1
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
2
|
Pucko E, Sulejczak D, Ostrowski RP. Subependymal Giant Cell Astrocytoma: The Molecular Landscape and Treatment Advances. Cancers (Basel) 2024; 16:3406. [PMID: 39410026 PMCID: PMC11475231 DOI: 10.3390/cancers16193406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Subependymal giant cell astrocytoma (SEGA) is most often found in patients with TSC (Tuberous Sclerosis Complex). Although it has been classified as a benign tumor, it may create a serious medical problem leading to grave consequences, including young patient demise. Surgery and chemotherapy belong to the gold standard of treatment. A broader pharmacological approach involves the ever-growing number of rapalogs and ATP-competitive inhibitors, as well as compounds targeting other kinases, such as dual PI3K/mTOR inhibitors and CK2 kinase inhibitors. Novel approaches may utilize noncoding RNA-based therapeutics and are extensively investigated to this end. The purpose of our review was to characterize SEGA and discuss the latest trends in the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Emanuela Pucko
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland
| | - Robert P. Ostrowski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland;
| |
Collapse
|
3
|
Rendek T, Pos O, Duranova T, Saade R, Budis J, Repiska V, Szemes T. Current Challenges of Methylation-Based Liquid Biopsies in Cancer Diagnostics. Cancers (Basel) 2024; 16:2001. [PMID: 38893121 PMCID: PMC11171112 DOI: 10.3390/cancers16112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In current clinical practice, effective cancer testing and screening paradigms are limited to specific types of cancer, exhibiting varying efficiency, acceptance, and adherence. Cell-free DNA (cfDNA) methylation profiling holds promise in providing information about the presence of malignity regardless of its type and location while leveraging blood-based liquid biopsies as a method to obtain analytical samples. However, technical difficulties, costs and challenges resulting from biological variations, tumor heterogeneity, and exogenous factors persist. This method exploits the mechanisms behind cfDNA release but faces issues like fragmentation, low concentrations, and high background noise. This review explores cfDNA methylation's origins, means of detection, and profiling for cancer diagnostics. The critical evaluation of currently available multi-cancer early detection methods (MCEDs) as well as tests targeting single genes, emphasizing their potential and limits to refine strategies for early cancer detection, are explained. The current methodology limitations, workflows, comparisons of clinically approved liquid biopsy-based methylation tests for cancer, their utilization in companion diagnostics as well as the biological limitations of the epigenetics approach are discussed, aiming to help healthcare providers as well as researchers to orient themselves in this increasingly complex and evolving field of diagnostics.
Collapse
Affiliation(s)
- Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Ondrej Pos
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | | | - Rami Saade
- 2nd Department of Gynaecology and Obstetrics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Tomas Szemes
- Geneton Ltd., 841 04 Bratislava, Slovakia; (O.P.); (J.B.); (T.S.)
- Comenius University Science Park, 841 04 Bratislava, Slovakia;
| |
Collapse
|
4
|
Kouchaki H, Kamyab P, Darbeheshti F, Gharezade A, Fouladseresht H, Tabrizi R. miR-939, as an important regulator in various cancers pathogenesis, has diagnostic, prognostic, and therapeutic values: a review. J Egypt Natl Canc Inst 2024; 36:16. [PMID: 38679648 DOI: 10.1186/s43046-024-00220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs or miRs) are highly conserved non-coding RNAs with a short length (18-24 nucleotides) that directly bind to a complementary sequence within 3'-untranslated regions of their target mRNAs and regulate gene expression, post-transcriptionally. They play crucial roles in diverse biological processes, including cell proliferation, apoptosis, and differentiation. In the context of cancer, miRNAs are key regulators of growth, angiogenesis, metastasis, and drug resistance. MAIN BODY This review primarily focuses on miR-939 and its expanding roles and target genes in cancer pathogenesis. It compiles findings from various investigations. MiRNAs, due to their dysregulated expression in tumor environments, hold potential as cancer biomarkers. Several studies have highlighted the dysregulation of miR-939 expression in human cancers. CONCLUSION Our study highlights the potential of miR-939 as a valuable target in cancer diagnosis, prognosis, and treatment. The aberrant expression of miR-939, along with other miRNAs, underscores their significance in advancing our understanding of cancer biology and their promise in personalized cancer care.
Collapse
Affiliation(s)
- Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parnia Kamyab
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Reza Tabrizi
- Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran.
- Noncommunicable Diseases Research Center, Fasa University of Medical Science, Fasa, Iran.
| |
Collapse
|
5
|
Pöhlmann J, Weller M, Marcellusi A, Grabe-Heyne K, Krott-Coi L, Rabar S, Pollock RF. High costs, low quality of life, reduced survival, and room for improving treatment: an analysis of burden and unmet needs in glioma. Front Oncol 2024; 14:1368606. [PMID: 38571509 PMCID: PMC10987841 DOI: 10.3389/fonc.2024.1368606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Gliomas are a group of heterogeneous tumors that account for substantial morbidity, mortality, and costs to patients and healthcare systems globally. Survival varies considerably by grade, histology, biomarkers, and genetic alterations such as IDH mutations and MGMT promoter methylation, and treatment, but is poor for some grades and histologies, with many patients with glioblastoma surviving less than a year from diagnosis. The present review provides an introduction to glioma, including its classification, epidemiology, economic and humanistic burden, as well as treatment options. Another focus is on treatment recommendations for IDH-mutant astrocytoma, IDH-mutant oligodendroglioma, and glioblastoma, which were synthesized from recent guidelines. While recommendations are nuanced and reflect the complexity of the disease, maximum safe resection is typically the first step in treatment, followed by radiotherapy and/or chemotherapy using temozolomide or procarbazine, lomustine, and vincristine. Immunotherapies and targeted therapies currently have only a limited role due to disappointing clinical trial results, including in recurrent glioblastoma, for which the nitrosourea lomustine remains the de facto standard of care. The lack of treatment options is compounded by frequently suboptimal clinical practice, in which patients do not receive adequate therapy after resection, including delayed, shortened, or discontinued radiotherapy and chemotherapy courses due to treatment side effects. These unmet needs will require significant efforts to address, including a continued search for novel treatment options, increased awareness of clinical guidelines, improved toxicity management for chemotherapy, and the generation of additional and more robust clinical and health economic evidence.
