1
|
Bordini J, Lenzi C, Frenquelli M, Morabito A, Pseftogas A, Belloni D, Mansouri L, Tsiolas G, Perotta E, Ranghetti P, Gandini F, Genova F, Hägerstrand D, Gavriilidis G, Keisaris S, Pechlivanis N, Davi F, Kay NE, Langerak AW, Pospisilova S, Scarfò L, Makris A, Psomopoulos FE, Stamatopoulos K, Rosenquist R, Campanella A, Ghia P. IκBε deficiency accelerates disease development in chronic lymphocytic leukemia. Leukemia 2024; 38:1287-1298. [PMID: 38575671 DOI: 10.1038/s41375-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Movement
- Cell Proliferation
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- NF-kappa B/metabolism
- Piperidines/pharmacology
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
Collapse
Affiliation(s)
| | - Chiara Lenzi
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Alessia Morabito
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Athanasios Pseftogas
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Daniela Belloni
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - George Tsiolas
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Francesca Gandini
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Daniel Hägerstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sofoklis Keisaris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | - Frederic Davi
- Institution Université Pierre et Marie Curie & Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - Sarka Pospisilova
- University Hospital Brno, Brno, Czech Republic
- Masaryk University, Brno, Czech Republic
| | - Lydia Scarfò
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonios Makris
- Centre for Research & Technology, Hellas (CERTH), Thessaloniki, Greece
| | | | | | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Campanella
- IRCSS Ospedale San Raffaele, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Paolo Ghia
- IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Mantione ME, Meloni M, Sana I, Bordini J, Del Nero M, Riba M, Ranghetti P, Perotta E, Ghia P, Scarfò L, Muzio M. Disrupting pro-survival and inflammatory pathways with dimethyl fumarate sensitizes chronic lymphocytic leukemia to cell death. Cell Death Dis 2024; 15:224. [PMID: 38494482 PMCID: PMC10944843 DOI: 10.1038/s41419-024-06602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Microenvironmental signals strongly influence chronic lymphocytic leukemia (CLL) cells through the activation of distinct membrane receptors, such as B-cell receptors, and inflammatory receptors, such as Toll-like receptors (TLRs). Inflammatory pathways downstream of these receptors lead to NF-κB activation, thus protecting leukemic cells from apoptosis. Dimethyl fumarate (DMF) is an anti-inflammatory and immunoregulatory drug used to treat patients with multiple sclerosis and psoriasis in which it blocks aberrant NF-κB pathways and impacts the NRF2 antioxidant circuit. Our in vitro analysis demonstrated that increasing concentrations of DMF reduce ATP levels and lead to the apoptosis of CLL cells, including cell lines, splenocytes from Eµ-TCL1-transgenic mice, and primary leukemic cells isolated from the peripheral blood of patients. DMF showed a synergistic effect in association with BTK inhibitors in CLL cells. DMF reduced glutathione levels and activated the NRF2 pathway; gene expression analysis suggested that DMF downregulated pathways related to NFKB and inflammation. In primary leukemic cells, DMF disrupted the TLR signaling pathways induced by CpG by reducing the mRNA expression of NFKBIZ, IL6, IL10 and TNFα. Our data suggest that DMF targets a vulnerability of CLL cells linked to their inflammatory pathways, without impacting healthy donor peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Maria Elena Mantione
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Miriam Meloni
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Jessica Bordini
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Martina Del Nero
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Michela Riba
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Eleonora Perotta
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Ghia
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lydia Scarfò
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.
| |
Collapse
|
3
|
Minimal residual disease-driven treatment intensification with sequential addition of ibrutinib to venetoclax in R/R CLL. Blood 2022; 140:2348-2357. [PMID: 35921541 DOI: 10.1182/blood.2022016901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022] Open
Abstract
Undetectable measurable residual disease (uMRD) is achievable in patients with chronic lymphocytic leukemia (CLL) with the BCL2-inhibitor venetoclax alone or combined with the Bruton's tyrosine kinase inhibitor ibrutinib. This phase 2, multicenter, MRD-driven study was designed to discontinue treatment upon reaching uMRD4 (<10-4) in patients with relapsed/refractory CLL receiving venetoclax monotherapy or after the addition of ibrutinib. Primary end point of the study was proportion of uMRD4 with venetoclax ± ibrutinib. Secondary end points were overall response rate, partial response, complete response, progression-free survival, duration of response, overall survival, and safety of venetoclax ± ibrutinib. Patients with uMRD4 at Cycle 12 Day 1 discontinued venetoclax. MRD+ patients added ibrutinib and continued both drugs up to Cycle 24 Day 28/uMRD4/progression/toxicity. After Cycle 24 Day 28, MRD+ patients continued ibrutinib. Thirty-eight patients (29% with TP53 aberrations; 79% with unmutated IGHV) started venetoclax. Overall response rate with venetoclax was 36 (95%) of 38 patients (20 complete; 16 partial response). Seventeen patients (45%) with uMRD4 at Cycle 12 Day 1 discontinued venetoclax. Nineteen (55%) MRD+ subjects added ibrutinib. After a median of 7 months (range, 3-10 months) of combined treatment, 16 (84%) of 19 achieved uMRD4, thus stopping both drugs. Two MRD+ patients at Cycle 24 Day 28 continued ibrutinib until progression/toxicity. After a median follow-up of 36.5 months, median progression-free survival was not reached; 10 patients progressed (4 restarted venetoclax, 3 without treatment need, 2 developed Richter transformation, and 1 dropped out). Seven (22%) of 32 patients remain uMRD4 after 3 years of follow-up. Neutropenia was the most frequent grade 3 to 4 adverse event; no grade 5 events occurred on study. This sequential MRD-guided approach led to uMRD4 in 33 (87%) of 38 patients, with venetoclax monotherapy or combined with ibrutinib, delivering treatment combination only in a fraction, and ultimately identifying the few patients benefiting from continuous therapy. This trial was registered at www.clinicaltrials.gov as # NCT04754035.
