1
|
Dos Anjos Oliveira E, Cunha Almeida T, Nicioli da Silva G. Oncogenic role of lncRNA SBF2-AS1 in bladder cancer. Gene 2025; 935:149061. [PMID: 39486664 DOI: 10.1016/j.gene.2024.149061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Bladder cancer is a malignant neoplasm with increasing incidence rates. LncRNAs play an important role in cancer, including development, prognosis, and response to therapies. It is known that lncRNA SBF2-AS1 was associated with cell proliferation and worse prognosis in various tumor types, but its role remains incompletely understood in bladder cancer. In this context, our objective was to evaluate the effect of lncRNA SBF2-AS1 silencing on bladder cancer cells. METHODS J82 and UM-UC-3 high-grade bladder tumor cells were treated with two siRNAs specific for SBF2-AS1 to evaluate cytotoxicity, clonogenic survival, morphology, cell migration, and cell cycle progression. RESULTS Expression inhibition of SBF2-AS1 resulted in cytotoxicity, morphological changes, and decreased clone formation and cell migration. Cell cycle alterations were not observed. CONCLUSION Our study revealed that SBF2-AS1 plays an oncogenic role and holds promise as a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
| | | | - Glenda Nicioli da Silva
- Federal University of Ouro Preto, School of Pharmacy, Ouro Preto, Minas Gerais, Brazil; Butantan Institute, Laboratory of Pain and Signaling, Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
3
|
Chatterjee D, Heeamoni SA, Sultana T, Mou SI, Mostofa MA, Hossain MA, Hosen MI, Faruk MO. Delineating the mechanistic relevance of the TP53 gene and its mutational impact on gene expression and patients' survival in bladder cancer. Heliyon 2024; 10:e31286. [PMID: 38803860 PMCID: PMC11129003 DOI: 10.1016/j.heliyon.2024.e31286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Bladder carcinoma (BLCA) is a widespread urological malignancy causing significant global mortality, often hindered by delayed diagnosis and limited treatments. BLCA frequently exhibits TP53 mutations, playing a pivotal role in its pathogenesis and underscoring the potential of targeting TP53 as a therapeutic approach for this prevalent urological malignancy. Tumor tissues from 50 bladder cancer patients were used for mutational analysis in TP53's mutation-rich exons (5, 7, & 8). The gene expression of the TP53 gene, along with a TP53-target gene B-cell translocation gene 2 (BTG2) was also assessed in the cDNA samples from the same BLCA tissues and 15 urine controls of healthy people. The analysis revealed 22 % of patients with somatic hotspot mutations, 18 % with pathogenic missense mutations, and 12 % with intronic variants. Patients with somatic mutations exhibited the worst prognosis, supported by survival analysis from The Cancer Genome Atlas (TCGA) BLCA data. Interestingly, H296Y missense mutation correlated with higher TP53 expression and improved survival, while intronic SNPs were linked to worse outcomes. Additionally, upregulated BTG2 expression in mutated patients was observed which was correlated with poor prognosis, emphasizing the role of TP53 mutations in bladder cancer progression. The multivariate analysis highlighted the predictive power of TP53 mutations, with a high frequency of high-grade tumors (78.57 %) in mutated patients, underscoring their role in cancer progression. In conclusion, this study emphasizes the crucial role of TP53 mutations in bladder cancer patients from Bangladesh.
