1
|
Bollu VS, Chen YC, Zhang F, Gowda K, Amin S, Sharma AK, Schell TD, Zhu J, Robertson GP. Managing telomerase and telomere dysfunction in acral melanoma. Pharmacol Res 2025; 215:107700. [PMID: 40097124 DOI: 10.1016/j.phrs.2025.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Acral Lentiginous Melanoma is a rare and aggressive subtype of melanoma that commonly affects the palms, soles, and nail beds. It is more prevalent in individuals with darker skin tones, including Asian, African, and Hispanic populations. Unlike cutaneous melanomas, acral melanoma is not associated with UV exposure and has a distinct genetic and molecular profile, underscoring the need for tailored research and treatment strategies. Standard treatments, such as surgery, chemotherapy, immunotherapy, and targeted therapies, have shown limited success for this melanoma subtype, highlighting the urgency of developing more effective interventions. Telomerase is an enzyme that extends telomeres and is a key target in acral melanoma which exhibits' high telomerase activity, driven by mutations in the telomerase reverse transcriptase TERT promoter, which contributes to uncontrolled tumor cell proliferation, cancer cell immortality, and resistance to conventional therapies. Therefore, targeting telomerase presents a promising therapeutic avenue for acral melanoma patients who do not respond well to current treatments. Several approaches for targeting telomerase deregulation have been developed, and their potential for the management of acral melanoma is discussed in this review. Specifically, the promise of telomerase-targeted therapies for acral melanoma is emphasized and explores how these strategies could improve outcomes for patients with this challenging skin cancer. By focusing on the role of telomerase in tumorigenesis and treatment resistance, telomerase-targeted strategies hold potential as a foundational component of therapies for acral melanoma, complementing existing approaches.
Collapse
Affiliation(s)
- Vishnu Sravan Bollu
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Yu-Chi Chen
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Fan Zhang
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Shantu Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Arun K Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jiyue Zhu
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmaceutical Sciences, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA 99202, United States
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Foreman Foundation for Melanoma Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma and Skin Cancer Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Melanoma Therapeutics Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
2
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
3
|
Bortoletto S, Nunes-Souza E, Marchi R, Ruthes MO, Okano LM, Tofolo MV, Centa A, Fonseca AS, Rosolen D, Cavalli LR. MicroRNAs role in telomere length maintenance and telomerase activity in tumor cells. J Mol Med (Berl) 2024; 102:1089-1100. [PMID: 39042290 DOI: 10.1007/s00109-024-02467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
MiRNAs, a class of non-coding RNA molecules, have emerged as critical modulators of telomere length and telomerase activity by finely tuning the expression of target genes (and not gene targets) within signaling pathways involved in telomere homeostasis. The primary objective of this systematic review was to compile and synthesize the existing body of knowledge on the role, association, and involvement of miRNAs in telomere length. Additionally, the review explored the regulation, function, and activation mechanism of the human telomerase reverse transcriptase (hTERT) gene and telomerase activity in tumor cells. A comprehensive analysis of 47 selected articles revealed 40 distinct miRNAs involved in these processes. These miRNAs were shown to exert their function, in both clinical cases and cell line models, either directly or indirectly, regulating hTERT and telomerase activity through distinct molecular mechanisms. The regulatory roles of these miRNAs significantly affected major cancer phenotypes, with outcomes largely dependent on the tissue type and the cellular actions within the tumor cells, whereby they functioned as oncogenes or tumor suppressors. These findings strongly support the pivotal role of miRNAs in modulating telomere length and telomerase activity, thereby contributing to the intricate and complex regulation of telomere homeostasis in tumor cells. Moreover, they emphasize the potential of targeting miRNAs and key regulatory genes as therapeutic strategies to disrupt cancer cell growth and promote senescence, offering promising avenues for novel cancer treatments.
Collapse
Affiliation(s)
- Stéfanne Bortoletto
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Emanuelle Nunes-Souza
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Rafael Marchi
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Mayara Oliveira Ruthes
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Larissa M Okano
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Maria Vitoria Tofolo
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Ariana Centa
- Universidade Alto Vale do Rio do Peixe (UNIARP), Caçador, SC, Brazil
| | - Aline S Fonseca
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daiane Rosolen
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luciane R Cavalli
- Faculdades Pequeno Príncipe, Research Institute Pelé Pequeno Príncipe, Curitiba, PR, Brazil.