Collapse
Affiliation(s)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andrea Marcellusi
- Economic Evaluation and HTA (EEHTA)-Centre for Economic and International Studies (CEIS), Faculty of Economics, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Silvia Rabar
- Covalence Research Ltd, Harpenden, United Kingdom
| | | |
Collapse
|
6
|
Yang ZC, Yin CD, Yeh FC, Xue BW, Song XY, Li G, Sun SJ, Deng ZH, Hou ZG, Xie J. Exploring MGMT methylation-driven structural connectivity changes in insular gliomas: a tractography and graph theoretical analysis. J Neurooncol 2024; 166:155-165. [PMID: 38150062 DOI: 10.1007/s11060-023-04539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Zuo-Cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Chuan-Dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo-Wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Xin-Yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Sheng-Jun Sun
- Neuroimaging Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China
| | - Zong-Gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China.
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 of South 4th Ring Road, Fengtai District, Beijing, China.
| |
Collapse
|
7
|
Dongpo S, Xiaozhuo L, Xin L, Zhengyao Z, Qing W, Fameng Z, Mingming F, Qian H, Mei L, Tong C. Effectiveness and Safety of Different Postoperative Adjuvant Regimens in Patients with Low-Grade Gliomas: A Network Meta-Analysis. World Neurosurg 2023; 179:e474-e491. [PMID: 37673325 DOI: 10.1016/j.wneu.2023.08.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE This study aimed to investigate the effectiveness and safety of various adjuvant regimens in patients with low-grade gliomas and to further explore the optimal adjuvant treatment for patients with low-grade gliomas and the differences in the efficacy of each treatment regimens in different tumor types. METHODS A comprehensive search of the PubMed, Cochrane Library, Ovid, Embase, and Web of Science databases was conducted to screen randomized and nonrandomized controlled trials related to adjuvant therapy in patients with low-grade gliomas. The Cochrane quality assessment method and the Newcastle-Ottawa Scale were used to assess the quality of the included randomized and nonrandomized controlled trials, respectively. The data from previous studies were extracted using Excel and GetData Graph Digitizer 2.26 software, and network meta-analysis was performed using RevMan 5.3 and Stata 16.0 statistical software. RESULTS The specific ranking of 5-year progression-free survival (5-year PFS) for each treatment regimen from the best to the worst in patients with low-grade gliomas was surgery (S) combined with procarbazine, lomustine, and vincristine (S + PCV); surgery combined with standard radiotherapy and PCV multidrug chemotherapy (S + RT + PCV); surgery combined with standard radiotherapy and temozolomide monotherapy (S + RT + TMZ); surgery combined with enhanced radiotherapy (S + H-RT); surgery combined with standard radiotherapy (S + RT); surgery combined with TMZ (S + TMZ); and S. The 5-year overall survival (OS) ranking was S + RT + TMZ, S + RT + PCV, surgery combined with enhanced radiotherapy and TMZ monotherapy (S + H-RT + TMZ), S + H-RT, S + RT, and S. The 2-year progression-free survival ranking was S + RT + TMZ, S + PCV, S + RT, S + RT + PCV, S + TMZ, S + H-RT, and S. The 2-year overall survival ranking was S + RT + TMZ, S + H-RT + TMZ, S + RT, S + RT + PCV, S + H-RT, and S. The incidence of adverse events (≥3) was ranked from highest to lowest as follows: S + RT + PCV, S + RT + TMZ, S + PCV, S + H-RT, S + TMZ, and S + RT. In the isocitrate dehydrogenase 1/2 mutation nonchromosome 1p and 19q chromosome whole arm codeletion (IDHmt/noncoder) group, the S + RT + PCV and S + H-RT regimens had better 5-year PFS and 5-year OS. In the isocitrate dehydrogenase 1/2 mutation and chromosome 1p and 19q chromosome whole arm codeletion (IDHmt/coder) group, the 5-year PFS of each treatment regimen ranked from the best to the worst was S + RT + TMZ, S + RT + PCV, S + H-RT, S + RT, S + TMZ, and S. The order of 5-year OS from the best to the worst was S + H-RT, S + RT + TMZ, S + RT + PCV, S + RT, and S. In the isocitrate dehydrogenase 1/2 wild-type (IDHwt) group, the S + H-RT and S + TMZ regimens had better 5-year PFS. CONCLUSIONS This study revealed that both the S + RT + TMZ and S + RT + PCV regimens might be effective therapies for treating patients with low-grade gliomas. Among these, the S + RT + TMZ regimen seemed to be safer but might lead to tumor deterioration. In the IDHmt/coder type, the S + RT + TMZ scheme might have a significant advantage. In the IDHmt/noncoder type, the S + RT + PCV scheme might be more dominant, while in the IDHwt type, the S + H-RT and S + TMZ schemes also might be good treatment options.
