1
|
Khazaei Monfared Y, Heidari P, Klempner SJ, Mahmood U, Parikh AR, Hong TS, Strickland MR, Esfahani SA. DNA Damage by Radiopharmaceuticals and Mechanisms of Cellular Repair. Pharmaceutics 2023; 15:2761. [PMID: 38140100 PMCID: PMC10748326 DOI: 10.3390/pharmaceutics15122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
DNA is an organic molecule that is highly vulnerable to chemical alterations and breaks caused by both internal and external factors. Cells possess complex and advanced mechanisms, including DNA repair, damage tolerance, cell cycle checkpoints, and cell death pathways, which together minimize the potentially harmful effects of DNA damage. However, in cancer cells, the normal DNA damage tolerance and response processes are disrupted or deregulated. This results in increased mutagenesis and genomic instability within the cancer cells, a known driver of cancer progression and therapeutic resistance. On the other hand, the inherent instability of the genome in rapidly dividing cancer cells can be exploited as a tool to kill by imposing DNA damage with radiopharmaceuticals. As the field of targeted radiopharmaceutical therapy (RPT) is rapidly growing in oncology, it is crucial to have a deep understanding of the impact of systemic radiation delivery by radiopharmaceuticals on the DNA of tumors and healthy tissues. The distribution and activation of DNA damage and repair pathways caused by RPT can be different based on the characteristics of the radioisotope and molecular target. Here we provide a comprehensive discussion of the biological effects of RPTs, with the main focus on the role of varying radioisotopes in inducing direct and indirect DNA damage and activating DNA repair pathways.
Collapse
Affiliation(s)
- Yousef Khazaei Monfared
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Samuel J. Klempner
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| | - Aparna R. Parikh
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Theodore S. Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Matthew R. Strickland
- Division of Hematology-Oncology, Department of Medicine, Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (S.J.K.); (A.R.P.); (M.R.S.)
| | - Shadi A. Esfahani
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.K.M.); (P.H.); (U.M.)
| |
Collapse
|
2
|
Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat Rev Clin Oncol 2023; 20:83-98. [PMID: 36477705 DOI: 10.1038/s41571-022-00709-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Owing to advances in radiotherapy, the physical properties of radiation can be optimized to enable individualized treatment; however, optimization is rarely based on biological properties and, therefore, treatments are generally planned with the assumption that all tumours respond similarly to radiation. Radiation affects multiple cellular pathways, including DNA damage, hypoxia, proliferation, stem cell phenotype and immune response. In this Review, we summarize the effect of these pathways on tumour responses to radiotherapy and the current state of research on genomic classifiers designed to exploit these variations to inform treatment decisions. We also discuss whether advances in genomics have generated evidence that could be practice changing and whether advances in genomics are now ready to be used to guide the delivery of radiotherapy alone or in combination.
Collapse
|
3
|
Marinescu IM, Rogg M, Spohn S, von Büren M, Kamps M, Jilg CA, Fountzila E, Papadopoulou K, Ceci L, Bettermann A, Ruf J, Benndorf M, Adebahr S, Zips D, Grosu AL, Schell C, Zamboglou C. Ex vivo γH2AX assay for tumor radiosensitivity in primary prostate cancer patients and correlation with clinical parameters. Radiat Oncol 2022; 17:163. [PMID: 36199143 PMCID: PMC9533509 DOI: 10.1186/s13014-022-02131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Backround Accurate surrogate parameters for radio resistance are warranted for individualized radiotherapy (RT) concepts in prostate cancer (PCa). The purpose of this study was to assess intertumoral heterogeneity in terms of radio resistance using an ex-vivo γH2AX assay after irradiation of prostate biopsy cores and to investigate its correlation with clinical features of respective patients as well as imaging and genomic features of tumor areas.
Methods Twenty one patients with histologically-proven PCa and pre-therapeutic multiparametric resonance imaging and prostate-specific membrane antigen positron emission tomography were included in the study. Biopsy cores were collected from 26 PCa foci. Residual γH2AX foci were counted 24 h after ex-vivo irradiation (with 0 and 4 Gy) of biopsy specimen and served as a surrogate for radio resistance. Clinical, genomic (next generation sequencing) and imaging features were collected and their association with the radio resistance was studied. Results In total 18 PCa lesions from 16 patients were included in the final analysis. The median γH2AX foci value per PCa lesion was 3.12. According to this, the patients were divided into two groups (radio sensitive vs. radio resistant) with significant differences in foci number (p < 0.0001). The patients in the radio sensitive group had significantly higher prostate specific antigen serum concentration (p = 0.015), tumor areas in the radio sensitive group had higher SUV (standardized uptake values in PSMA PET)-max and -mean values (p = 0.0037, p = 0.028) and lower ADC (apparent diffusion coefficient-mean values, p = 0.049). All later parameters had significant (p < 0.05) correlations in Pearson’s test. One patient in the radio sensitive group displayed a previously not reported loss of function frameshift mutation in the NBN gene (c.654_658delAAAAC) that introduces a premature termination codon and results in a truncated protein. Conclusion In this pilot study, significant differences in intertumoral radio resistance were observed and clinical as well as imaging parameters may be applied for their prediction. After further prospective validation in larger patient cohorts these finding may lead to individual RT dose prescription for PCa patients in the future.
