1
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 PMCID: PMC11352263 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India;
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India;
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India; (P.V.S.); (Y.M.)
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (S.M.V.); (R.S.A.)
| |
Collapse
|
2
|
Delyon J, Vallet A, Bernard-Cacciarella M, Kuzniak I, Reger de Moura C, Louveau B, Jouenne F, Mourah S, Lebbé C, Dumaz N. TERT Expression Induces Resistance to BRAF and MEK Inhibitors in BRAF-Mutated Melanoma In Vitro. Cancers (Basel) 2023; 15:cancers15112888. [PMID: 37296851 DOI: 10.3390/cancers15112888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Because BRAF-mutated melanomas are addicted to the Mitogen Activated Protein Kinase (MAPK) pathway they show a high response rate to BRAF and MEK inhibitors. However, the clinical responses to these inhibitors are often short-lived with the rapid onset of resistance to treatment. Deciphering the molecular mechanisms driving resistance has been the subject of intense research. Recent in vitro and clinical data have suggested a link between expression of telomerase and resistance to targeted therapy in melanoma. TERT promoter mutations are the main mechanism for the continuous upregulation of telomerase in melanoma and co-occur frequently with BRAF alterations. To understand how TERT promoter mutations could be associated with resistance to targeted therapy in melanoma, we conducted translational and in vitro studies. In a cohort of V600E-BRAF-mutated melanoma patients, we showed that the TERT promoter mutation status and TERT expression tended to be associated with response to BRAF and MEK inhibitors. We demonstrated that TERT overexpression in BRAF-mutated melanoma cells reduced sensitivity to BRAF and MEK independently of TERT's telomer maintenance activity. Interestingly, inhibition of TERT reduced growth of BRAF-mutated melanoma including resistant cells. TERT expression in melanoma can therefore be a new biomarker for resistance to MAPK inhibitors as well as a novel therapeutic target.
Collapse
Affiliation(s)
- Julie Delyon
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Anaïs Vallet
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| | - Mélanie Bernard-Cacciarella
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Isabelle Kuzniak
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| | - Coralie Reger de Moura
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Baptiste Louveau
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Fanélie Jouenne
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Samia Mourah
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Pharmacogénomique, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Céleste Lebbé
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
- Département de Dermatologie, Hôpital Saint Louis, AP-HP, F-75010 Paris, France
| | - Nicolas Dumaz
- INSERM, U976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010 Paris, France
- Université Paris Cité, Institut de Recherche Saint Louis (IRSL), F-75010 Paris, France
| |
Collapse
|
3
|
Genes Involved in Immune Reinduction May Constitute Biomarkers of Response for Metastatic Melanoma Patients Treated with Targeted Therapy. Biomedicines 2022; 10:biomedicines10020284. [PMID: 35203494 PMCID: PMC8869294 DOI: 10.3390/biomedicines10020284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022] Open
Abstract
Targeted therapy in metastatic melanoma often achieves a major tumour regression response and significant long-term survival via the release of antigens that reinduce immunocompetence. The biomarkers thus activated may guide the prediction of response, but this association and its mechanism have yet to be established. Blood samples were collected from nineteen consecutive patients with metastatic melanoma before, during, and after treatment with targeted therapy. Differential gene expression analysis was performed, which identified the genes involved in the treatment, both in the first evaluation of response and during progression. Although clinical characteristics of the patients were poorer than those obtained in pivotal studies, radiological responses were similar to those reported previously (objective response rate: 73.7%). In the first tumour assessment, the expression of some genes increased (CXCL-10, SERPING1, PDL1, and PDL2), while that of others decreased (ARG1, IL18R1, IL18RAP, IL1R1, ILR2, FLT3, SLC11A1, CD163, and S100A12). The analysis of gene expression in blood shows that some are activated and others inhibited by targeted therapy. This response pattern may provide biomarkers of the immune reinduction response, which could be used to study potential combination treatments. Nevertheless, further studies are needed to validate these results.