Collapse
Affiliation(s)
- Su Dongpo
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China; School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Liu Xiaozhuo
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Li Xin
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zuo Zhengyao
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Wang Qing
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhen Fameng
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Fan Mingming
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Han Qian
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Li Mei
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Chen Tong
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China.
| |
Collapse
|
8
|
Li D, Liang Y, Yao G, Guan Z, Zhao H, Zhang N, Jiang J, Gao W. Monte Carlo-based optimization of glioma capsule design for enhanced brachytherapy. Appl Radiat Isot 2023; 201:111014. [PMID: 37688904 DOI: 10.1016/j.apradiso.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
The use of radiotherapy in tumor treatment has become increasingly prominent and has emerged as one of the main tools for treating malignant tumors. Current radiation therapy for glioma employs 125I seeds for brachytherapy, which cannot be combined with radiotherapy and chemotherapy. To address this limitation, this paper proposes a dual-microcavity capsule structure that integrates radiotherapy and chemotherapy. The Monte Carlo simulation method is used to simulate the structure of the dual-microcavity capsule with a 125I liquid radioactive source. Based on the simulation results, two kinds of dual-microcavity capsule structures are optimized, and the optimized dual-microcavity capsule structure is obtained. Finally, the dosimetric parameters of the two optimized dual-microcavity capsule structures are analyzed and compared with those of other 125I seeds. The optimization tests show that the improved dual-capsule dual-microcavity structure is more effective than the single-capsule dual-microcavity structure. At an activity of 5 mCi, the average absorbed dose rate is 71.2 cGy/h in the center of the optimized dual-capsule dual-microcavity structure and 45.8 cGy/h in the center of the optimized single-capsule dual-microcavity structure. Although the radial dose function and anisotropy function exhibite variations from the data of other 125I seeds, they are generally similar. The absorbed dose rate decreases exponentially with increasing distance from the center of the capsule, which can reduce the damage to the surrounding tissues and organs while increasing the dose. The capsule structure has a better irradiation effect than conventional 125I seeds and can accomplish long-term, stable, low-dose continuous irradiation to form local high-dose radiation therapy for glioma.
Collapse
Affiliation(s)
- Dongjie Li
- School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin, China; Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China.
| | - Yu Liang
- School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin, China; Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China
| | - Gang Yao
- Heilongjiang Institute of Atomic Energy, Harbin, China
| | - Zhongbao Guan
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China
| | - Hongtao Zhao
- Heilongjiang Institute of Atomic Energy, Harbin, China
| | - Nan Zhang
- Heilongjiang Institute of Atomic Energy, Harbin, China
| | - Jicheng Jiang
- Heilongjiang Institute of Atomic Energy, Harbin, China
| | - Weida Gao
- Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Tejada Solís S, González Sánchez J, Iglesias Lozano I, Plans Ahicart G, Pérez Núñez A, Meana Carballo L, Gil Salú JL, Fernández Coello A, García Romero JC, Rodríguez de Lope Llorca A, García Duque S, Díez Valle R, Narros Giménez JL, Prat Acín R. Low grade gliomas guide-lines elaborated by the tumor section of Spanish Society of Neurosurgery. NEUROCIRUGIA (ENGLISH EDITION) 2023; 34:139-152. [PMID: 36446721 DOI: 10.1016/j.neucie.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 05/06/2023]
Abstract
Adult low-grade gliomas (Low Grade Gliomas, LGG) are tumors that originate from the glial cells of the brain and whose management involves great controversy, starting from the diagnosis, to the treatment and subsequent follow-up. For this reason, the Tumor Group of the Spanish Society of Neurosurgery (GT-SENEC) has held a consensus meeting, in which the most relevant neurosurgical issues have been discussed, reaching recommendations based on the best scientific evidence. In order to obtain the maximum benefit from these treatments, an individualised assessment of each patient should be made by a multidisciplinary team. Experts in each LGG treatment field have briefly described it based in their experience and the reviewed of the literature. Each area has been summarized and focused on the best published evidence. LGG have been surrounded by treatment controversy, although during the last years more accurate data has been published in order to reach treatment consensus. Neurosurgeons must know treatment options, indications and risks to participate actively in the decision making and to offer the best surgical treatment in every case.
Collapse
Affiliation(s)
- Sonia Tejada Solís
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain.
| | - Josep González Sánchez
- Departamento de Neurocirugía, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Irene Iglesias Lozano
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Gerard Plans Ahicart
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Pérez Núñez
- Departamento de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Leonor Meana Carballo
- Departamento de Neurocirugía, Centro Médico de Asturias, Oviedo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Gil Salú
- Departamento de Neurocirugía, Hospital Universitario Puerta del Mar, Cádiz, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Alejandro Fernández Coello
- Departamento de Neurocirugía, Hospital Universitari Bellvitge, Barcelona, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Juan Carlos García Romero
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Angel Rodríguez de Lope Llorca
- Departamento de Neurocirugía, Hospital Virgen de la Salud, Toledo, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Sara García Duque
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Díez Valle
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Jose Luis Narros Giménez
- Departamento de Neurocirugía, Hospital Virgen del Rocío, Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| | - Ricardo Prat Acín
- Departamento de Neurocirugía, Hospital Universitario La Fe, Valencia, Spain; Departamento de Neurocirugía, Hospital Universitario HM Montepríncipe, Madrid, Spain
| |
Collapse
|
10
|
Recent Emerging Immunological Treatments for Primary Brain Tumors: Focus on Chemokine-Targeting Immunotherapies. Cells 2023; 12:cells12060841. [PMID: 36980182 PMCID: PMC10046911 DOI: 10.3390/cells12060841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Primary brain tumors are a leading cause of death worldwide and are characterized by extraordinary heterogeneity and high invasiveness. Current drug and radiotherapy therapies combined with surgical approaches tend to increase the five-year survival of affected patients, however, the overall mortality rate remains high, thus constituting a clinical challenge for which the discovery of new therapeutic strategies is needed. In this field, novel immunotherapy approaches, aimed at overcoming the complex immunosuppressive microenvironment, could represent a new method of treatment for central nervous system (CNS) tumors. Chemokines especially are a well-defined group of proteins that were so named due to their chemotactic properties of binding their receptors. Chemokines regulate the recruitment and/or tissue retention of immune cells as well as the mobilization of tumor cells that have undergone epithelial–mesenchymal transition, promoting tumor growth. On this basis, this review focuses on the function and involvement of chemokines and their receptors in primary brain tumors, specifically examining chemokine-targeting immunotherapies as one of the most promising strategies in neuro-oncology.