Collapse
Affiliation(s)
- Ioana M Marinescu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany.
| | - Manuel Rogg
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon Spohn
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Moritz von Büren
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marius Kamps
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Cordula A Jilg
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Elena Fountzila
- Second Department of Medical Oncology, Euromedica General Clinic of Thessaloniki, Thessaloniki, Greece.,Greece and European University Cyprus, Engomi, Cyprus
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lara Ceci
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Alisa Bettermann
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Daniel Zips
- Medical Faculty and University Hospital, Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.,German Oncology Center, European University Cyprus, Limassol, Cyprus
| |
Collapse
|
4
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
5
|
Cailleteau A, Sargos P, Saad F, Latorzeff I, Supiot S. Drug Intensification in Future Postoperative Radiotherapy Practice in Biochemically-Relapsing Prostate Cancer Patients. Front Oncol 2021; 11:780507. [PMID: 35004302 PMCID: PMC8739777 DOI: 10.3389/fonc.2021.780507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Although salvage prostate bed radiotherapy is highly effective in biochemically-relapsing prostate cancer patients following prostatectomy, relapses remain frequent and improvements are needed. Randomized phase 3 trials have shown the benefit of adding androgen-depriving therapy to irradiation, but not all patients benefit from this combination. Preclinical studies have shown that novel agents targeting the androgen receptor, DNA repair, PI3K/AKT/mTOR pathways, or the hypoxic microenvironment may help increase the response to prostate bed irradiation while minimizing potential side effects. This perspective review focuses on the most relevant molecules that may have an impact when combined with salvage radiotherapy, and underlines the strategies that need to be developed to increase the efficacy of salvage post-prostatectomy radiotherapy in prostate cancer patients.
Collapse
Affiliation(s)
- Axel Cailleteau
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Nantes Saint-Herblain, France
| | - Paul Sargos
- Department of Radiation Oncology, Institut Bergonié, Bordeaux, France
| | - Fred Saad
- Department of Urology, Université de Montréal, Montreal, QC, Canada
| | - Igor Latorzeff
- Department of Radiation Oncology, Oncorad Clinique Pasteur, Toulouse, France
| | - Stéphane Supiot
- Department of Radiation Oncology, Institut de Cancérologie de l’Ouest, Nantes Saint-Herblain, France
- University of Nantes, CRCINA (CNRS, Inserm), Nantes, France
| |
Collapse
|
6
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
7
|
Wang G, Guo S, Zhang W, Li Z, Xu J, Li D, Wang Y, Zhan Q. A Comprehensive Analysis of Alterations in DNA Damage Repair Pathways Reveals a Potential Way to Enhance the Radio-Sensitivity of Esophageal Squamous Cell Cancer. Front Oncol 2020; 10:575711. [PMID: 33178606 PMCID: PMC7596747 DOI: 10.3389/fonc.2020.575711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell cancer (ESCC) is a common malignancy with a poor 5-year overall survival in China. Altered DNA damage repair (DDR) pathways are associated with a predisposition to cancer and contribute to therapeutic response and resistance in cancers. However, alterations of DDR pathway genes in ESCC are still largely unknown. In this study, we employed genome sequencing data of 192 samples, comparative genomic hybridization data of 123 cases, and gene expression microarray data of 119 patients to firstly perform a comprehensive analysis of the gene alterations of 7 DDR pathways in ESCC. Gene mutations and copy number variations (CNVs) were observed in all 7 DDR pathways, and especially, CNVs were the dominant alteration types. Compared with other pathways, two DNA double-strand break (DSB) repair pathways homologous recombination (HR) and non-homologous end joining (NHEJ), carried significant gene mutations and CNVs especially gene amplifications. Most genes including RAD54B, NBS1, RAD51B, and PRKDC were significantly amplified and over-expressed in ESCC. Amplification and high expression of DSB repair pathway genes were associated with poorer overall survival. Gene set variation analysis further showed that DSB repair pathways were up-regulated in ESCC. Besides, we firstly demonstrated that combination of mirin and NU7441, two inhibitors for HR and NHEJ respectively, with ionizing radiation treatment significantly enhanced DSBs, reduced clonogenic cell survival, inhibited cell proliferation, and promoted cell apoptosis in ESCC cells with DSB pathway gene amplification. These findings suggest that DSB repair pathways were significantly altered in ESCC and inhibiting DSB repair pathways might enhance the radio-sensitivity of ESCC with DSB repair up-regulation.