Collapse
|
4
|
RICTOR Affects Melanoma Tumorigenesis and Its Resistance to Targeted Therapy. Biomedicines 2021; 9:biomedicines9101498. [PMID: 34680615 PMCID: PMC8533235 DOI: 10.3390/biomedicines9101498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
The network defined by phosphatidylinositol-3-kinase (PI3K), AKT, and mammalian target of rapamycin (mTOR) plays a major role in melanoma oncogenesis and has been implicated in BRAF inhibitor resistance. The central role of RICTOR (rapamycin-insensitive companion of mTOR) in this pathway has only recently begun to be unraveled. In the present study, we assessed the role of mTORC2/RICTOR in BRAF-mutated melanomas and their resistance to BRAF inhibition. We showed that RICTOR was significantly overexpressed in melanoma and associated with bad prognoses. RICTOR overexpression stimulated melanoma-initiating cells (MICs) with ‘stemness’ properties. We also showed that RICTOR contributed to melanoma resistance to BRAF inhibitors and rendered the cells very sensitive to mTORC2 inhibition. We highlighted a connection between mTORC2/RICTOR and STAT3 in resistant cells and revealed an interaction between RAS and RICTOR in resistant melanoma, which, when disrupted, impeded the proliferation of resistant cells. Therefore, as a key signaling node, RICTOR contributes to BRAF-dependent melanoma development and resistance to therapy and, as such, is a valuable therapeutic target in melanoma.
Collapse
|
5
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
6
|
Mechanisms of resistance and predictive biomarkers of response to targeted therapies and immunotherapies in metastatic melanoma. Curr Opin Oncol 2020; 32:91-97. [PMID: 31833956 DOI: 10.1097/cco.0000000000000603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Thanks to mitogen-activated protein kinase inhibitors (MAPKi) and immune checkpoint inhibitors (ICI), major progress has been made in the field of melanoma treatment. However, long-term success is still scarce because of the development of resistance. Understanding these mechanisms of resistance and identifying predictive genomic biomarkers are now key points in the therapeutic management of melanoma patients. RECENT FINDINGS Multiple and complex mechanisms of resistance to MAPKi or ICI have been uncovered in the past few years. The lack of response can be driven by mutations and nonmutational events in tumor cells, as well as by changes in the tumor microenvironment. Melanoma cells are also capable of rapidly switching their molecular and cellular phenotype, leading to an initial drug-tolerant favorizing melanoma resistance. Tumor molecular profiling and circulating tumor cell analyses are of high interest as predictive biomarkers as well as studying immunogenic changes and microbiome in ICI-treated patients. SUMMARY Resistance to MAPKi and ICI is a key point in therapeutic management of metastatic melanoma patients. Validated biomarkers predicting response to therapy are urgently needed to move toward personalized medicine. Combinatory treatments guided by the understanding of resistance mechanisms will be of major importance in the future of melanoma therapy.
Collapse
|
7
|
Reger de Moura C, Vercellino L, Jouenne F, Baroudjian B, Sadoux A, Louveau B, Delyon J, Serror K, Goldwirt L, Merlet P, Bouquet F, Battistella M, Lebbé C, Mourah S. Intermittent Versus Continuous Dosing of MAPK Inhibitors in the Treatment of BRAF-Mutated Melanoma. Transl Oncol 2020; 13:275-286. [PMID: 31874374 PMCID: PMC6931208 DOI: 10.1016/j.tranon.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 02/02/2023] Open
Abstract
The development of BRAF and MEK inhibitors (BRAFi/MEKi) has led to major advances in melanoma treatment. However, the emergence of resistance mechanisms limits the benefit duration and a complete response occurs in less than 20% of patients receiving BRAFi ± MEKi. In this study, we evaluated the impact of an intermittent versus continuous dosing schedule of BRAF/MEK inhibition in a melanoma model mildly sensitive to a BRAF inhibitor. The combination of a BRAFi with three different MEKi was studied with a continuous or intermittent dosing schedule in vivo, in a xenografted melanoma model and ex vivo using histoculture drug response assays (HDRAs) of patient-derived xenografts (PDX). To further understand the underlying molecular mechanisms of therapeutic efficacy, a biomarker pharmacodynamic readout was evaluated. An equal impact on tumor growth was observed in monotherapy or bitherapy regimens whether we used continuous and intermittent dosing schedules, with no significant differences in biomarkers expression between the treatments. The antitumoral effect was mostly due to modulations of expression of cell cycle and apoptotic mediators. Moreover, ex vivo studies did not show significant differences between the dosing schedules. In this context, our preclinical and pharmacodynamic results converged to show the similarity between intermittent and continuous treatments with either BRAFi or MEKi alone or with the combination of both.
