1
|
Noguchi R, Yanagihara K, Iino Y, Komatsu T, Kubo T, Ono T, Osaki J, Adachi Y, Iwata S, Shiota Y, Seyama T, Kondo T. Establishment and characterization of novel cancer cachexia-inducing cell line, Aku60GC, of scirrhous gastric cancer. Hum Cell 2025; 38:82. [PMID: 40178664 DOI: 10.1007/s13577-025-01208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Cancer cachexia is a pathological state characterized by severe weight loss, skeletal muscle depletion, and adipose tissue reduction. Cancer cachexia is observed in gastric cancer (GC) with a higher incidence over 80%. Approximately 80% patients with advanced GC including scirrhous gastric cancer (SGC), which has the worst prognosis among all GC, are affected with cachexia. The exact pathophysiology in SGC cancer cachexia remains elusive, and therapeutic approaches for the cancer cachexia have not been established. Patient-derived cancer cachexia models are promising for elucidating the underlying mechanisms of disease progression and developing novel treatments, none of which originate from SGC. Therefore, we established a novel cancer cachexia-inducing cell line, designated Aku60GC, through stepwise selection of a patient-derived SGC cell line, HSC-60. Subcutaneous implantation of the Aku60GC cells into nude mice resulted in weight loss, muscle atrophy, and adipose tissue depletion with high reproducibility, accompanied by elevation of the circulating cytokines IL-8 and IL-18. Compared to parental HSC-60 cells, Aku60GC cells exhibited additional genomic changes, such as AKT2 and CCNE1 gains, a somatic mutation of RUNX1, and accelerated growth. Thus, our results demonstrate that the Aku60GC cell line is a valuable resource for research on cancer cachexia in SGC.
Collapse
Affiliation(s)
- Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan.
- Biospecimen Laboratories, Inc., 1-5-10-105 Nakamagome, Ohta-ku, Tokyo, 143-0027, Japan.
| | - Yuki Iino
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Teruo Komatsu
- Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan
| | - Takanori Kubo
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshio Seyama
- Department of Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-shi, Hiroshima, 731-0153, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Liz-Pimenta J, Tavares V, Neto BV, Santos JMO, Guedes CB, Araújo A, Khorana AA, Medeiros R. Thrombosis and cachexia in cancer: two partners in crime? Crit Rev Oncol Hematol 2023; 186:103989. [PMID: 37061076 DOI: 10.1016/j.critrevonc.2023.103989] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Among cancer patients, thrombosis and cachexia are major causes of morbidity and mortality. Although the two may occur together, little is known about their possible relationship. Thus, a literature review was conducted by screening the databases PubMed, Scopus, SciELO, Medline and Web of Science. To summarize, cancer-associated thrombosis (CAT) and cancer-associated cachexia (CAC) seem to share several patient-, tumour- and treatment-related risk factors. Inflammation alongside metabolic and endocrine derangement is the potential missing link between CAT, CAC and cancer. Many key players, including specific pro-inflammatory cytokines, immune cells and hormones, appear to be implicated in both thrombosis and cachexia, representing attractive predictive markers and potential therapeutic targets. Altogether, the current evidence suggests a link between CAT and CAC, however, epidemiological studies are required to explore this potential relationship. Given the high incidence and negative impact of both diseases, further studies are needed for the better management of cancer patients.