Collapse
Affiliation(s)
- Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shichao Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhangfu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiancheng Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
8
|
Glicksman RM, Metser U, Valliant J, Chung PW, Fleshner NE, Bristow RG, Green D, Finelli A, Hamilton R, Stanescu T, Hussey D, Catton C, Gospodarowicz M, Warde P, Bayley A, Breen S, Vines D, Jaffray DA, Berlin A. [ 18F]DCFPyL PET-MRI/CT for unveiling a molecularly defined oligorecurrent prostate cancer state amenable for curative-intent ablative therapy: study protocol for a phase II trial. BMJ Open 2020; 10:e035959. [PMID: 32327479 PMCID: PMC7204865 DOI: 10.1136/bmjopen-2019-035959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The oligometastatic (OM) disease hypothesis of an intermediate metastatic state with limited distant disease deposits amenable for curative therapies remains debatable. Over a third of prostate cancer (PCa) patients treated with radical prostatectomy and postoperative radiotherapy experience disease recurrence; these patients are considered incurable by current standards. Often the recurrence cannot be localised by conventional imaging (CT and bone scan). Combined anatomical imaging with CT and/or MR with positron emission tomography (PET) using a novel second-generation prostate-specific membrane antigen (PSMA) probe, [18F]DCFPyL, is a promising imaging modality to unveil disease deposits in these patients. A new and earlier molecularly defined oligorecurrent (OR) state may be amenable to focal-targeted ablative curative-intent therapies, such as stereotactic ablative radiotherapy (SABR) or surgery, thereby significantly delaying or completely avoiding the need for palliative therapies in men with recurrent PCa after maximal local treatments. METHODS AND ANALYSIS This ongoing single-institution phase II study will enrol up to 75 patients total, to include up to 37 patients with response-evaluable disease, who have rising prostate-specific antigen (range 0.4-3.0 ng/mL) following maximal local therapies with no evidence of disease on conventional imaging. These patients will undergo [18F]DCFPyL PET-MR/CT imaging to detect disease deposits, which will then be treated with SABR or surgery. The primary endpoints are performance of [18F]DCFPyL PET-MR/CT, and treatment response rates following SABR or surgery. Demographics and disease characteristics will be summarised and analysed descriptively. Response rates will be described with waterfall plots and proportions. ETHICS AND DISSEMINATION Ethics approval was obtained from the institutional Research Ethics Board. All patients will provide written informed consent. [18F]DCFPyL has approval from Health Canada. The results of the study will be disseminated by the principal investigator. Patients will not be identifiable as individuals in any publication or presentation of this study. TRIAL REGISTRATION NUMBERS NCT03160794.
Collapse
Affiliation(s)
- Rachel M Glicksman
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John Valliant
- Centre for Probe Development and Commercialization, McMaster University, Hamilton, Ontario, Canada
| | - Peter W Chung
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil E Fleshner
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert G Bristow
- Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester; Cancer Research UK Manchester Institute and Manchester Cancer Research Centre; The Christie NHS Foundation Trust, Manchester, UK
| | - David Green
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Antonio Finelli
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert Hamilton
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Teodor Stanescu
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Douglas Hussey
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Charles Catton
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mary Gospodarowicz
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Padraig Warde
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Bayley
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Breen
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Doug Vines
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David A Jaffray
- Office of the Chief Technology and Digital Officer; Department of Radiation Physics; Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alejando Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kratochwil C, Giesel FL, Heussel CP, Kazdal D, Endris V, Nientiedt C, Bruchertseifer F, Kippenberger M, Rathke H, Leichsenring J, Hohenfellner M, Morgenstern A, Haberkorn U, Duensing S, Stenzinger A. Patients Resistant Against PSMA-Targeting α-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair-Associated Genes. J Nucl Med 2019; 61:683-688. [PMID: 31601699 DOI: 10.2967/jnumed.119.234559] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA)-targeting α-radiation therapy (TAT) is an emerging treatment modality for metastatic castration-resistant prostate cancer. There is a subgroup of patients with poor response despite sufficient expression of PSMA in their tumors. The aim of this work was to characterize PSMA-TAT-nonresponding lesions by targeted next-generation sequencing. Methods: Of 60 patients treated with 225Ac-PSMA-617, we identified 10 patients who presented with a poor response despite sufficient tumor uptake in PSMA PET/CT. We were able to perform CT-guided biopsies with histologic validation of the nonresponding lesions in 7 of these nonresponding patients. Specimens were analyzed by targeted next-generation sequencing interrogating 37 DNA damage-repair-associated genes. Results: In the 7 tumor samples analyzed, we found a total of 15 whole-gene deletions, deleterious or presumably deleterious mutations affecting TP53 (n = 3), CHEK2 (n = 2), ATM (n = 2), and BRCA1, BRCA2, PALB2, MSH2, MSH6, NBN, FANCB, and PMS1 (n = 1 each). The average number of deleterious or presumably deleterious mutations was 2.2 (range, 0-6) per patient. In addition, several variants of unknown significance in ATM, BRCA1, MSH2, SLX4, ERCC, and various FANC genes were detected. Conclusion: Patients with resistance to PSMA-TAT despite PSMA positivity frequently harbor mutations in DNA damage-repair and checkpoint genes. Although the causal role of these alterations in the patient outcome remains to be determined, our findings encourage future studies combining PSMA-TAT and DNA damage-repair-targeting agents such as poly(ADP-ribose)-polymerase inhibitors.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Claus-Peter Heussel
- Thorax Centre, Department of Interventional and Diagnostic Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cathleen Nientiedt
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg, Germany.,Section of Molecular Urooncology, Department of Urology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission-Joint Research Centre, Karlsruhe, Germany
| | - Maximilian Kippenberger
- Section of Molecular Urooncology, Department of Urology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Rathke
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Leichsenring
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, Heidelberg University Hospital, Heidelberg, Germany; and
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission-Joint Research Centre, Karlsruhe, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Urology, Heidelberg University Hospital, Heidelberg, Germany; and
| | | |
Collapse
|
10
|
Abstract
Over the last decade, advancements in massively-parallel DNA sequencing and computational biology have allowed for unprecedented insights into the fundamental mutational processes that underlie virtually every major cancer type. Two major cancer genomics consortia-The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)-have produced rich databases of mutational, pathological, and clinical data that can be mined through web-based portals, allowing for correlative studies and testing of novel hypotheses on well-powered patient cohorts.In this chapter, we will review the impact of these technological developments on the understanding of molecular subtypes that promote prostate cancer initiation, progression, metastasis, and clinical aggression. In particular, we will focus on molecular subtypes that define clinically-relevant patient cohorts and assess how a better understanding of how these subtypes-in both somatic and germline genomes-may influence the clinical course for individual men diagnosed with prostate cancer.