Collapse
Affiliation(s)
- Dipankor Chatterjee
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | | - Tamanna Sultana
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Sadia Islam Mou
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Munshi Akid Mostofa
- Department of Genito-Urinary Oncology, National Institute of Cancer Research & Hospital (NICRH), Mohakhali, Bangladesh
| | - Md Akmal Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Omar Faruk
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| |
Collapse
|
4
|
Papasavva M, Amvrosiou S, Pilala KM, Soureas K, Christodoulou P, Ji Y, Stravodimos K, Xu D, Scorilas A, Avgeris M, Christodoulou MI. Deregulated Expression of IL-37 in Patients with Bladder Urothelial Cancer: The Diagnostic Potential of the IL-37e Isoform. Int J Mol Sci 2023; 24:ijms24119258. [PMID: 37298214 DOI: 10.3390/ijms24119258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular and molecular immune components play a crucial role in the development and perpetuation of human malignancies, shaping anti-tumor responses. A novel immune regulator is interleukin-37 (IL-37), already shown to be involved in the inflammation associated with the pathophysiology of many human disorders, including cancer. The interplay between tumor and immune cells is of great importance, especially for highly immunogenic tumors such as bladder urothelial carcinoma (BLCA). This study aimed to investigate the potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) to serve as prognostic and/or diagnostic markers in patients with BLCA. To this end, a series of bioinformatics tools processing -omics datasets and specifically designed qPCR assays on human BLCA tumors and cancer cell lines were utilized. Bioinformatics analysis revealed that IL-37 levels correlate with BLCA tumor development and are higher in patients with longer overall survival. Furthermore, mutations on SIGIRR are associated with enhanced infiltration of the tumor by regulatory T cells and dendritic cells. Based on the qPCR validation experiments, BLCA epithelial cells express the IL-37c and IL-37e isoforms, while the latter is the predominant variant detected in tumor biopsies, also associated with higher grade and the non-muscle-invasive type. This is the first time, to the best of our knowledge, that IL-37 and SIGIRR levels have been assessed in BLCA tumor lesions, and associations with pathological and survival parameters are described, while a transcript variant-specific signature is indicated to have a diagnostic potential. These data strongly indicate the need for further investigation of the involvement of this cytokine and interconnected molecules in the pathophysiology of the disease and its prospective as a therapeutic target and biomarker for BLCA.
Collapse
Affiliation(s)
- Maria Papasavva
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Styliana Amvrosiou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Panayiota Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Yuan Ji
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | - Konstantinos Stravodimos
- First Department of Urology, "Laiko" General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen 518055, China
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
5
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Pereira IOA, da Silva GN, Almeida TC, Lima APB, Sávio ALV, Leite KRM, Salvadori DMF. LncRNA JHDM1D-AS1 Is a Key Biomarker for Progression and Modulation of Gemcitabine Sensitivity in Bladder Cancer Cells. Molecules 2023; 28:molecules28052412. [PMID: 36903656 PMCID: PMC10005151 DOI: 10.3390/molecules28052412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Long non-coding RNAs are frequently found to be dysregulated and are linked to carcinogenesis, aggressiveness, and chemoresistance in a variety of tumors. As expression levels of the JHDM1D gene and lncRNA JHDM1D-AS1 are altered in bladder tumors, we sought to use their combined expression to distinguish between low-and high-grade bladder tumors by RTq-PCR. In addition, we evaluated the functional role of JHDM1D-AS1 and its association with the modulation of gemcitabine sensitivity in high-grade bladder-tumor cells. J82 and UM-UC-3 cells were treated with siRNA-JHDM1D-AS1 and/or three concentrations of gemcitabine (0.39, 0.78, and 1.56 µM), and then submitted to cytotoxicity testing (XTT), clonogenic survival, cell cycle progression, cell morphology, and cell migration assays. When JHDM1D and JHDM1D-AS1 expression levels were used in combination, our findings indicated favorable prognostic value. Furthermore, the combined treatment resulted in greater cytotoxicity, a decrease in clone formation, G0/G1 cell cycle arrest, morphological alterations, and a reduction in cell migration capacity in both lineages compared to the treatments alone. Thus, silencing of JHDM1D-AS1 reduced the growth and proliferation of high-grade bladder-tumor cells and increased their sensitivity to gemcitabine treatment. In addition, the expression of JHDM1D/JHDM1D-AS1 indicated potential prognostic value in the progression of bladder tumors.