Collapse
Affiliation(s)
- Coralie Reger de Moura
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Fanélie Jouenne
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Aurélie Sadoux
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Baptiste Louveau
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Julie Delyon
- Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Lauriane Goldwirt
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Pascal Merlet
- Department of Nuclear Medicine, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France; Université de Paris, Inserm, UMR_S1165, Paris, France
| | - Céleste Lebbé
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Samia Mourah
- Université de Paris, Inserm, UMR_S976, Paris, France; Department of Pharmacogenomics, Hôpital Saint-Louis, AP-HP, Paris, France.
| |
Collapse
|
8
|
Dissecting Mechanisms of Melanoma Resistance to BRAF and MEK Inhibitors Revealed Genetic and Non-Genetic Patient- and Drug-Specific Alterations and Remarkable Phenotypic Plasticity. Cells 2020; 9:cells9010142. [PMID: 31936151 PMCID: PMC7017165 DOI: 10.3390/cells9010142] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical benefit of MAPK pathway inhibition in BRAF-mutant melanoma patients is limited by the development of acquired resistance. Using drug-naïve cell lines derived from tumor specimens, we established a preclinical model of melanoma resistance to vemurafenib or trametinib to provide insight into resistance mechanisms. Dissecting the mechanisms accompanying the development of resistance, we have shown that (i) most of genetic and non-genetic alterations are triggered in a cell line- and/or drug-specific manner; (ii) several changes previously assigned to the development of resistance are induced as the immediate response to the extent measurable at the bulk levels; (iii) reprogramming observed in cross-resistance experiments and growth factor-dependence restricted by the drug presence indicate that phenotypic plasticity of melanoma cells largely contributes to the sustained resistance. Whole-exome sequencing revealed novel genetic alterations, including a frameshift variant of RBMX found exclusively in phospho-AKThigh resistant cell lines. There was no similar pattern of phenotypic alterations among eleven resistant cell lines, including expression/activity of crucial regulators, such as MITF, AXL, SOX, and NGFR, which suggests that patient-to-patient variability is richer and more nuanced than previously described. This diversity should be considered during the development of new strategies to circumvent the acquired resistance to targeted therapies.
Collapse
|
9
|
Gaudy-Marqueste C. Quoi de neuf en oncodermatologie ? Ann Dermatol Venereol 2019; 146:12S39-12S45. [DOI: 10.1016/s0151-9638(20)30105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Louveau B, Jouenne F, Reger de Moura C, Sadoux A, Baroudjian B, Delyon J, Herms F, De Masson A, Da Meda L, Battistella M, Dumaz N, Lebbe C, Mourah S. Baseline Genomic Features in BRAFV600-Mutated Metastatic Melanoma Patients Treated with BRAF Inhibitor + MEK Inhibitor in Routine Care. Cancers (Basel) 2019; 11:E1203. [PMID: 31426590 PMCID: PMC6721518 DOI: 10.3390/cancers11081203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
In BRAFV600mut metastatic melanoma, the combination of BRAF and MEK inhibitors (BRAFi, MEKi) has undergone multiple resistance mechanisms, limiting its clinical benefit and resulting in the need for response predicting biomarkers. Based on phase III clinical trial data, several studies have previously explored baseline genomic features associated with response to BRAFi + MEKi. Using a targeted approach that combines the examination of mRNA expression and DNA alterations in a subset of genes, we performed an analysis of baseline genomic alterations involved in MAPK inhibitors' resistance in a real-life cohort of BRAFV600mut metastatic melanoma patients. Twenty-seven patients were included in this retrospective study, and tumor samples were analyzed when the BRAFi + MEKi therapy was initiated. The clinical characteristics of our cohort were consistent with previously published studies. The BRAFi + MEKi treatment was initiated in seven patients as a following-line treatment, and had a specific transcriptomic profile exhibiting 14 genes with lower mRNA expression. However, DNA alterations in CCND1, RB1, and MET were only observed in patients who received BRAFi + MEKi as the first-line treatment. Furthermore, KIT mRNA expression was significantly higher in patients showing clinical benefit from the combined therapy, emphasizing the tumor-suppressor role of KIT already described within the context of BRAF-mutant melanoma.
Collapse
Affiliation(s)
- Baptiste Louveau
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Fanelie Jouenne
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Coralie Reger de Moura
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Aurelie Sadoux
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Barouyr Baroudjian
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Julie Delyon
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Florian Herms
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Adele De Masson
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Laetitia Da Meda
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Maxime Battistella
- Pathology Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
- Université de Paris, INSERM UMRS 1165, 75010 Paris, France
| | - Nicolas Dumaz
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
| | - Celeste Lebbe
- Université de Paris, INSERM UMRS 976, 75010 Paris, France
- Dermatology Department and Centre d'investigation clinique (CIC), Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France
| | - Samia Mourah
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (APHP), Saint Louis Hospital, 75010 Paris, France.
- Université de Paris, INSERM UMRS 976, 75010 Paris, France.
| |
Collapse
|
11
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|