Collapse
|
11
|
Wasserman A, Musella A, Shapiro M, Shrager J. Virtual Trials: Causally-validated treatment effects efficiently learned from an observational cancer registry. Artif Intell Med 2023; 135:102450. [PMID: 36628781 DOI: 10.1016/j.artmed.2022.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Randomized controlled trials (RCTs) offer a clear causal interpretation of treatment effects, but are inefficient in terms of information gain per patient. Moreover, because they are intended to test cohort-level effects, RCTs rarely provide information to support precision medicine, which strives to choose the best treatment for an individual patient. If causal information could be efficiently extracted from widely available real-world data, the rapidity of treatment validation could be increased, and its costs reduced. Moreover, inferences could be made across larger, more diverse patient populations. We created a "virtual trial" by fitting a multilevel Bayesian survival model to treatment and outcome records self-reported by 451 brain cancer patients. The model recovers group-level treatment effects comparable to RCTs representing over 3200 patients. The model additionally discovers the feature-treatment interactions needed to make individual-level predictions for precision medicine. By learning from heterogeneous real-world data, virtual trials can generate more causal estimates with fewer patients than RCTs, and they can do so without artificially limiting the patient population. This demonstrates the value of virtual trials as a complement to large randomized controlled trials, especially in highly heterogeneous or rare diseases.
Collapse
Affiliation(s)
| | - Al Musella
- xCures, Inc., United States of America; Musella Foundation for Brain Tumor Research & Information, Inc., United States of America
| | | | - Jeff Shrager
- xCures, Inc., United States of America; Stanford University Symbolic Systems Program (adjunct), United States of America
| |
Collapse
|
12
|
Airth A, Whittle JR, Dimou J. How has the COVID-19 pandemic impacted clinical care and research in Neuro-Oncology? J Clin Neurosci 2022; 105:91-102. [PMID: 36122487 PMCID: PMC9452416 DOI: 10.1016/j.jocn.2022.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic has challenged the continued delivery of healthcare globally. Due to disease risk, clinicians were forced to re-evaluate the safety and priorities of pre-pandemic care. Neuro-oncology presents unique challenges, as patients can deteriorate rapidly without intervention. These challenges were also observed in countries with reduced COVID-19 burden with centres required to rapidly develop strategies to maintain efficient and equitable care. This review aims to summarise the impact of the pandemic on clinical care and research within the practice of Neuro-oncology. A narrative review of the literature was performed using MEDLINE and EMBASS and results screened using PRISMA guidelines with relevant inclusion and exclusion criteria. Search strategies included variations of ‘Neuro-oncology’ combined with COVID-19 and other clinical-related terms. Most adult and paediatric neurosurgical centres experienced reductions in new referrals and operations for brain malignancies, and those who did present for treatment frequently had operations cancelled or delayed. Many radiation therapy and medical oncology centres altered treatment plans to mitigate COVID-19 risk for patients and staff. New protocols were developed that aimed to reduce in-person visits and reduce the risk of developing severe complications from COVID-19. The COVID-19 pandemic has presented many challenges to the provision of safe and accessible healthcare. Despite these challenges, some benefits to healthcare provision such as the use of telemedicine are likely to remain in future practice. Neuro-oncology staff must remain vigilant to ensure patient and staff safety.
Collapse
Affiliation(s)
- Angus Airth
- Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - James Dimou
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
13
|
Agopyan-Miu AHCW, Banu MA, Miller ML, Troy C, Hargus G, Canoll P, Wang TJC, Feldstein N, Haggiagi A, McKhann GM. Synchronous supratentorial and infratentorial oligodendrogliomas with incongruous IDH1 mutations, a case report. Acta Neuropathol Commun 2021; 9:160. [PMID: 34587990 PMCID: PMC8482672 DOI: 10.1186/s40478-021-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Infratentorial oligodendrogliomas, a rare pathological entity, are generally considered metastatic lesions from supratentorial primary tumors. Here, we report the case of a 23-year-old man presenting with a histopathologically confirmed right precentral gyrus grade 2 oligodendroglioma and a concurrent pontine grade 3 oligodendroglioma. The pontine lesion was biopsied approximately a year after the biopsy of the precentral lesion due to disease progression despite 4 cycles of procarbazine-CCNU-vincristine (PCV) chemotherapy and stable supratentorial disease. Histology and genetic analysis of the pontine biopsy were consistent with grade 3 oligodendroglioma, and comparison of the two lesions demonstrated common 1p/19q co-deletions and TERT promoter mutations but distinct IDH1 mutations, with a non-canonical IDH1 R132G mutation identified in the infratentorial lesion and a R132H mutation identified in the cortical lesion. Initiation of Temozolomide led to complete response of the supratentorial lesion and durable disease control, while Temozolomide with subsequent radiation therapy of 54 Gy in 30 fractions resulted in partial response of the pontine lesion. This case report supports possible distinct molecular pathogenesis in supratentorial and infratentorial oligodendrogliomas and raises questions about the role of different IDH1 mutant isoforms in explaining treatment resistance to different chemotherapy regimens. Importantly, this case suggests that biopsies of all radiographic lesions, when feasible and safe, should be considered in order to adequately guide management in multicentric oligodendrogliomas.