Collapse
|
11
|
Story MD, Wang J. Developing Predictive or Prognostic Biomarkers for Charged Particle Radiotherapy. Int J Part Ther 2018; 5:94-102. [PMID: 30393751 DOI: 10.14338/ijpt-18-00027.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The response to radiotherapy can vary greatly among individuals, even though advances in technology allow for the highly localized placement of therapeutic doses of radiation to a tumor. This variability in patient response to radiation is biologically driven, but the individuality of tumor and healthy tissue biology are not used to create individual treatment plans. Biomarkers of radiosensitivity, whether intrinsic or from hypoxia, would move radiation oncology from precision medicine to precise, personalized medicine. Charged particle radiotherapy allows for even greater dose conformity, but the biological advantages of charged particle radiotherapy have not yet been cultivated. The development of biomarkers that would drive biologically based clinical trials, identify patients for whom charged particles are most appropriate, or aid in particle-selection strategies could be envisioned with appropriate biomarkers. Initially, biomarkers for low-linear energy transfer (LET) radiation responses should be tested against charged particles. Biomarkers of tumor radioresistance to low-LET radiations could be used to identify patients for whom the enhanced relative biological effectiveness (RBE) of charged particles would be more effective compared with low-LET radiations and those for whom specific DNA-repair inhibitors, in combination with charged particles, may also be appropriate. Furthermore, heavy charged particles can overcome the radioresistance of hypoxic tumors when used at the appropriate LET. Biomarkers for hypoxia could identify hypoxic tumors and, in combination with imaging, define hypoxic regions of a tumor for specific ion selection. Moreover, because of the enhanced RBE for charged particles, the risk for adverse healthy tissue effects may be greater, even though charged particles have greater tumor conformality. There are many validated healthy-tissue biomarkers available to test against charged particle exposures. Lastly, newer biological techniques, as well as newer bioinformatic and computational methods, are rapidly changing the landscape for biomarker identification, validation, and clinical trial design.
Collapse
Affiliation(s)
- Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Lhuillier C, Vanpouille-Box C, Galluzzi L, Formenti SC, Demaria S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin Cancer Biol 2018; 52:125-134. [PMID: 29258856 PMCID: PMC6004231 DOI: 10.1016/j.semcancer.2017.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Over the past few years, multiple immune checkpoint blockers (ICBs) have achieved unprecedented clinical success and have been approved by regulatory agencies for the treatment of an increasing number of malignancies. However, only a limited fraction of patients responds to ICBs employed as a standalone intervention, calling for the development of combinatorial regimens. Radiation therapy (RT) stands out as a very promising candidate for this purpose. Indeed, RT mediates antineoplastic effects not only by cytotoxic and cytostatic mechanisms, but also by modulating immunological functions, both locally (within the irradiated field) and systemically. As combinatorial regimens involving RT and ICBs are being developed and clinically tested at an accelerating pace, it is paramount to identify biomarkers that reliably predict the likelihood of individual patients to respond. Here, we discuss emerging biomarkers that may potentially predict the response of cancer patients to RT plus ICBs.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Silvia Chiara Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
13
|
Zhen Y, Xiao R, Chen X, Yuan C, Sun Y, Li J. A non-synonymous polymorphism in NBS1 is associated with progression from chronic hepatitis B virus infection to hepatocellular carcinoma in a Chinese population. Onco Targets Ther 2018; 11:563-569. [PMID: 29416357 PMCID: PMC5790086 DOI: 10.2147/ott.s153538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Nijmegen breakage syndrome 1 (NBS1) has a vital role in DNA double-strand break (DSB) repair, functioning as a sensor to identify and repair DNA damage and maintaining genomic stability by participating in the intra-S-phase checkpoint. Polymorphisms of NBS1 have been investigated in multiple cancers with variable results. To our best knowledge, no previous study has focused on the association between NBS1 single-nucleotide polymorphisms (SNPs) and hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). PATIENTS AND METHODS Five NBS1 SNPs were selected based on their potential functional impact. A hospital-based cohort, comprising 481 patients with HBV-related HCC, 508 patients with chronic hepatitis B virus infection (CHB), and 581 healthy controls, was recruited for genotyping analysis. RESULTS After quality control, four SNPs were successfully genotyped (rs10464867, rs1063053, rs1805794, and rs709816), none of which were significantly associated with HCC or CHB compared with those of healthy controls. Similarly, the combined HBV-infected group (including the HCC and CHB groups) exhibited no significant associations with these SNPs compared with healthy controls. In contrast, comparison of the frequency of rs1805794 between patients with CHB and those with HCC identified a significant association (P=2.99E-03, odds ratio =1.31, 95% confidence interval =1.10-1.56). CONCLUSION These findings suggest that, as a non-synonymous SNP, the rs1805794 C/G polymorphism may play a role in the progression from CHB to HCC.