Collapse
Affiliation(s)
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
- Correspondence:
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Ana Paula Braga Lima
- Departamento de Análises Clínicas, Pharmacy School, UFOP—Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - André Luiz Ventura Sávio
- Departamento de Odontologia, Faculdade do Centro Oeste Paulista—FACOP, Piratininga 17490-000, SP, Brazil
- Departamento de Ciências Médicas, Universidade do Oeste Paulista—UNOESTE, Jaú 19050-900, SP, Brazil
| | - Katia Ramos Moreira Leite
- Departamento de Cirurgia, Medical School, USP—University of São Paulo, São Paulo 05508-060, SP, Brazil
| | | |
Collapse
|
7
|
Ferrero A, Borghese M, Restaino S, Puppo A, Vizzielli G, Biglia N. Predicting Response to Anthracyclines in Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4260. [PMID: 35409939 PMCID: PMC8998349 DOI: 10.3390/ijerph19074260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
(1) Background: Anthracyclines are intriguing drugs, representing one of the cornerstones of both first and subsequent-lines of chemotherapy in ovarian cancer (OC). Their efficacy and mechanisms of action are related to the hot topics of OC clinical research, such as BRCA status and immunotherapy. Prediction of response to anthracyclines is challenging and no markers can predict certain therapeutic success. The current narrative review provides a summary of the clinical and biological mechanisms involved in the response to anthracyclines. (2) Methods: A MEDLINE search of the literature was performed, focusing on papers published in the last two decades. (3) Results and Conclusions: BRCA mutated tumors seem to show a higher response to anthracyclines compared to sporadic tumors and the severity of hand-foot syndrome and mucositis may be a predictive marker of PLD efficacy. CA125 can be a misleading marker of clinical response during treatment with anthracyclines, the response of which also appears to depend on OC histology. Immunochemistry, in particular HER-2 expression, could be of some help in predicting the response to such drugs, and high levels of mutated p53 appear after exposure to anthracyclines and impair their antitumor effect. Finally, organoids from OC are promising for drug testing and prediction of response to chemotherapy.
Collapse
Affiliation(s)
- Annamaria Ferrero
- Academic Department of Gynaecology and Obstetrics, Mauriziano Hospital, 10128 Torino, Italy;
| | - Martina Borghese
- Department of Gynecology and Obstetrics, Santa Croce and Carle Hospital, 12100 Cuneo, Italy; (M.B.); (A.P.)
| | - Stefano Restaino
- Obstetrics and Gynecology Unit, Department of Obstetrics, Gynecology and Pediatrics, Department of Medical Area DAME, Udine University Hospital, 33100 Udine, Italy;
| | - Andrea Puppo
- Department of Gynecology and Obstetrics, Santa Croce and Carle Hospital, 12100 Cuneo, Italy; (M.B.); (A.P.)