Collapse
|
14
|
Anand S, Chatterjee A, Gupta T, Panda P, Moiyadi A, Epari S, Patil V, Krishnatry R, Goda JS, Jalali R. Upfront Therapy of Aggressive/High-Risk Low-Grade Glioma: Single-Institution Outcome Analysis of Temozolomide-Based Radio-Chemotherapy and Adjuvant Chemotherapy. World Neurosurg 2021; 154:e176-e184. [PMID: 34245877 DOI: 10.1016/j.wneu.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To report clinical outcomes of temozolomide (TMZ)-based radio-chemotherapy and adjuvant chemotherapy in patients with aggressive/high-risk low-grade glioma (LGG). METHODS Medical records of patients defined as aggressive/high-risk LGG based on clinicoradiologic and/or histomorphologic features treated between 2009 and 2016 in an academic neuro-oncology unit with upfront postoperative radiotherapy at time of initial diagnosis with concurrent and adjuvant TMZ were reviewed, retrospectively. RESULTS In total, 64 patients with median age of 38 years at initial diagnosis were included. Histomorphologically, patients were classified into oligodendroglioma, mixed oligoastrocytoma, and astrocytoma. Molecular markers such as isocitrate dehydrogenase (IDH) mutation and 1p/19q codeletion were used to classify 37 of 64 (58%) patients into molecularly defined entities comprising oligodendroglioma (IDH-mutant with 1p/19q codeletion), IDH-mutant astrocytoma (immunohistochemistry or gene sequencing), and IDH-wild-type astrocytoma (gene sequencing). All 64 patients completed planned conventionally fractionated focal conformal radiotherapy (median dose 55.8 Gy) with concurrent TMZ. Fifty-nine patients received further adjuvant TMZ for a median of 12 cycles. Adjuvant TMZ was stopped prematurely in 6 (9%) patients due to toxicity or early disease progression. At a median follow-up of 56.7 months, 5-year Kaplan-Meier estimates of progression-free survival and overall survival for the study cohort were 74.6% and 84.3%, respectively. Five-year overall survival was 87.5%, 90.4%, and 71.9% for oligodendroglioma, mixed oligoastrocytoma, and astrocytoma, respectively (P = 0.42) Similar estimates for molecularly defined oligodendroglioma, IDH-mutant astrocytoma, and IDH-wild-type astrocytoma were 85.8%, 90%, and 66.7%, respectively (P = 0.87). CONCLUSIONS Upfront TMZ-based concurrent radio-chemotherapy and adjuvant TMZ chemotherapy provides acceptable survival outcomes in aggressive/high-risk LGG with modest toxicity.
Collapse
Affiliation(s)
- Sachith Anand
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - Pankaj Panda
- Department of Clinical Research Secretariat, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neuro-surgical Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Rahul Krishnatry
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Jayant Sastri Goda
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Rakesh Jalali
- Department of Radiation Oncology, TMH/ACTREC, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
15
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
16
|
Subramani E, Radoul M, Najac C, Batsios G, Molloy AR, Hong D, Gillespie AM, Santos RD, Viswanath P, Costello JF, Pieper RO, Ronen SM. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Res 2020; 80:5098-5108. [PMID: 32958546 PMCID: PMC7669718 DOI: 10.1158/0008-5472.can-20-1314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023]
Abstract
Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.
Collapse
Affiliation(s)
- Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Wang H, Pan J, Yu L, Meng L, Liu Y, Chen X. MicroRNA-16 Inhibits Glioblastoma Growth in Orthotopic Model by Targeting Cyclin D1 and WIP1. Onco Targets Ther 2020; 13:10807-10816. [PMID: 33122919 PMCID: PMC7591102 DOI: 10.2147/ott.s250369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction To examine the molecular mechanism by which miRNA-16 (miR-16) suppresses glioblastoma in vitro and in vivo. Methods Gene expression of miR-16 in normal brain tissues and human glioma cell lines was examined. To characterize the functional role of miR-16 in vitro, miR-16 was ectopically expressed in U87 cells by lentiviral transduction. Expression of miR-16 downstream targets cyclin D1 and Bcl-2 in U87 was studied using Western blotting. Cell proliferation and clonogenic property were examined using CCK-8 and clone formation assay, respectively. Migration and invasiveness of U87 was studied using wound-healing assay and transwell assay, respectively. In vivo tumorigenic properties of the miR-16-transduced U87 cells were examined in an orthotopic xenograft model. Immunohistochemistry was performed to examine cyclin D1, WIP1 and CD31 expressions. Results Expression of miR-16 was reduced in glioblastoma cell lines compared to normal human brain tissues. Ectopic miR-16 expression reduced cyclin D1 and Bcl-2 in U87 cells. miR-16 also induced apoptosis, reduced cell proliferation and clone formation. Furthermore, miR-16 suppressed U87 migration in wound-healing assay and invasion across transwell membrane in vitro. In an orthotopic tumor model, overexpression of miR-16 inhibited tumor growth in vivo was accompanied with reduction in cyclin D1 and WIP1 expression in the xenografts. CD31 expression in miR-16-overexpressed xenografts was also decreased. The determined microvessel density of the miR-16 overexpression group was significantly lower than those groups treated with vehicle and empty vector. Discussion MicroRNA-16 exhibits inhibitory effects of glioblastoma. MicroRNA-16 and its downstream targets could be potential therapeutic targets for treatment of glioblastoma.