Collapse
Affiliation(s)
- Joana Liz-Pimenta
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro, 5000-508 Vila Real, Portugal; FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal
| | - Valéria Tavares
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Beatriz Vieira Neto
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Joana M O Santos
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Catarina Brandão Guedes
- Department of Imunohemotherapy, Hospital da Senhora da Oliveira, 4835-044 Guimarães, Portugal
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal; UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alok A Khorana
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44106, United States of America
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, 4200-072 Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, 4050-313 Porto, Portugal; Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer - Regional Nucleus of the North, 4200-172 Porto, Portugal; Biomedical Research Center, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
3
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
4
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
5
|
Bernardo B, Joaquim S, Garren J, Boucher M, Houle C, LaCarubba B, Qiao S, Wu Z, Esquejo RM, Peloquin M, Kim H, Breen DM. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. J Cachexia Sarcopenia Muscle 2020; 11:1813-1829. [PMID: 32924335 PMCID: PMC7749621 DOI: 10.1002/jcsm.12618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer cachexia is a complex metabolic disease with unmet medical need. Although many rodent models are available, none are identical to the human disease. Therefore, the development of new preclinical models that simulate some of the physiological, biochemical, and clinical characteristics of the human disease is valuable. The HT-1080 human fibrosarcoma tumour cell line was reported to induce cachexia in mice. Therefore, the purpose of this work was to determine how well the HT-1080 tumour model could recapitulate human cachexia and to examine its technical performance. Furthermore, the efficacy of ghrelin receptor activation via anamorelin treatment was evaluated, because it is one of few clinically validated mechanisms. METHODS Female severe combined immunodeficient mice were implanted subcutaneously or heterotopically (renal capsule) with HT-1080 tumour cells. The cachectic phenotype was evaluated during tumour development, including body weight, body composition, food intake, muscle function (force and fatigue), grip strength, and physical activity measurements. Heterotopic and subcutaneous tumour histology was also compared. Energy balance was evaluated at standard and thermoneutral housing temperatures in the subcutaneous model. The effect of anamorelin (ghrelin analogue) treatment was also examined. RESULTS The HT-1080 tumour model had excellent technical performance and was reproducible across multiple experimental conditions. Heterotopic and subcutaneous tumour cell implantation resulted in similar cachexia phenotypes independent of housing temperature. Tumour weight and histology was comparable between both routes of administration with minimal inflammation. Subcutaneous HT-1080 tumour-bearing mice presented with weight loss (decreased fat mass and skeletal muscle mass/fibre cross-sectional area), reduced food intake, impaired muscle function (reduced force and grip strength), and decreased spontaneous activity and voluntary wheel running. Key circulating inflammatory biomarkers were produced by the tumour, including growth differentiation factor 15, Activin A, interleukin 6, and TNF alpha. Anamorelin prevented but did not reverse anorexia and weight loss in the subcutaneous model. CONCLUSIONS The subcutaneous HT-1080 tumour model displays many of the perturbations of energy balance and physical performance described in human cachexia, consistent with the production of key inflammatory factors. Anamorelin was most effective when administered early in disease progression. The HT-1080 tumour model is valuable for studying potential therapeutic targets for the treatment of cachexia.
Collapse
Affiliation(s)
- Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | | - Jeonifer Garren
- Biostatistics, Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
6
|
Arneson-Wissink PC, Ducharme AM, Doles JD. A novel transplantable model of lung cancer-associated tissue loss and disrupted muscle regeneration. Skelet Muscle 2020; 10:6. [PMID: 32151276 PMCID: PMC7063717 DOI: 10.1186/s13395-020-00225-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer-associated muscle wasting (CAW), a symptom of cancer cachexia, is associated with approximately 20% of lung cancer deaths and remains poorly characterized on a mechanistic level. Current animal models for lung cancer-associated cachexia are limited in that they (1) primarily employ flank transplantation methods, (2) have short survival times not reflective of the patient condition, and (3) are typically performed in young mice not representative of mean patient age. This study investigates a new model for lung cancer-associated cachexia that can address these issues and also implicates muscle regeneration as a contributor to CAW. METHODS We used tail vein injection as a method to introduce tumor cells that seed primarily in the lungs of mice. Body composition of tumor-bearing mice was longitudinally tracked using NMR-based, echo magnetic resonance imaging (echoMRI). These data were combined with histological and molecular assessments of skeletal muscle to provide a complete analysis of muscle wasting. RESULTS In this new lung CAW model, we observed (1) progressive loss in whole body weight, (2) progressive loss of lean and fat mass, (3) a circulating cytokine/inflammatory profile similar to that seen in other models of CAW, (4) histological changes associated with muscle wasting, and (5) molecular changes in muscle that implicate suppression of muscle repair/regeneration. Finally, we show that survival can be extended without lessening CAW by titrating injected cell number. CONCLUSIONS Overall, this study describes a new model of CAW that could be useful for further studies of lung cancer-associated wasting and accompanying changes in the regenerative capacity of muscle. Additionally, this model addresses many recent concerns with existing models such as immunocompetence, tumor location, and survival time.
Collapse
Affiliation(s)
| | - Alexandra M Ducharme
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|