Collapse
Affiliation(s)
- Ya’nan Zhen
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
- Department of General Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Ruixue Xiao
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Xing Chen
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan
| | - Changjin Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Li
- Department of General Surgery, Qianfoshan Hospital, Shandong University, Jinan
| |
Collapse
|
14
|
Wang Y, Gudikote J, Giri U, Yan J, Deng W, Ye R, Jiang W, Li N, Hobbs BP, Wang J, Swisher SG, Fujimoto J, Wistuba II, Komaki R, Heymach JV, Lin SH. RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non-small Cell Lung Cancer. Clin Cancer Res 2018; 24:341-350. [PMID: 29030353 DOI: 10.1158/1078-0432.ccr-17-1455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/30/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Although postoperative radiotherapy is often used to maintain local control after surgical resection and chemotherapy for locally advanced non-small cell lung cancer (NSCLC), both locoregional failure and distant metastasis remain problematic. The mechanisms of therapeutic resistance remain poorly understood.Experimental Design: We used reverse-phase protein arrays (RPPA) to profile the baseline expression of 170 total and phosphorylated proteins in 70 NSCLC cell lines to categorize pathways that may contribute to radiation resistance. Significant markers identified by RPPA were further analyzed in tissue microarrays (TMA) of specimens from 127 patients with NSCLC who had received surgery before receiving postoperative radiotherapy. Cox regression analysis and log-rank tests were used to identify potential predictive factors. We then validated the biological function of the markers in NSCLC cell lines in vitroResults: Of the 170 proteins or phospho-proteins profiled, a subset of 12 proteins was found to correlate with radiation response parameters. TMA analysis of the 12 proteins showing the greatest differences in expression in the RPPA analysis demonstrated that RAD50 had the strongest correlation with distant relapse-free survival, locoregional relapse-free survival, and disease-free survival in patients with NSCLC. We confirmed that knockdown of RAD50 sensitized NSCLC cells to radiation and that upregulation of RAD50 increased radioresistance in in vitro experiments.Conclusions: Upregulated RAD50 may be a predictor of radioresistance in patients with lung cancer who received radiotherapy. Clin Cancer Res; 24(2); 341-50. ©2017 AACR.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Jayanthi Gudikote
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Uma Giri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yan
- Oncology Research for Biologics and Immunotherapy Translation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Ye
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian P Hobbs
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Camacho N, Van Loo P, Edwards S, Kay JD, Matthews L, Haase K, Clark J, Dennis N, Thomas S, Kremeyer B, Zamora J, Butler AP, Gundem G, Merson S, Luxton H, Hawkins S, Ghori M, Marsden L, Lambert A, Karaszi K, Pelvender G, Massie CE, Kote-Jarai Z, Raine K, Jones D, Howat WJ, Hazell S, Livni N, Fisher C, Ogden C, Kumar P, Thompson A, Nicol D, Mayer E, Dudderidge T, Yu Y, Zhang H, Shah NC, Gnanapragasam VJ, The CRUK-ICGC Prostate Group, Isaacs W, Visakorpi T, Hamdy F, Berney D, Verrill C, Warren AY, Wedge DC, Lynch AG, Foster CS, Lu YJ, Bova GS, Whitaker HC, McDermott U, Neal DE, Eeles R, Cooper CS, Brewer DS. Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genet 2017; 13:e1007001. [PMID: 28945760 PMCID: PMC5628936 DOI: 10.1371/journal.pgen.1007001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/05/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of models have been proposed to explain regions of recurrent somatic copy number alteration (SCNA) in human cancer. Our study employs Whole Genome DNA Sequence (WGS) data from tumor samples (n = 103) to comprehensively assess the role of the Knudson two hit genetic model in SCNA generation in prostate cancer. 64 recurrent regions of loss and gain were detected, of which 28 were novel, including regions of loss with more than 15% frequency at Chr4p15.2-p15.1 (15.53%), Chr6q27 (16.50%) and Chr18q12.3 (17.48%). Comprehensive mutation screens of genes, lincRNA encoding sequences, control regions and conserved domains within SCNAs demonstrated that a two-hit genetic model was supported in only a minor proportion of recurrent SCNA losses examined (15/40). We found that recurrent breakpoints and regions of inversion often occur within Knudson model SCNAs, leading to the identification of ZNF292 as a target gene for the deletion at 6q14.3-q15 and NKX3.1 as a two-hit target at 8p21.3-p21.2. The importance of alterations of lincRNA sequences was illustrated by the identification of a novel mutational hotspot at the KCCAT42, FENDRR, CAT1886 and STCAT2 loci at the 16q23.1-q24.3 loss. Our data confirm that the burden of SCNAs is predictive of biochemical recurrence, define nine individual regions that are associated with relapse, and highlight the possible importance of ion channel and G-protein coupled-receptor (GPCR) pathways in cancer development. We concluded that a two-hit genetic model accounts for about one third of SCNA indicating that mechanisms, such haploinsufficiency and epigenetic inactivation, account for the remaining SCNA losses.