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
5
|
Nevskaya KV, Pershina AG, Hmelevskaya ES, Efimova LV, Ibragimova MK, Dolgasheva DS, Tsydenova IA, Ufandeev AA, Buyko EE, Perina EA, Gaptulbarova KA, Kravtsova EA, Krivoshchekov SV, Ivanov VV, Guriev AM, Udut EV, Litviakov NV. Prevention of Metastasis by Suppression of Stemness Genes Using a Combination of microRNAs. J Med Chem 2024; 67:5591-5602. [PMID: 38507819 DOI: 10.1021/acs.jmedchem.3c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
We propose an original strategy for metastasis prevention using a combination of three microRNAs that blocks the dedifferentiation of cancer cells in a metastatic niche owing to the downregulation of stemness genes. Transcriptome microarray analysis was applied to identify the effects of a mixture of microRNAs on the pattern of differentially expressed genes in human breast cancer cell lines. Treatment of differentiated CD44- cancer cells with the microRNA mixture inhibited their ability to form mammospheres in vitro. The combination of these three microRNAs encapsulated into lipid nanoparticles prevented lung metastasis in a mouse model of spontaneous metastasis. The mixture of three microRNAs (miR-195-5p/miR-520a/miR-630) holds promise for the development of an antimetastatic therapeutic that blocks tumor cell dedifferentiation, which occurs at secondary tumor sites and determines the transition of micrometastases to macrometastases.
Collapse
Affiliation(s)
- Kseniya V Nevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Alexandra G Pershina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina S Hmelevskaya
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Lina V Efimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Marina K Ibragimova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Darya S Dolgasheva
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Irina A Tsydenova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Alexander A Ufandeev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Evgeny E Buyko
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ekaterina A Perina
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Ksenia A Gaptulbarova
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| | - Ekaterina A Kravtsova
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Tomsk State University, Lenin Ave. 36, Tomsk 634050, Russia
| | - Sergei V Krivoshchekov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Vladimir V Ivanov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Artem M Guriev
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Elena V Udut
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
| | - Nikolai V Litviakov
- Central Research Laboratory, Siberian State Medical University, Moskovsky Trakt 2, Tomsk 634050, Russia
- Oncovirology Lab, Cancer Research Institute of Tomsk National Research Medical Center, Russian Academy of Sciences, Pereulok Kooperativnyi 5, Tomsk 634050, Russia
- Research School of Chemical and Biomedical Engineering, Tomsk Polytechnic University, Lenin Ave. 30, Tomsk 634050, Russia
| |
Collapse
|
6
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
8
|
Mustafin RN. Relationship of Peptides and Long Non-Coding RNAs with Aging. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
10
|
Telomere associated gene expression as well as TERT protein level and telomerase activity are altered in the ovarian follicles of aged mice. Sci Rep 2021; 11:15569. [PMID: 34330985 PMCID: PMC8324818 DOI: 10.1038/s41598-021-95239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes to maintain genomic stability and integrity during an organism’s lifespan. The length of telomeres inevitably shortens due to DNA replication, genotoxic agents, and biological aging. A limited number of cell types, e.g., stem cells, germline cells, and early embryos can elongate shortened telomeres via the enzymatic action of telomerase, which is composed of telomerase reverse transcriptase (TERT) and telomerase RNA component (Terc). Additionally, telomere-associated proteins including telomeric repeat binding factor 1 (TRF1) and 2 (TRF2), as well as protection of telomeres 1a (POT1a), bind to telomeres to maintain their structural integrity and length. During ovarian aging in mammals, telomeres progressively shorten, accompanied by fertility loss; however, the molecular mechanism underlying this attrition during follicle development remains unclear. In this study, the primary, secondary, preantral, and antral follicles were obtained either from 6-week-old adult (n = 19) or 52-week-old aged (n = 12) mice. We revealed that the Tert, Terc, Trf1, Trf2, and Pot1a gene expression (P < 0.001) and TERT protein (P < 0.01) levels significantly decreased in certain ovarian follicles of the aged group when compared to those of the adult group. Also, telomerase activity exhibited remarkable changes in the follicles of both groups. Consequently, altered telomere-associated gene expression and reduced TERT protein levels in the follicles of aged mice may be a determinant of telomere shortening during ovarian aging, and infertility appearing in the later decades of reproductive lifespan. Further investigations are required to determine the molecular mechanisms underlying these alterations in the follicles during ovarian aging.
