1
|
Fu B, Zhou F, Zhang J, Kong X, Ni B, Bu J, Xu S, He C. Sevoflurane attenuates proliferative and migratory activity of lung cancer cells via mediating the microRNA-100-3p/sterol O-Acyltransferase 1 axis. CHINESE J PHYSIOL 2023; 66:456-465. [PMID: 38149558 DOI: 10.4103/cjop.cjop-d-22-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Recently, evidence has shown that microRNA-100-3p (miR-100-3p) has been revealed as a tumor suppressor in diverse human diseases, while its capability in lung cancer warrants further validation. In this work, we aimed to discuss the impact of sevoflurane on biological functions of lung cancer cells by modulating the miR-100-3p/sterol O-acyltransferase 1 (SOAT1) axis. Lung cancer cell lines (A549 and H460) were treated with various concentrations of sevoflurane. Cell viability, proliferation, migration, and invasion were evaluated using MTT, colony formation, wound healing, and transwell assays. Moreover, miR-100-3p and SOAT1 expressions were evaluated by reverse transcription-quantitative polymerase chain reaction in lung cancer cells. The target interaction between miR-100-3p and SOAT1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. The findings of our work demonstrated that sevoflurane impeded the abilities on viability, proliferation, migration, and invasion of A549 and H460 cells. The expression of miR-100-3p was reduced, and SOAT1 expression was elevated in lung cancer cells. miR-100-3p targeted SOAT1. Besides, sevoflurane could lead to expressed improvement of miR-100-3p or limitation of SOAT1. Downregulation of miR-100-3p or upregulation of SOAT1 restored the suppression of sevoflurane on abilities of viability, proliferation, migration, and invasion in A549 and H460 cells. In the rescue experiment, downregulation of SOAT1 reversed the impacts of downregulation of miR-100-3p on sevoflurane on lung cancer cells. Collectively, our study provides evidence that sevoflurane restrained the proliferation and invasion in lung cancer cells by modulating the miR-100-3p/SOAT1 axis. This article provides a new idea for further study of the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Fucheng Zhou
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jian Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xianglong Kong
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Boxiong Ni
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jianlong Bu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shidong Xu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Changjun He
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord 2023; 24:267-282. [PMID: 36418657 PMCID: PMC9685014 DOI: 10.1007/s11154-022-09771-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
3
|
Saller J, White D, Hough B, Yoder S, Whiting J, Chen DT, Magliocco A, Coppola D. An miRNA Signature Predicts Grading of Pancreatic Neuroendocrine Neoplasms. Cancer Genomics Proteomics 2023; 20:154-164. [PMID: 36870693 PMCID: PMC9989673 DOI: 10.21873/cgp.20370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND/AIM Grading pancreatic neuroendocrine neoplasms (PNENs) via mitotic rate and Ki-67 index score is complicated by interobserver variability. Differentially expressed miRNAs (DEMs) are useful for predicting tumour progression and may be useful for grading. PATIENTS AND METHODS Twelve PNENs were selected. Four patients had grade (G) 1 pancreatic neuroendocrine tumours (PNETs); 4 had G2 PNETs; and 4 had G3 PNENs (2 PNETs and 2 pancreatic neuroendocrine carcinomas). Samples were profiled using the miRNA NanoString Assay. RESULTS There were 6 statistically significant DEMs between different grades of PNENs. MiR1285-5p was the sole miRNA differentially expressed (p=0.03) between G1 and G2 PNETs. Six statistically significant DEMs (miR135a-5p, miR200a-3p, miR3151-5p, miR-345-5p, miR548d-5p and miR9-5p) (p<0.05) were identified between G1 PNETs and G3 PNENs. Finally, 5 DEMs (miR155-5p, miR15b-5p, miR222-3p, miR548d-5p and miR9-5p) (p<0.05) were identified between G2 PNETs and G3 PNENs. CONCLUSION The identified miRNA candidates are concordant with their patterns of dysregulation in other tumour types. The reliability of these DEMs as discriminators of PNEN grades support further investigations using larger patient populations.
