by regulating miRNA pathways, which may, in turn, provide new opportunities for treatment.
Collapse
Affiliation(s)
- Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhu Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
16
|
Gao YJ, Liu DL, Li S, Yuan GF, Li L, Zhu HY, Cao GY. Down-regulation of CXCL11 inhibits colorectal cancer cell growth and epithelial-mesenchymal transition. Onco Targets Ther 2018; 11:7333-7343. [PMID: 30425523 PMCID: PMC6205823 DOI: 10.2147/ott.s167872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The poor prognosis of colorectal cancer (CRC) largely results from local invasion and tumor metastases. Epithelial-mesenchymal transition (EMT) is a key step in the progression of solid tumors and plays a vital role in tumor metastasis. Recent studies demonstrate that C-X-C motif chemokine 11 (CXCL11) is involved in various cancers’ progression. However, its biological activity in CRC needs deeper exploration. Methods The level of CXCL11 in CRC tissues and cell lines was determined using the quantitative real-time PCR (qRT-PCR) assay. The MTT, colony formation, wound healing and Transwell invasion assays were applied to assess the role of CXCL11 in CRC cell growth, migration and invasion, in vitro, respectively. A xenograft model was constructed to analyze the function of CXCL11 in CRC cell growth in vivo. Results CXCL11 was over-expressed in CRC tissues and cell lines. Repression of CXCL11 significantly inhibited CRC cell migration, invasion and EMT in vitro. In addition, down-regulation of CXCL11 reduced CRC cell growth and metastasis in vivo. Finally, we revealed that repression of CXCL11 inhibited the metastatic ability of CRC cell in a N-cadherin dependent manner. Conclusion In summary, this study explicates the oncogenic activities of CXCL11 in CRC cell growth and metastasis.
Collapse
Affiliation(s)
- Yu Jie Gao
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - De Lin Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sheng Li
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gao Feng Yuan
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - Li Li
- Department of Medical Oncology, Suqian First Hospital, Suqian, Jiangsu, China
| | - Hong Yan Zhu
- Department of General Surgery, Suqian First Hospital, Suqian, Jiangsu, China, ;
| | - Guan Yi Cao
- Department of General Surgery, Suqian First Hospital, Suqian, Jiangsu, China, ;
| |
Collapse
|
17
|
MicroRNAs as Potential Biomarkers in Merkel Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19071873. [PMID: 29949882 PMCID: PMC6073391 DOI: 10.3390/ijms19071873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and aggressive type of skin cancer associated with a poor prognosis. This carcinoma was named after its presumed cell of origin, the Merkel cell, which is a mechanoreceptor cell located in the basal epidermal layer of the skin. Merkel cell polyomavirus seems to be the major causal factor for MCC because approximately 80% of all MCCs are positive for viral DNAs. UV exposure is the predominant etiological factor for virus-negative MCCs. Intracellular microRNA analysis between virus-positive and virus-negative MCC cell lines and tumor samples have identified differentially expressed microRNAs. Comparative microRNA profiling has also been performed between MCCs and other non-MCC tumors, but not between normal Merkel cells and malignant Merkel cells. Finally, Merkel cell polyomavirus encodes one microRNA, but its expression in virus-positive MCCs is low, or non-detectable or absent, jeopardizing its biological relevance in tumorigenesis. Here, we review the results of microRNA studies in MCCs and discuss the potential application of microRNAs as biomarkers for the diagnosis, progression and prognosis, and treatment of MCC.
Collapse
|