Collapse
|
4
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
5
|
Ghaderi A, Okhovat M, Wikanthi LSS, Svensson A, Palma M, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat‐Farsangi M. A ROR1 small molecule inhibitor (KAN0441571C) induced significant apoptosis of ibrutinib-resistant ROR1 + CLL cells. EJHAEM 2021; 2:498-502. [PMID: 35844694 PMCID: PMC9176142 DOI: 10.1002/jha2.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023]
Abstract
ROR1 - a receptor tyrosine kinase - is overexpressed in CLL. Ibrutinib, a Bruton's tyrosine kinase inhibitor, is clinically effective in CLL but patients may develop resistance. We evaluated the effect of an ROR1 inhibitor, KAN0441571C, in CLL cells from six patients obtained before and after developing resistance to ibrutinib. The ROR1 inhibitor induced apoptosis in ibrutinib-resistant CLL cells to the same degree as in ibrutinib-sensitive cells and dephosphorylated ROR1. This was also noted in one patient who became resistant to both ibrutinib and the Bcl-2 inhibitor venetoclax. The combination of ROR1 inhibitor and venetoclax had a synergistic apoptotic effect on ibrutinib-resistant cells.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | - Mohammad‐Ali Okhovat
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | | | - Ann Svensson
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | - Marzia Palma
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University Hospital SolnaStockholmSweden
| | - Johan Schultz
- Kancera AB, Karolinska Institute Science ParkSolnaSweden
| | - Thomas Olin
- Kancera AB, Karolinska Institute Science ParkSolnaSweden
| | - Anders Österborg
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
- Department of HematologyKarolinska University Hospital SolnaStockholmSweden
| | - Håkan Mellstedt
- Department of Oncology‐PathologyBioClinicum, Karolinska InstitutetStockholmSweden
| | | |
Collapse
|
6
|
Sbrana FV, Pinos R, Barbaglio F, Ribezzi D, Scagnoli F, Scarfò L, Redwan IN, Martinez H, Farè S, Ghia P, Scielzo C. 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Front Immunol 2021; 12:639572. [PMID: 34012434 PMCID: PMC8126722 DOI: 10.3389/fimmu.2021.639572] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) represents the most common leukemia in the western world and remains incurable. Leukemic cells organize and interact in the lymphoid tissues, however what actually occurs in these sites has not been fully elucidated yet. Studying primary CLL cells in vitro is very challenging due to their short survival in culture and also to the fact that traditional two-dimensional in vitro models lack cellular and spatial complexity present in vivo. Based on these considerations, we exploited for the first time three-dimensional (3D) bioprinting to advance in vitro models for CLL. This technology allowed us to print CLL cells (both primary cells and cell lines) mixed with the appropriate, deeply characterized, hydrogel to generate a scaffold containing the cells, thus avoiding the direct cell seeding onto a precast 3D scaffold and paving the way to more complex models. Using this system, we were able to efficiently 3D bioprint leukemic cells and improve their viability in vitro that could be maintained up to 28 days. We monitored over time CLL cells viability, phenotype and gene expression, thus establishing a reproducible long-term 3D culture model for leukemia. Through RNA sequencing (RNAseq) analysis, we observed a consistent difference in gene expression profile between 2D and 3D samples, indicating a different behavior of the cells in the two different culture settings. In particular, we identified pathways upregulated in 3D, at both day 7 and 14, associated with immunoglobulins production, pro-inflammatory molecules expression, activation of cytokines/chemokines and cell-cell adhesion pathways, paralleled by a decreased production of proteins involved in DNA replication and cell division, suggesting a strong adaptation of the cells in the 3D culture. Thanks to this innovative approach, we developed a new tool that may help to better mimic the physiological 3D in vivo settings of leukemic cells as well as of immune cells in broader terms. This will allow for a more reliable study of the molecular and cellular interactions occurring in normal and neoplastic conditions in vivo, and could also be exploited for clinical purposes to test individual responses to different drugs.