Collapse
Affiliation(s)
- Niedzica Camacho
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Sandra Edwards
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Jonathan D. Kay
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Lucy Matthews
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Kerstin Haase
- Cancer Genomics Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Clark
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Nening Dennis
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Sarah Thomas
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Barbara Kremeyer
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Jorge Zamora
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Adam P. Butler
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Gunes Gundem
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sue Merson
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Hayley Luxton
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Steve Hawkins
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Mohammed Ghori
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Luke Marsden
- Department of Physiology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Adam Lambert
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire, United Kingdom
| | - Katalin Karaszi
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, Oxfordshire, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Gill Pelvender
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Charlie E. Massie
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- CRUK Cambridge Centre, Early Detection Programme, Urological Malignancies Programme, Hutchison-MRC Research Centre, Cambridge, Cambridgeshire, United Kingdom
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
| | - Keiran Raine
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - William J. Howat
- Histopathology and in situ hybridization Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Steven Hazell
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Naomi Livni
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Cyril Fisher
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Christopher Ogden
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Pardeep Kumar
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alan Thompson
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - David Nicol
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Erik Mayer
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tim Dudderidge
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Yongwei Yu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Nimish C. Shah
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom
| | - Vincent J. Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | | | - William Isaacs
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tapio Visakorpi
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Dan Berney
- Centre for Molecular Oncology, Barts Cancer Institute, The Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology and Oxford Biomedical Research Centre, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire, United Kingdom
| | - Anne Y. Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom
| | - David C. Wedge
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Oxford Big Data Institute & Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Oxford, Oxfordshire, United Kingdom
| | - Andrew G. Lynch
- Statistics and Computational Biology Laboratory, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- School of Mathematics and Statistics/School of Medicine, University of St Andrews, St Andrews, Fife, Scotland
| | | | - Yong Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, The Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - G. Steven Bova
- Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hayley C. Whitaker
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Molecular Diagnostics and Therapeutics Group, University College London, London, United Kingdom
| | - Ultan McDermott
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David E. Neal
- Uro-Oncology Research Group, Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Colin S. Cooper
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, London, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom
- Organisms and Ecosystems, The Earlham Institute, Norwich, Norfolk, United Kingdom
| |
Collapse
|
16
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
17
|
|
18
|
Park YM, Kim MA, Jung HT, Kang HJ, Yoo HS, Kang IC. Nutriproteomic Analysis of Hwangmaemok-Induced Antiangiogenic Effect Using Antibody-Arrayed Protein Chip Assay. J Med Food 2017; 20:586-591. [PMID: 28581882 DOI: 10.1089/jmf.2016.3775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the antiangiogenic effects of Lindera obtusiloba Blume (Hwangmaemok, HMM), which is a plant in the Lauraceae family that is commonly used to treat colds and gastritis. Moreover, given that a recent study reported the inhibitory effects of HMM extract on cancer metastasis, we hypothesized that HMM extract might possess and antiangiogenic function. Thus, this study was conducted to investigate the effects of HMM extract on endothelial cell proliferation, migration, and neovascularization in chick chorioallantoic membrane (CAM), and investigated the molecular mechanism of antiangiogenesis using a ProteoChip-based proteomics technology. To examine the effects of HMM extracts on endothelial cell proliferation and migration, we conducted basic fibroblast growth factor (bFGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration. To assess the molecular mechanism of the antiangiogenic effects of HMM extract, a ProteoChip-based forwarded phase antibody array was employed to identify the differential expression of cell cycle proteins in HMM-treated HUVECs. HMM extract inhibited bFGF-induced HUVEC proliferation and migration in a dose-dependent manner and CAM angiogenesis. The ProteoChip-based antibody microarray data showed upregulation of Nibrin/NBS1 and downregulation of Plk-1 and Cyclin E, which are involved in cell division and controlling the cell cycle in bFGF-induced HUVECs. These data suggest that HMM may be a potent antitumor medicinal herb. The present study demonstrates that the antiangiogenic effect of HMM may be due to suppression of endothelial cell proliferation and migration. Taken together, these results emphasize the potential to use HMM extract as a potent angiogenesis inhibitor to treat cancer.