Collapse
Affiliation(s)
- Heng Wang
- Department of Gastrointestinal Surgery/Pediatric Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Jun Pan
- Department of Traditional Chinese Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Linghu Meng
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Yue Liu
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Xin Chen
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| |
Collapse
|
18
|
Obara T, Blonski M, Brzenczek C, Mézières S, Gaudeau Y, Pouget C, Gauchotte G, Verger A, Vogin G, Moureaux JM, Duffau H, Rech F, Taillandier L. Adult Diffuse Low-Grade Gliomas: 35-Year Experience at the Nancy France Neurooncology Unit. Front Oncol 2020; 10:574679. [PMID: 33194684 PMCID: PMC7656991 DOI: 10.3389/fonc.2020.574679] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background To report survival, spontaneous prognostic factors, and treatment efficacy in a French monocentric cohort of diffuse low-grade glioma (DLGG) patients over 35 years of follow-up. Methods A monocentric retrospective study of 339 patients diagnosed with a new DLGG between 01/01/1982 and 01/01/2017 was created. Inclusion criteria were patient age ≥18 years at diagnosis and histological diagnosis of WHO grade II glioma (according to 1993, 2007, and 2016 WHO classifications). The survival parameters were estimated using the Kaplan-Meier method with a 95% confidence interval. Differences in survival were tested for statistical significance by the log-rank test. Factors were considered significant when p ≤ 0.1 and p ≤ 0.05 in the univariate and multivariate analyses, respectively. Results A total of 339 patients were included with a median follow-up of 8.7 years. The Kaplan-Meier median overall survival was 15.7 years. At the time of radiological diagnosis, Karnofsky Performance Status score and initial tumor volume were significant independent prognostic factors. Oncological prognostic factors were the extent of resection for patients who underwent surgery and the timing of radiotherapy for those concerned. In this study, patients who had delayed radiotherapy (provided remaining low grade) did not have worse survival compared with patients who had early radiotherapy. The functional capabilities of the patients were preserved enough so that they could remain independent during at least three quarters of the follow-up. Conclusion This large monocentric series spread over a long time clarifies the effects of different therapeutic strategies and their combination in the management of DLGG.
Collapse
Affiliation(s)
- Tiphaine Obara
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Marie Blonski
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| | - Cyril Brzenczek
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sophie Mézières
- Department of Mathematics, Elie Cartan Institute, Nancy, France.,INRIA Biology, Genetics and Statistics, Nancy, France
| | - Yann Gaudeau
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Celso Pouget
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Guillaume Gauchotte
- Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035, CHRU Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, France.,IADI, INSERM U1254, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Guillaume Vogin
- UMR 7365 CNRS, IMoPA Biopole Lorraine University Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiation Therapy, Baclese Radiation Therapy Centre, Esch/Alzette, Luxembourg
| | - Jean-Marie Moureaux
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", U1051 Laboratory, National Institute for Health and Medical Research (INSERM), Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France
| | - Fabien Rech
- Department of Neurosurgery, CHRU, Nancy, France
| | - Luc Taillandier
- Centre de Recherche en Automatique Nancy France - UMR 7039 - BioSiS Department, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy, France.,Neurology Departement, Neurooncology Unit, CHRU, Nancy, France
| |
Collapse
|
19
|
Tamtaji OR, Behnam M, Pourattar MA, Hamblin MR, Mahjoubin-Tehran M, Mirzaei H, Asemi Z. PIWI-interacting RNAs and PIWI proteins in glioma: molecular pathogenesis and role as biomarkers. Cell Commun Signal 2020; 18:168. [PMID: 33109195 PMCID: PMC7590611 DOI: 10.1186/s12964-020-00657-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common primary brain tumor, and is a major health problem throughout the world. Today, researchers have discovered many risk factors that are associated with the initiation and progression of gliomas. Studies have shown that PIWI-interacting RNAs (piRNAs) and PIWI proteins are involved in tumorigenesis by epigenetic mechanisms. Hence, it seems that piRNAs and PIWI proteins may be potential prognostic, diagnostic or therapeutic biomarkers in the treatment of glioma. Previous studies have demonstrated a relationship between piRNAs and PIWI proteins and some of the molecular and cellular pathways in glioma. Here, we summarize recent evidence and evaluate the molecular mechanisms by which piRNAs and PIWI proteins are involved in glioma. Video abstract
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Thakkar P, Greenwald BD, Patel P. Rehabilitation of Adult Patients with Primary Brain Tumors: A Narrative Review. Brain Sci 2020; 10:brainsci10080492. [PMID: 32751074 PMCID: PMC7464729 DOI: 10.3390/brainsci10080492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022] Open
Abstract
Rehabilitative measures have been shown to benefit patients with primary brain tumors (PBT). To provide a high quality of care, clinicians should be aware of common challenges in this population including a variety of medical complications, symptoms, and impairments, such as headaches, seizures, cognitive deficits, fatigue, and mood changes. By taking communication and family training into consideration, clinicians can provide integrated and patient-centered care to this population. This article looks to review the current literature in outpatient and inpatient rehabilitation options for adult patients with PBTs as well as explore the role of the interdisciplinary team in providing survivorship care.
Collapse
Affiliation(s)
- Parth Thakkar
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (P.T.); (P.P.)
| | - Brian D. Greenwald
- JFK Johnson Rehabilitation Institute, Edison, NJ 08820, USA
- Correspondence:
| | - Palak Patel
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (P.T.); (P.P.)
| |
Collapse
|
21
|
Shi L, Sun G, Zhu H. Demethoxycurcumin analogue DMC-BH inhibits orthotopic growth of glioma stem cells by targeting JNK/ERK signaling. Aging (Albany NY) 2020; 12:14718-14735. [PMID: 32710727 PMCID: PMC7425509 DOI: 10.18632/aging.103531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Glioma stem cells (GSCs) play an important role in glioblastoma resistance to conventional therapies and disease recurrence. Here, we assessed the therapeutic effect of a demethoxycurcumin analogue, DMC-BH, on GSCs, and investigated the underlying mechanisms. Our in vitro data demonstrate that DMC-BH inhibits GSC proliferation, and induces apoptosis and autophagy in GSCs. In addition, our results show that DMC-BH effectively crosses the blood-brain barrier to inhibit the growth of intracranial GSC tumors in vivo. DMC-BH significantly increased phosphorylation levels of JNK, ERK and c-Jun in GSCs. Inhibition of JNK and ERK activities reversed the pro-apoptotic effect of DMC-BH in GSCs, indicating that the DMC-BH-induced apoptosis in GSCs is mediated via the JNK/ERK signaling pathway. These results suggest that DMC-BH could potentially serve as a effective therapy against GSCs that acts by targeting the JNK/ERK signaling pathway.