Collapse
Affiliation(s)
- Francesca Vittoria Sbrana
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Riccardo Pinos
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milano, Italy
| | - Federica Barbaglio
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Davide Ribezzi
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.,Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - Fiorella Scagnoli
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lydia Scarfò
- School of Medicine, Università Vita-Salute San Raffaele, Milano, Italy.,B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | | | | | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy
| | - Paolo Ghia
- School of Medicine, Università Vita-Salute San Raffaele, Milano, Italy.,B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Scielzo
- Malignant B Cells Biology and 3D Modelling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
7
|
Scielzo C, Ghia P. Modeling the Leukemia Microenviroment In Vitro. Front Oncol 2020; 10:607608. [PMID: 33392097 PMCID: PMC7773937 DOI: 10.3389/fonc.2020.607608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the active role of the microenvironment in the pathogenesis, development and drug resistance of B cell malignancies has been clearly established. It is known that the tissue microenvironment promotes proliferation and drug resistance of leukemic cells suggesting that successful treatments of B cell malignancies must target the leukemic cells within these compartments. However, the cross-talk occurring between cancer cells and the tissue microenvironment still needs to be fully elucidated. In solid tumors, this lack of knowledge has led to the development of new and more complex in vitro models able to successfully mimic the in vivo settings, while only a few simplified models are available for haematological cancers, commonly relying only on the co-culture with stabilized stromal cells and/or the addition of limited cocktails of cytokines. Here, we will review the known cellular and molecular interactions occurring between monoclonal B lymphocytes and their tissue microenvironment and the current literature describing innovative in vitro models developed in particular to study chronic lymphocytic leukemia (CLL). We will also elaborate on the possibility to further improve such systems based on the current knowledge of the key molecules/signals present in the microenvironment. In particular, we think that future models should be developed as 3D culture systems with a higher level of cellular and molecular complexity, to replicate microenvironmental-induced signaling. We believe that innovative 3D-models may therefore improve the knowledge on pathogenic mechanisms leading to the dissemination and homing of leukemia cells and consequently the identification of therapeutic targets.
Collapse
Affiliation(s)
- Cristina Scielzo
- Unit of Malignant B Cell Biology and 3D Modeling, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Ghia
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy.,Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
8
|
CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition. Leukemia 2020; 34:1599-1612. [PMID: 31974435 PMCID: PMC7266745 DOI: 10.1038/s41375-020-0714-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.
Collapse
|
9
|
Morande PE, Sivina M, Uriepero A, Seija N, Berca C, Fresia P, Landoni AI, Di Noia JM, Burger JA, Oppezzo P. Ibrutinib therapy downregulates AID enzyme and proliferative fractions in chronic lymphocytic leukemia. Blood 2019; 133:2056-2068. [PMID: 30814061 PMCID: PMC7022232 DOI: 10.1182/blood-2018-09-876292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of the immunoglobulin genes. As a trade-off for its physiological function, AID also contributes to tumor development through its mutagenic activity. In chronic lymphocytic leukemia (CLL), AID is overexpressed in the proliferative fractions (PFs) of the malignant B lymphocytes, and its anomalous expression has been associated with a clinical poor outcome. Recent preclinical data suggested that ibrutinib and idelalisib, 2 clinically approved kinase inhibitors, increase AID expression and genomic instability in normal and neoplastic B cells. These results raise concerns about a potential mutagenic risk in patients receiving long-term therapy. To corroborate these findings in the clinical setting, we analyzed AID expression and PFs in a CLL cohort before and during ibrutinib treatment. We found that ibrutinib decreases the CLL PFs and, interestingly, also reduces AID expression, which correlates with dampened AKT and Janus Kinase 1 signaling. Moreover, although ibrutinib increases AID expression in a CLL cell line, it is unable to do so in primary CLL samples. Our results uncover a differential response to ibrutinib between cell lines and the CLL clone and imply that ibrutinib could differ from idelalisib in their potential to induce AID in treated patients. Possible reasons for the discrepancy between preclinical and clinical findings, and their effect on treatment safety, are discussed.
Collapse
Affiliation(s)
- Pablo Elías Morande
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Angimar Uriepero
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Noé Seija
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Catalina Berca
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Fresia
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ana Inés Landoni
- Hospital Maciel, Administración de los Servicios de Salud del Estado, Ministerio de Salud, Montevideo, Uruguay
| | - Javier M Di Noia
- Division of Immunity and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; and
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|