Collapse
Affiliation(s)
- Yu Mi Park
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Min-A Kim
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Hee Tae Jung
- 2 East-West Cancer Center, Dunsan Korean Medical Hospital of Daejeon University , Daejeon, Korea
| | - Hwa Jeong Kang
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| | - Hwa-Seung Yoo
- 2 East-West Cancer Center, Dunsan Korean Medical Hospital of Daejeon University , Daejeon, Korea
| | - In-Cheol Kang
- 1 Department of Biological Science, College of Life and Health Sciences, Hoseo University , Asan, Korea
| |
Collapse
|
19
|
Someya M, Hasegawa T, Hori M, Matsumoto Y, Nakata K, Masumori N, Sakata KI. Local tumor control and DNA-PK activity of peripheral blood lymphocytes in prostate cancer patients receiving radiotherapy. JOURNAL OF RADIATION RESEARCH 2017; 58:225-231. [PMID: 28399576 PMCID: PMC5571613 DOI: 10.1093/jrr/rrw099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/14/2016] [Accepted: 09/04/2016] [Indexed: 06/07/2023]
Abstract
Repair of DNA damage is critical for genomic stability, and DNA-dependent protein kinase (DNA-PK) has an important role in repairing double-strand breaks. We examined whether the DNA-PK activity of peripheral blood lymphocytes (PBLs) was related to biochemical (prostate-specific antigen: PSA) relapse and radiation toxicity in prostate cancer patients who have received radiotherapy. A total of 69 patients with localized adenocarcinoma of the prostate participated in this study. Peripheral blood was collected 2 years or later after radiotherapy and centrifuged, then DNA-PK activity was measured by a filter binding assay. The high DNA-PK activity group had a significantly higher PSA relapse-free survival rate than the low DNA-PK activity group. The 10-year PSA relapse-free survival was 87.0% in the high DNA-PK activity group, whereas it was 52.7% in the low DNA-PK activity group. Multivariate analysis showed the Gleason score and the level of DNA-PK activity were significant predictors of PSA relapse after radiotherapy. In addition, the low DNA-PK activity group tended to have a higher incidence of Grade 1-2 urinary toxicity than the high DNA-PK activity group. Prostate cancer patients with low DNA-PK activity had a higher rate of PSA relapse and a higher incidence of urinary toxicity. DNA-PK activity in PBLs might be a useful marker for predicting PSA relapse and urinary toxicity, possibly contributing to personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Masakazu Hori
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshihisa Matsumoto
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo, Japan
| | - Kensei Nakata
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Koh-ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, S1W16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
20
|
Biomarkers of Outcome in Patients With Localized Prostate Cancer Treated With Radiotherapy. Semin Radiat Oncol 2017; 27:11-20. [DOI: 10.1016/j.semradonc.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Abstract
OPINION STATEMENT Soft-tissue sarcoma is one of the few clinical cancer models in which pre-operative radiotherapy is commonly utilized and in which tumor response to radiotherapy could be assessed. However, clinical and histopathological features of soft-tissue sarcomas are not useful in predicting tumor radiotherapy response. Exploration of predictive markers of sarcoma response to radiotherapy is further confounded by discordance between radiological tumor size reduction, pathological changes, and clinical local recurrence rates. The diversity of disease histology and anatomical origin further influences which type of radiotherapy response (volumetric vs. cytotoxic) would best relate to patient outcome. Advances in molecular biology and understanding of sarcoma biology have recently resulted in the identification of several molecular and imaging predictive markers of radiotherapy response. As the underlying mechanism of radiation-induced cell killing involves the production of DNA damage through the production of oxygen radicals, the most promising biomarkers and imaging markers are related to DNA damage repair genes, hypoxia, and tumor vasculature. As bone and cartilaginous sarcomas are less often treated with radiotherapy, biomarkers of response in these diseases are less examined.
Collapse
Affiliation(s)
- Carlos H F Chan
- Department of Surgery, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, 52242, USA
| | - Philip Wong
- Department of Radiation Oncology, Centre Hospitalier de L'Université de Montréal, 1560 Sherbrooke Street East, Montreal, QC, Canada, H2L 4M1.
| |
Collapse
|
22
|
Chua MLK, Bristow RG. Testosterone in Androgen Receptor Signaling and DNA Repair: Enemy or Frenemy? Clin Cancer Res 2016; 22:3124-6. [PMID: 27166396 DOI: 10.1158/1078-0432.ccr-16-0381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
Androgen suppression mediates transcriptional downregulation of DNA repair genes. Stimulation with supraphysiologic levels of dihydrotestosterone induces formation of lethal DNA breaks through recruitment of topoisomerase II enzymes to fragile DNA sites. Bipolar castration and stimulation that contributes to increasing DNA damage represents a novel strategy of sensitizing prostate cancer to cytotoxic therapies, including radiotherapy. Clin Cancer Res; 22(13); 3124-6. ©2016 AACRSee related article by Hedayati et al., p. 3310.