| | - Giuseppe Vizzielli
- Clinic of Obstetrics and Gynaecology, Department of Medical Area (DAME), University of Udine, “Santa Maria della Misericordia” Hospital, Azienda Sanitaria Ospedaliera Friuli Centrale, 33100 Udine, Italy;
| | - Nicoletta Biglia
- Academic Department of Gynaecology and Obstetrics, Mauriziano Hospital, 10128 Torino, Italy;
| |
Collapse
|
8
|
Wu XP, Wang TS, Yuan ZX, Yang YF, Wu HZ. Mechanism of Compound Houttuynia Mixture as an Anti-COVID-19 Drug Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211016727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To explore the anti-COVID-19 active components and mechanism of Compound Houttuynia mixture by using network pharmacology and molecular docking. Methods First, the main chemical components of Compound Houttuynia mixture were obtained by using the TCMSP database and referring to relevant chemical composition literature. The components were screened for OB ≥30% and DL ≥0.18 as the threshold values. Then Swiss Target Prediction database was used to predict the target of the active components and map the targets of COVID-19 obtained through GeneCards database to obtain the gene pool of the potential target of COVID-19 resistance of the active components of Compound Houttuynia mixture. Next, DAVID database was used for GO enrichment and KEGG pathway annotation of targets function. Cytoscape 3.8.0 software was used to construct a “components-targets-pathways” network. Then String database was used to construct a “protein-protein interaction” network. Finally, the core targets, SARS-COV-2 3 Cl, ACE2 and the core active components of Compound Houttuyna Mixture were imported into the Discovery Studio 2016 Client database for molecular docking verification. Results Eighty-two active compounds, including Xylostosidine, Arctiin, ZINC12153652 and ZINC338038, were screened from Compound Houttuyniae mixture. The key targets involved 128 targets, including MAPK1, MAPK3, MAPK8, MAPK14, TP53, TNF, and IL6. The HIF-1 signaling, VEGF signaling, TNF signaling and another 127 signaling pathways associated with COVID-19 were affected ( P < 0.05). From the results of molecular docking, the binding ability between the selected active components and the core targets was strong. Conclusion Through the combination of network pharmacology and molecular docking technology, this study revealed that the therapeutic effect of Compound Houttuynia mixture on COVID-19 was realized through multiple components, multiple targets and multiple pathways, which provided a certain scientific basis of the clinical application of Compound Houttuynia mixture.
Collapse
Affiliation(s)
- Xing-Pan Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tian-Shun Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zi-Xin Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan-Fang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| | - He-Zhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, China
| |
Collapse
|
9
|
Study on Medication Rules of Traditional Chinese Medicine against Antineoplastic Drug-Induced Cardiotoxicity Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7498525. [PMID: 33281914 PMCID: PMC7688357 DOI: 10.1155/2020/7498525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Methods The targets of antineoplastic drugs with cardiotoxicity were obtained from the National Center for Biotechnology Information (NCBI) database, China national knowledge infrastructure (CNKI) database, and Swiss Target Prediction platform. Then, the cardiotoxicity-related targets were derived from the Gene Cards, Disgenet, OMIM, and DrugBank databases, as well as the drug of current clinical guidelines. The targets both in these two sets were regarded as potential targets to alleviate ADIC. Then, candidate compounds and herbs were matched via Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Cytoscape3.7.1 was used to set up the target-compound-herb network. Molecular docking between core targets and compounds was performed with AutodockVina1.1.2. The rules of herbs were summarized by analyzing their property, flavor, and channel tropism. Results Twenty-one potential targets, 332 candidate compounds, and 400 kinds of herbs were obtained. Five core targets including potassium voltage-gated channel subfamily H member 2 (KCNH2), cyclin-dependent kinase 1 (CDK1), matrix metalloproteinase 2 (MMP2), mitogen-activated protein kinase1 (MAPK1), and tumor protein p53 (TP53) and 29 core compounds (beta-sitosterol, quercetin, kaempferol, etc.) were collected. Five core herbs (Yanhusuo, Gouteng, Huangbai, Lianqiao, and Gancao) were identified. Also, the TCM against ADIC were mainly bitter and acrid in taste, warm in property, and distributed to the liver and lung meridians. Conclusion TCM against ADIC has great potential. Our study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating ADIC.