Collapse
|
11
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
12
|
Han S, Ma X, Fang J. [Clinical Application and Challenges of Telomere and Telomerase Research
in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:25-30. [PMID: 33478187 PMCID: PMC7849035 DOI: 10.3779/j.issn.1009-3419.2020.102.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
肺癌是世界范围内发病率和死亡率较高的恶性肿瘤之一。端粒和端粒酶与肺癌的发生发展密切相关。虽然端粒酶可能不是导致细胞癌变的直接原因,但在维持端粒长度和肿瘤生长方面起到关键作用。包括肺癌在内的大部分肿瘤端粒长度缩短。端粒长度的变化与肺癌发生风险相关,并可能成为肺癌的治疗靶标和预测指标。针对端粒和端粒酶信号通路的靶向治疗药物正在探索中,以端粒酶抑制剂为代表的小分子药物有希望应用于肺癌的临床治疗中。但是,人们对于端粒和端粒酶的研究还远远不够,端粒长度维持的旁路作用机制可能是下一步需要深入研究的方向。
Collapse
Affiliation(s)
- Sen Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xu Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
13
|
Fundamental insights into the interaction between telomerase/TERT and intracellular signaling pathways. Biochimie 2020; 181:12-24. [PMID: 33232793 DOI: 10.1016/j.biochi.2020.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Telomerase activity is critical for cancer cells to provide unrestricted proliferation and cellular immortality through maintaining telomeres. Telomerase enzymatic activity is regulatable at the level of DNA, mRNA, post translational modifications, cellular transport and enzyme assembly. More recent studies confirm the interaction of the telomerase with various intracellular signaling pathways including PI3K/AKT/mTOR, NF-κB and Wnt/β-catenin which mainly participating in inflammation, epithelial to mesenchymal transition (EMT) and tumor cell invasion and metastasis. Furthermore, hTERT protein has been detected in non-nuclear sites such as the mitochondria and cytoplasm in cells. Mitochondrial TERT indicates various non-telomere-related functions such as decreasing reactive oxygen species (ROS) generation, boosting the respiration rate, protecting mtDNA by direct binding, interacting with mitochondrial tRNAs and increasing mitochondrial membrane potential which can lead to higher chemoresistance rate in cancer cells during therapies. Understanding the molecular mechanisms of the TERT function and depended interactions in tumor cells can suggest novel therapeutic approaches. Hence, in this review we will explain the telomerase activity regulation in translational and post translational levels besides the established correlations with various cell signaling pathways with possible pathways for therapeutic targeting.
Collapse
|
14
|
Dratwa M, Wysoczańska B, Łacina P, Kubik T, Bogunia-Kubik K. TERT-Regulation and Roles in Cancer Formation. Front Immunol 2020; 11:589929. [PMID: 33329574 PMCID: PMC7717964 DOI: 10.3389/fimmu.2020.589929] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Kubik
- Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
Potential roles of telomeres and telomerase in neurodegenerative diseases. Int J Biol Macromol 2020; 163:1060-1078. [DOI: 10.1016/j.ijbiomac.2020.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
|
16
|
Modulation of telomerase expression and function by miRNAs: Anti-cancer potential. Life Sci 2020; 259:118387. [PMID: 32890603 DOI: 10.1016/j.lfs.2020.118387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022]
Abstract
Telomerase is a nucleoprotein reverse transcriptase that maintains the telomere, a protective structure at the ends of the chromosome, and is active in cancer cells, stem cells, and fetal cells. Telomerase immortalizes cancer cells and induces unlimited cell division by preventing telomere shortening. Immortalized cancer cells have unlimited proliferative potential due to telomerase activity that causes tumorigenesis and malignancy. Therefore, telomerase can be a lucrative anti-cancer target. The regulation of catalytic subunit of telomerase (TERT) determines the extent of telomerase activity. miRNAs, as an endogenous regulator of gene expression, can control telomerase activity by targeting TERT mRNA. miRNAs that have a decreasing effect on TERT translation mediate modulation of telomerase activity in cancer cells by binding to TERT mRNA and regulating TERT translation. In this review, we provide an update on miRNAs that influence telomerase activity by regulation of TERT translation.