Collapse
Affiliation(s)
- Melvin Lee Kiang Chua
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Robert G Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Dal Pra A, Locke JA, Borst G, Supiot S, Bristow RG. Mechanistic Insights into Molecular Targeting and Combined Modality Therapy for Aggressive, Localized Prostate Cancer. Front Oncol 2016; 6:24. [PMID: 26909338 PMCID: PMC4754414 DOI: 10.3389/fonc.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is one of the mainstay treatments for prostate cancer (PCa). The potentially curative approaches can provide satisfactory results for many patients with non-metastatic PCa; however, a considerable number of individuals may present disease recurrence and die from the disease. Exploiting the rich molecular biology of PCa will provide insights into how the most resistant tumor cells can be eradicated to improve treatment outcomes. Important for this biology-driven individualized treatment is a robust selection procedure. The development of predictive biomarkers for RT efficacy is therefore of utmost importance for a clinically exploitable strategy to achieve tumor-specific radiosensitization. This review highlights the current status and possible opportunities in the modulation of four key processes to enhance radiation response in PCa by targeting the: (1) androgen signaling pathway; (2) hypoxic tumor cells and regions; (3) DNA damage response (DDR) pathway; and (4) abnormal extra-/intracell signaling pathways. In addition, we discuss how and which patients should be selected for biomarker-based clinical trials exploiting and validating these targeted treatment strategies with precision RT to improve cure rates in non-indolent, localized PCa.
Collapse
Affiliation(s)
- Alan Dal Pra
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jennifer A Locke
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gerben Borst
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Stephane Supiot
- Integrated Center of Oncology (ICO) René Gauducheau , Nantes , France
| | - Robert G Bristow
- Radiation Medicine Program, Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Wilkins A, Dearnaley D, Somaiah N. Genomic and Histopathological Tissue Biomarkers That Predict Radiotherapy Response in Localised Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:238757. [PMID: 26504789 PMCID: PMC4609338 DOI: 10.1155/2015/238757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/24/2015] [Indexed: 12/16/2022]
Abstract
Localised prostate cancer, in particular, intermediate risk disease, has varied survival outcomes that cannot be predicted accurately using current clinical risk factors. External beam radiotherapy (EBRT) is one of the standard curative treatment options for localised disease and its efficacy is related to wide ranging aspects of tumour biology. Histopathological techniques including immunohistochemistry and a variety of genomic assays have been used to identify biomarkers of tumour proliferation, cell cycle checkpoints, hypoxia, DNA repair, apoptosis, and androgen synthesis, which predict response to radiotherapy. Global measures of genomic instability also show exciting capacity to predict survival outcomes following EBRT. There is also an urgent clinical need for biomarkers to predict the radiotherapy fraction sensitivity of different prostate tumours and preclinical studies point to possible candidates. Finally, the increased resolution of next generation sequencing (NGS) is likely to enable yet more precise molecular predictions of radiotherapy response and fraction sensitivity.
Collapse
Affiliation(s)
- Anna Wilkins
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - David Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Cancer Biology, The Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
25
|
Forker LJ, Choudhury A, Kiltie AE. Biomarkers of Tumour Radiosensitivity and Predicting Benefit from Radiotherapy. Clin Oncol (R Coll Radiol) 2015; 27:561-9. [PMID: 26119726 DOI: 10.1016/j.clon.2015.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 12/11/2022]
Abstract
Radiotherapy is an essential component of treatment for more than half of newly diagnosed cancer patients. The response to radiotherapy varies widely between individuals and although advances in technology have allowed the adaptation of radiotherapy fields to tumour anatomy, it is still not possible to tailor radiotherapy based on tumour biology. A biomarker of intrinsic radiosensitivity would be extremely valuable for individual dosing, aiding decision making between radical treatment options and avoiding toxicity of neoadjuvant or adjuvant radiotherapy in those unlikely to benefit. This systematic review summarises the current evidence for biomarkers under investigation as predictors of radiotherapy benefit. Only 10 biomarkers were identified as having been evaluated for their radiotherapy-specific predictive value in over 100 patients in a clinical setting, highlighting that despite a rich literature there were few high-quality studies for inclusion. The most extensively studied radiotherapy predictive biomarkers were the radiosensitivity index and MRE11; however, neither has been evaluated in a randomised controlled trial. Although these biomarkers show promise, there is not enough evidence to justify their use in routine practice. Further validation is needed before biomarkers can fulfil their potential and predict treatment outcomes for large numbers of patients.
Collapse
Affiliation(s)
- L J Forker
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - A Choudhury
- Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | - A E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
26
|
Guo J, Liu X, Wang M. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer. Biochem Biophys Res Commun 2015; 464:1302-1308. [PMID: 26231797 DOI: 10.1016/j.bbrc.2015.07.127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/25/2015] [Indexed: 01/08/2023]
Abstract
Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China.
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| |
Collapse
|