Collapse
|
10
|
Lothstein L, Soberman J, Parke D, Gandhi J, Sweatman T, Seagroves T. Pivarubicin Is More Effective Than Doxorubicin Against Triple-Negative Breast Cancer In Vivo. Oncol Res 2020; 28:451-465. [PMID: 32430093 PMCID: PMC7751225 DOI: 10.3727/096504020x15898794315356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is unresponsive to antiestrogen and anti-HER2 therapies, requiring the use of cytotoxic drug combinations of anthracyclines, taxanes, cyclophosphamide, and platinum compounds. Multidrug therapies achieve pathological cure rates of only 20–40%, a consequence of drug resistance and cumulative dose limitations necessitated by the reversible cardiotoxic effects of drug therapy. Safer and more effective treatments for TNBC are required to achieve durable therapeutic responses. This study describes the mechanistic analyses of the novel anthracycline, pivarubicin, and its in vivo efficacy against human primary TNBC. Pivarubicin directly activates PKCd, triggers rapid mitochondrial-dependent apoptosis, and circumvents resistance conferred by overexpression of P-glycoprotein, Bcl-2, Bcl-XL, and Bcr-Abl. As a consequence, pivarubicin is more cytotoxic than doxorubicin against MDA-MB-231, and SUM159 TNBC cell lines grown in both monolayer culture and tumorspheres. Comparative in vivo efficacy of pivarubicin and doxorubicin was performed in an orthotopic NSG mouse model implanted with MDA-MB-231 human TNBC cells and treated with the maximum tolerated doses (MTDs) of pivarubicin and doxorubicin. Tumor growth was monitored by digital caliper measurements and determination of endpoint tumor weight and volume. Endpoint cardiotoxicity was assessed histologically by identifying microvacuolization in ventricular cardiomyocytes. Primary tumors treated with multiple rounds of doxorubicin at MTD failed to inhibit tumor growth compared with vehicle-treated tumors. However, administration of a single MTD of pivarubicin produced significant inhibition of tumor growth and tumor regression relative to tumor volume prior to initiation of treatment. Histological analysis of hearts excised from drug- and vehicle-treated mice revealed that pivarubicin produced no evidence of myocardial damage at a therapeutic dose. These results support the development of pivarubicin as a safer and more effective replacement for doxorubicin against TNBC as well as other malignancies for which doxorubicin therapy is indicated.
Collapse
Affiliation(s)
- Leonard Lothstein
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science CenterMemphis, TNUSA
| | - Judith Soberman
- Department of Medicine, The University of Tennessee Health Science CenterMemphis, TNUSA
| | - Deanna Parke
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science CenterMemphis, TNUSA
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science CenterMemphis, TNUSA
| | - Trevor Sweatman
- Department of Pharmacology, The University of Tennessee Health Science CenterMemphis, TNUSA
| | - Tiffany Seagroves
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science CenterMemphis, TNUSA
| |
Collapse
|
11
|
Wu G, Wang F, Li K, Li S, Zhao C, Fan C, Wang J. Significance of TP53 mutation in bladder cancer disease progression and drug selection. PeerJ 2019; 7:e8261. [PMID: 31871844 PMCID: PMC6921983 DOI: 10.7717/peerj.8261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor protein p53 (TP53) mutant is one of the most frequent mutant genes in bladder cancer. In this study, we assessed the importance of the TP53 mutation in bladder cancer progression and drug selection, and identified potential pathways and core genes associated with the underlying mechanisms. METHODS Gene expression data used in this study were downloaded from The Cancer Genome Atlas and cBioportal databases. Drug sensitivity data were obtained from the Genomics of Drug Sensitivity in Cancer. We did functional enrichment analysis by gene set enrichment analysis (GSEA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS We found the TP53 mutation in 50% of bladder cancer patients. Patients with the TP53 mutation were associated with a lower TP53 mRNA expression level, more advanced tumor stage and higher histologic grade. Three drugs, mitomycin-C, doxorubicin and gemcitabine, were especially more sensitive to bladder cancer with the TP53 mutation. As for the mechanisms, we identified 863 differentially expressed genes (DEGs). Functional enrichment analysis suggested that DEGs were primarily enriched in multiple metabolic progressions, chemical carcinogenesis and cancer related pathways. The protein-protein interaction network identified the top 10 hub genes. Our results have suggested the significance of TP53 mutation in disease progression and drug selection in bladder cancer, and identified multiple genes and pathways related in such program, offering novel basis for bladder cancer individualized treatment.
Collapse
Affiliation(s)
- Guang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kai Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shugen Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Caibin Fan
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|