Collapse
|
17
|
Eckburg A, Dein J, Berei J, Schrank Z, Puri N. Oligonucleotides and microRNAs Targeting Telomerase Subunits in Cancer Therapy. Cancers (Basel) 2020; 12:E2337. [PMID: 32825005 PMCID: PMC7565511 DOI: 10.3390/cancers12092337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase provides cancer cells with replicative immortality, and its overexpression serves as a near-universal marker of cancer. Anti-cancer therapeutics targeting telomerase have garnered interest as possible alternatives to chemotherapy and radiotherapy. Oligonucleotide-based therapies that inhibit telomerase through direct or indirect modulation of its subunits, human telomerase reverse transcriptase (hTERT) and human telomerase RNA gene (hTERC), are a unique and diverse subclass of telomerase inhibitors which hold clinical promise. MicroRNAs that play a role in the upregulation or downregulation of hTERT and respective progression or attenuation of cancer development have been effectively targeted to reduce telomerase activity in various cancer types. Tumor suppressor miRNAs, such as miRNA-512-5p, miRNA-138, and miRNA-128, and oncogenic miRNAs, such as miRNA-19b, miRNA-346, and miRNA-21, have displayed preclinical promise as potential hTERT-based therapeutic targets. Antisense oligonucleotides like GRN163L and T-oligos have also been shown to uniquely target the telomerase subunits and have become popular in the design of novel cancer therapies. Finally, studies suggest that G-quadruplex stabilizers, such as Telomestatin, preserve telomeric oligonucleotide architecture, thus inhibiting hTERC binding to the telomere. This review aims to provide an adept understanding of the conceptual foundation and current state of therapeutics utilizing oligonucleotides to target the telomerase subunits, including the advantages and drawbacks of each of these approaches.
Collapse
Affiliation(s)
| | | | | | | | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (A.E.); (J.D.); (J.B.); (Z.S.)
| |
Collapse
|
18
|
Agarwal S, Chakravarthi BVSK, Kim HG, Gupta N, Hale K, Balasubramanya SAH, Oliver PG, Thomas DG, Eltoum IEA, Buchsbaum DJ, Manne U, Varambally S. PAICS, a De Novo Purine Biosynthetic Enzyme, Is Overexpressed in Pancreatic Cancer and Is Involved in Its Progression. Transl Oncol 2020; 13:100776. [PMID: 32422575 PMCID: PMC7229293 DOI: 10.1016/j.tranon.2020.100776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with an extremely poor prognosis. There is an urgent need to identify new therapeutic targets and also understand the mechanism of PDAC progression that leads to aggressiveness of the disease. To find therapeutic targets, we analyzed data related to PDAC transcriptome sequencing and found overexpression of the de novo purine metabolic enzyme phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS). Immunohistochemical analysis of PDAC tissues showed high expression of the PAICS protein. To assess the biological roles of PAICS, we used RNA interference and knock down of its expression in PDAC cell lines that caused a reduction in PDAC cell proliferation and invasion. Furthermore, results of chorioallantoic membrane assays and pancreatic cancer xenografts demonstrated that PAICS regulated pancreatic tumor growth. Our data also showed that, in PDAC cells, microRNA-128 regulates and targets PAICS. PAICS depletion in PDAC cells caused upregulation in E-cadherin, a marker of the epithelial-mesenchymal transition. In PDAC cells, a BET inhibitor, JQ1, reduced PAICS expression. Thus, our investigations show that PAICS is a therapeutic target for PDAC and, as an enzyme, is amenable to targeting by small molecules.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL
| | - Kevin Hale
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Patsy G Oliver
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Isam-Eldin A Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Donald J Buchsbaum
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL; Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
19
|
Prabu P, Poongothai S, Shanthirani CS, Anjana RM, Mohan V, Balasubramanyam M. Altered circulatory levels of miR-128, BDNF, cortisol and shortened telomeres in patients with type 2 diabetes and depression. Acta Diabetol 2020; 57:799-807. [PMID: 32025863 DOI: 10.1007/s00592-020-01486-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
AIMS Several studies have reported the role of biomarkers either in diabetes or depression. The present study is aimed at profiling the circulating levels of miR-128, brain-derived neurotrophic factor (BDNF), cortisol and telomere length in patients with type 2 diabetes with and without depression compared to individuals with normal glucose tolerance. METHODS Study subjects (n = 160) were recruited from an ongoing epidemiological study in southern India. Non-diabetic and diabetic individuals were diagnosed as per the World Health Organization criteria. Depression score was derived using PHQ-12 questionnaire. Real-time quantitative PCR and ELISA methodologies were used to quantify the biomarkers. RESULTS Circulatory levels of miR-128 and cortisol were significantly (p < 0.05) increased with decreased BDNF levels and shortened telomeres in T2DM patients with or without depression compared to NGT individuals. T2DM patients with depression had the highest levels of miR-128 and cortisol and lowest levels of BDNF and telomere length compared to other groups. Pearson correlation analysis showed miR-128 levels were negatively associated with BDNF, telomere length and HDL cholesterol and positively correlated with cortisol, depression score, poor glycemic control and insulin resistance. Regression analysis confirmed that miR-128 was significantly associated with depression score even after adjusted for several confounding factors. However, this association was lost when adjusted for cortisol or telomere length. CONCLUSIONS Patients with type 2 diabetes and depression exhibited increased circulatory levels of miR-128 and serum cortisol and decreased levels of BDNF and shortened telomeres. These neuroendocrine signatures were more markedly altered in those with combined diabetes and depression.