Collapse
Affiliation(s)
- James Saller
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Daley White
- Department of Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Brooke Hough
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Sean Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Junmin Whiting
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Dung-Tsa Chen
- Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | | | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A.; .,Department of Pathology Florida Digestive Health Specialists, Lakewood Ranch, FL, U.S.A
| |
Collapse
|
4
|
Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. GENE REPORTS 2020; 20:100765. [PMID: 32835132 PMCID: PMC7324924 DOI: 10.1016/j.genrep.2020.100765] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
mTOR is a serine-threonine kinase and participates in cell proliferation, cellular metabolism was found to be activated during Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection and replication. During viral replication mTOR, downstream target genes such as ribosomal protein S6 kinase beta 1 (S6K1) and Eukaryotic translational initiation factor 4E-binding protein1 (4-E-BP1) are activated result in ribosome biosynthesis and efficient protein synthesis. In plasmacytoid dendritic cells (pDCs), mTOR plays a key role in the association of adapter protein myeloid differentiation primary response gene 88 (MyD88), Toll-like receptor 9 (TLR9) and interferon regulatory factor (IRF-7) leading to the transcriptional activation of type-I interferon (IFN) genes. Viruses also inactivate the interferon α (IFN-α) pathway by impairing the IRF-7 mediated activation of IFN-α gene transcription. Thus, mammalian target of rapamycin (mTOR) inhibitors can help in suppressing the early stages of viral infection and replication. Interestingly, the key tumor-suppressor p53 protein will undergo degradation by virus-encoded E3 ubiquitin ligase Ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) leading to an increased viral survival in host cells. Thus, the mTOR inhibitors and p53 activators or microRNAs that functions as p53 and can target 3'-UTR of mTOR and RPS6KB1 might effectively inhibit viral replication in the human respiratory tract and lung cells.
Collapse
Affiliation(s)
- Mekala Janaki Ramaiah
- Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
5
|
Billa PA, Faulconnier Y, Ye T, Chervet M, Le Provost F, Pires JAA, Leroux C. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows. BMC Genomics 2019; 20:621. [PMID: 31362707 PMCID: PMC6668132 DOI: 10.1186/s12864-019-5987-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Genetic polymorphisms are known to influence milk production and composition. However, the genomic mechanisms involved in the genetic regulation of milk component synthesis are not completely understood. MicroRNAs (miRNAs) regulate gene expression. Previous research suggests that the high developmental potential of the mammary gland may depend in part on a specific miRNA expression pattern. The objective of the present study was to compare the mammary gland miRNomes of two dairy cow breeds, Holstein and Montbéliarde, which have different mammogenic potentials that are related to differences in dairy performance. Results Milk, fat, protein, and lactose yields were lower in Montbéliarde cows than in Holstein cows. We detected 754 distinct miRNAs in the mammary glands of Holstein (n = 5) and Montbéliarde (n = 6) midlactating cows using RNA-Seq technology, among which 738 were known and 16 were predicted miRNAs. The 25 most abundant miRNAs accounted for 90.6% of the total reads. The comparison of their abundances in the mammary glands of Holstein versus Montbéliarde cows identified 22 differentially expressed miRNAs (Padj ≤ 0.05). Among them, 11 presented a fold change ≥2, and 2 (miR-100 and miR-146b) were highly expressed. Among the most abundant miRNAs, miR-186 is known to inhibit cell proliferation and epithelial-to-mesenchymal transition. Data mining showed that 17 differentially expressed miRNAs with more than 20 reads were involved in the regulation of mammary gland plasticity. Several of them may potentially target mRNAs involved in signaling pathways (such as mTOR) and lipid metabolism, thereby indicating that they could influence milk composition. Conclusion We found differences in the mammary gland miRNomes of two dairy cattle breeds. These differences suggest a potential role for miRNAs in mammary gland plasticity and milk component synthesis, both of which are related to milk production and composition. Further research is warranted on the genetic regulation of miRNAs and their role in milk synthesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5987-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Billa
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Y Faulconnier
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - T Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67404, Illkirch, France
| | - M Chervet
- Department of Food Science & Technology, University of California Davis, Davis, CA, USA
| | - F Le Provost
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78352, France
| | - J A A Pires
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - C Leroux
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France. .,Department of Food Science & Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|