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, P.R.China
| | - Guan Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nantong University, Yancheng No.1 People's Hospital, Yancheng 224000, P. R. China
| | - Haifeng Zhu
- Department of Neurosurgery, Funing People's Hospital, Funing 224400, P.R.China
| |
Collapse
|
22
|
Dimou J, Kelly J. The biological and clinical basis for early referral of low grade glioma patients to a surgical neuro-oncologist. J Clin Neurosci 2020; 78:20-29. [PMID: 32381393 DOI: 10.1016/j.jocn.2020.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/24/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
The discovery of IDH1/2 (isocitrate dehydrogenase) mutation in large scale, genomewide mutational analyses of gliomas has led to profound developments in understanding tumourigenesis, and restructuring of the classification of both high and low grade gliomas. Owing to this progress made in the recognition of molecular markers which predict tumour behavior and treatment response, the increasing importance of adjuvant treatments such as chemo- and radiotherapy, and the tremendous advances in surgical technique and intraoperative monitoring which have facilitated superior extents of resection whilst preserving neurological functioning and quality of life, contemporary management of low grade glioma (LGG) has switched from a passive, observant approach to a more active, interventional one. Furthermore, this has implications for the manner in which patients with incidentally discovered and/or asymptomatic LGG are managed, and this review of the biological behaviour of LGG, as well as its clinical investigation and management, should act as a timely reminder to all clinicians of the importance of referring LGG patients early to a surgical neuro-oncologist who is not only familiar and acquainted with the vagaries of this disease process, but who, in addition, is devoted to delivering care to these patients with the support of a multi-disciplinary clinical decision-making unit, comprising medical neuro-oncologists, radiation oncologists and allied health professionals.
Collapse
Affiliation(s)
- James Dimou
- Department of Neurosurgery, University of Calgary, Alberta, Canada.
| | - John Kelly
- Department of Neurosurgery, University of Calgary, Alberta, Canada
| |
Collapse
|
23
|
Wu Q, Bao G, Pan Y, Qian X, Gao F. Discovery of potential targets of Triptolide through inverse docking in ovarian cancer cells. PeerJ 2020; 8:e8620. [PMID: 32219016 PMCID: PMC7085293 DOI: 10.7717/peerj.8620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TPL) is proposed as an effective anticancer agent known for its anti-proliferation of a variety of cancer cells including ovarian cancer cells. Although some studies have been conducted, the mechanism by which TPL acts on ovarian cancer remains to be clearly described. Herein, systematic work based on bioinformatics was carried out to discover the potential targets of TPL in SKOV-3 cells. TPL induces the early apoptosis of SKOV-3 cells in a dose- and time-dependent manner with an IC50 = 40 ± 0.89 nM when cells are incubated for 48 h. Moreover, 20 nM TPL significantly promotes early apoptosis at a rate of 40.73%. Using a self-designed inverse molecular docking protocol, we fish the top 19 probable targets of TPL from the target library, which was built on 2,250 proteins extracted from the Protein Data Bank. The 2D-DIGE assay reveals that the expression of eight genes is affected by TPL. The results of western blotting and qRT-PCR assay suggest that 40 nM of TPL up-regulates the level of Annexin A5 (6.34 ± 0.07 fold) and ATP syn thase (4.08 ± 0.08 fold) and down-regulates the level of β-Tubulin (0.11 ± 0.12 fold) and HSP90 (0.21 ± 0.09 fold). More details of TPL affecting on Annexin A5 signaling pathway will be discovered in the future. Our results define some potential targets of TPL, with the hope that this agent could be used as therapy for the preclinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qinhang Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Bao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqi Qian
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Furong Gao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Mirabdaly S, Elieh Ali Komi D, Shakiba Y, Moini A, Kiani A. Effects of temozolomide on U87MG glioblastoma cell expression of CXCR4, MMP2, MMP9, VEGF, anti-proliferatory cytotoxic and apoptotic properties. Mol Biol Rep 2020; 47:1187-1197. [PMID: 31897867 DOI: 10.1007/s11033-019-05219-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Temozolomide is an alkylating agent which is used in glioblastoma treatment. We aimed to investigate the effects of different concentrations of temozolomide and exposure time on U87MG glioblastoma cell expression of CXCR4, MMP2, MMP9 and VEGF. U87MG cells were cultured in different temozolomide concentrations and incubation time and the effects of temozolomide on inducing apoptosis was investigated. The levels of VEGF and CXCR4 expression were measured by RT-PCR and flowcytometry. Moreover, MMP2 and MMP9 activity and expression were assessed by ELISA and zymography. CXCR4 and VEGF expression levels decreased upon applying higher concentration of temozolomide. MMP2 and MMP-9 had lower activity in cells with longer exposure time or higher doses of temozolomide. Temozolomide induces the apoptosis in U87MG glioblastoma cells at therapeutic or higher dose. It is capable of decreasing their expression levels of VEGF and CXCR4.