Collapse
Affiliation(s)
- Paramasivam Prabu
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Subramani Poongothai
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Coimbatore Subramanian Shanthirani
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Ranjit Mohan Anjana
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation (MDRF) and Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Centre for Advanced Research on Diabetes, No 4, Conran Smith Road, Gopalapuram, Chennai, 600086, India.
| |
Collapse
|
20
|
Trybek T, Kowalik A, Góźdź S, Kowalska A. Telomeres and telomerase in oncogenesis. Oncol Lett 2020; 20:1015-1027. [PMID: 32724340 PMCID: PMC7377093 DOI: 10.3892/ol.2020.11659] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022] Open
Abstract
Telomeres are located at the ends of chromosomes and protect them from degradation. Suppressing the activity of telomerase, a telomere-synthesizing enzyme, and maintaining short telomeres is a protective mechanism against cancer in humans. In most human somatic cells, the expression of telomerase reverse transcriptase (TERT) is repressed and telomerase activity is inhibited. This leads to the progressive shortening of telomeres and inhibition of cell growth in a process called replicative senescence. Most types of primary cancer exhibit telomerase activation, which allows uncontrolled cell proliferation. Previous research indicates that TERT activation also affects cancer development through activities other than the canonical function of mediating telomere elongation. Recent studies have improved the understanding of the structure and function of telomeres and telomerase as well as key mechanisms underlying the activation of TERT and its role in oncogenesis. These advances led to a search for drugs that inhibit telomerase as a target for cancer therapy. The present review article summarizes the organization and function of telomeres, their role in carcinogenesis, and advances in telomerase-targeted therapy.
Collapse
Affiliation(s)
- Tomasz Trybek
- Endocrinology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Stanisław Góźdź
- The Faculty of Health Sciences, Jan Kochanowski University, 25-319 Kielce, Poland.,Oncology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland
| | - Aldona Kowalska
- Endocrinology Clinic, Holycross Cancer Center, 25-734 Kielce, Poland.,The Faculty of Health Sciences, Jan Kochanowski University, 25-319 Kielce, Poland
| |
Collapse
|
21
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
22
|
Rossi M, Gorospe M. Noncoding RNAs Controlling Telomere Homeostasis in Senescence and Aging. Trends Mol Med 2020; 26:422-433. [PMID: 32277935 DOI: 10.1016/j.molmed.2020.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Aging is a universal and time-dependent biological decline associated with progressive deterioration of cells, tissues, and organs. Age-related decay can eventually lead to pathology such as cardiovascular and neurodegenerative diseases, cancer, and diabetes. A prominent molecular process underlying aging is the progressive shortening of telomeres, the structures that protect the ends of chromosomes, eventually triggering cellular senescence. Noncoding (nc)RNAs are emerging as major regulators of telomere length homeostasis. In this review, we describe the impact of ncRNAs on telomere function and discuss their implications in senescence and age-related diseases. We discuss emerging therapeutic strategies targeting telomere-regulatory ncRNAs in aging pathology.
Collapse
Affiliation(s)
- Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| |
Collapse
|
23
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
24
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA.
| | - Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California, 94304, USA
| |
Collapse
|
25
|
Ackermann S, Fischer M. Telomere Maintenance in Pediatric Cancer. Int J Mol Sci 2019; 20:E5836. [PMID: 31757062 PMCID: PMC6928840 DOI: 10.3390/ijms20235836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length has been proposed as a biomarker of biological age and a risk factor for age-related diseases and cancer. Substantial progress has been made in recent decades in understanding the complex molecular relationships in this research field. However, the majority of telomere studies have been conducted in adults. The data on telomere dynamics in pediatric cancers is limited, and interpretation can be challenging, especially in cases where results are contrasting to those in adult entities. This review describes recent advances in the molecular characterization of structure and function of telomeres, regulation of telomerase activity in cancer pathogenesis in general, and highlights the key advances that have expanded our views on telomere biology in pediatric cancer, with special emphasis on the central role of telomere maintenance in neuroblastoma. Furthermore, open questions in the field of telomere maintenance research are discussed in the context of recently published literature.
Collapse
Affiliation(s)
- Sandra Ackermann
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Faculty of Medicine and University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931 Cologne, Germany
| |
Collapse
|
26
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
27
|
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N. Oligonucleotides Targeting Telomeres and Telomerase in Cancer. Molecules 2018; 23:molecules23092267. [PMID: 30189661 PMCID: PMC6225148 DOI: 10.3390/molecules23092267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Collin Merrick
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Alexander Mabel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|