Collapse
Affiliation(s)
- Seyedsaber Mirabdaly
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Shakiba
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran
| | - Ali Moini
- Department of Internal Medicine Imam, Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran. .,Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Wang J, Hu G, Quan X. Analysis of the Factors Affecting the Prognosis of Glioma Patients. Open Med (Wars) 2019; 14:331-335. [PMID: 30997396 PMCID: PMC6463817 DOI: 10.1515/med-2019-0031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Abstract
This retrospective study was carried out to investigate factors affecting the prognosis of gliomas for better management of treatment. Clinical data from 186 glioma patients treated in our hospital from January 2013 to June 2016 were analyzed. There was slightly more male than female patients in the cohort. The main clinical symptoms included sudden limb twitching, headache and fatigue, vomiting, vision reduction and speaking disorders. The malignancy was high and the prognosis was poor in the patients, with an overall survival rate of 54.84 % by October 2017. Univariate analysis showed that the prognosis was mainly affected by age, tumor grade, preoperative Karnofsky performance status (KPS), surgical method, postoperative radiotherapy and chemotherapy, and postoperative use of temozolomide (TMZ). Multivariate Cox regression analysis showed that the independent risk factors for the prognosis were old age (≥ 60), advanced tumor, partial tumor resection, KPS of < 70, no chemotherapy after operation and < 4 courses of postoperative TMZ. The prognosis is negatively affected by age, tumor grade, KPS, and partial tumor resection. Surgical resection combined with chemotherapy and multi-course use of TMZ prolongs the survival time of patients.
Collapse
Affiliation(s)
- Jiancun Wang
- Department of Neurosurgery, Zhangjiajie People's Hospital, 192 Guyong road, Zhangjiajie, Hunan, China 427000
| | - Guancheng Hu
- Department of Neurosurgery, Zhangjiajie People's Hospital, 192 Guyong road, Zhangjiajie, Hunan, China 427000
| | - Xingyun Quan
- Department of Neurosurgery, Zhangjiajie People's Hospital, 192 Guyong road, Zhangjiajie, Hunan, China 427000
| |
Collapse
|
26
|
Tang SL, Gao YL, Hu WZ. Scutellarin inhibits the metastasis and cisplatin resistance in glioma cells. Onco Targets Ther 2019; 12:587-598. [PMID: 30697056 PMCID: PMC6339467 DOI: 10.2147/ott.s187426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Scutellarin is a natural flavone compound that possesses anti-tumor and chemosensitization effects in several cancers. However, the effects of scutellarin on metastasis and chemoresistance in glioma have not been illustrated. Methods Glioma cells were treated with scutellarin in the presence or absence of LY294002. Cell proliferation was measured using a Cell Proliferation BrdU ELISA kit. Cell migration and invasion were analyzed using transwell assay. The expressions of E-cadherin, N-cadherin, vimentin, p-PI3K, PI3K, p-AKT, AKT, p-mTOR and mTOR were measured using Western blot. Furthermore, cells were incubated in the presence of cisplatin with or without the pretreatment of scutellarin. Cell viability was detected by the MTT assay. Cell apoptosis was measured using a histone/DNA ELISA detection kit. The expressions of ABCB1 and ABCG2 were detected using Western blot. Results In the present study, we found that scutellarin inhibited the proliferation, migration, and invasion of glioma cells. Scutellarin induced E-cadherin expression and reduced the expressions of N-cadherin, and vimentin in glioma cells. Our results also revealed that scutellarin enhanced chemosensitivity to cisplatin, as evidenced by the decreased cell viability to cisplatin and induced cell apoptosis. Moreover, scutellarin inhibited the expressions of ATP-binding cassette subfamily B member 1 and ATP-binding cassette sub-family G member 2 in cisplatin-resistant glioma cells. Scutellarin also prevented the activation of phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway. Conclusion The data suggested that scutellarin suppressed metastasis and chemoresistance in glioma cells. Scutellarin might be a new therapeutic approach for the glioma therapy.
Collapse
Affiliation(s)
- Shi-Lei Tang
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China,
| | - Yuan-Lin Gao
- Department of Neurology, Kaifeng Central Hospital, Kaifeng 475000, Henan Province, China
| | - Wen-Zhong Hu
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China,
| |
Collapse
|
27
|
Wang Q, He Z, Chen Y. Comprehensive Analysis Reveals a 4-Gene Signature in Predicting Response to Temozolomide in Low-Grade Glioma Patients. Cancer Control 2019; 26:1073274819855118. [PMID: 31167546 PMCID: PMC6558750 DOI: 10.1177/1073274819855118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 11/25/2022] Open
Abstract
Low-grade gliomas (LGGs) are a highly heterogeneous group of slow-growing, lethal, diffusive brain tumors. Temozolomide (TMZ) is a frequently used primary chemotherapeutic agent for LGGs. Currently there is no consensus as to the optimal biomarkers to predict the efficacy of TMZ, which calls for decision-making for each patient while considering molecular profiles. Low-grade glioma data sets were retrieved from The Cancer Genome Atlas. Cox regression and survival analyses were applied to identify clinical features significantly associated with survival. Subsequently, Ordinal logistic regression, co-expression, and Cox regression analyses were applied to identify genes that correlate significantly with response rate, disease-free survival, and overall survival of patients receiving TMZ as primary therapy. Finally, gene expression and methylation analyses were exploited to explain the mechanism between these gene expression and TMZ efficacy in LGG patients. Overall survival was significantly correlated with age, Karnofsky Performance Status score, and histological grade, but not with IDH1 mutation status. Using 3 distinct efficacy end points, regression and co-expression analyses further identified a novel 4-gene signature of ASPM, CCNB1, EXO1, and KIF23 which negatively correlated with response to TMZ therapy. In addition, expression of the 4-gene signature was associated with those of genes involved in homologous recombination. Finally, expression and methylation profiling identified a largely unknown olfactory receptor OR51F2 as potential mediator of the roles of the 4-gene signature in reducing TMZ efficacy. Taken together, these findings propose the 4-gene signature as a novel panel of efficacy predictors of TMZ therapy, as well as potential downstream mechanisms, including homologous recombination, OR51F2, and DNA methylation independent of MGMT.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| | - Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| | - Yong Chen
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and
Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic
Science and Technology of China, Sichuan, China
| |
Collapse
|