1
|
Matsumoto T, Murakami Y, Yoshida-Sakai N, Katsuchi D, Kanazawa K, Okamura T, Imamura Y, Ono M, Kuwano M. Enhanced ALOX12 Gene Expression Predicts Therapeutic Susceptibility to 5-Azacytidine in Patients with Myelodysplastic Syndromes. Int J Mol Sci 2024; 25:4583. [PMID: 38731802 PMCID: PMC11083213 DOI: 10.3390/ijms25094583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.
Collapse
Affiliation(s)
- Taichi Matsumoto
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Yuichi Murakami
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Nao Yoshida-Sakai
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Daisuke Katsuchi
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Kuon Kanazawa
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Takashi Okamura
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Yutaka Imamura
- Department of Hematology, St. Mary’s Hospital, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (N.Y.-S.); (T.O.); (Y.I.)
| | - Mayumi Ono
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| | - Michihiko Kuwano
- Basic Medical Research Unit, St. Mary’s Research Center, 422, Tsubuku-Honmachi, Kurume 850-8543, Fukuoka, Japan; (Y.M.); (D.K.); (K.K.); (M.O.); (M.K.)
| |
Collapse
|
2
|
Donnette M, Hamimed M, Ciccolini J, Sicard G, Correard F, Farnault L, Ouafik L, Venton G, Fanciullino R. Cytidine deaminase status as a marker of response to azacytidine treatment in MDS and AML patients. Br J Haematol 2023; 203:625-636. [PMID: 37691342 DOI: 10.1111/bjh.19096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
Azacitidine (Aza) is a mainstay of treatment for patients with acute myeloid leukaemia (AML) ineligible for induction chemotherapy and other high-risk myelodysplastic syndromes (MDS). Only half of patients respond, and almost all will eventually relapse. There are no predictive markers of response to Aza. Aza is detoxified in the liver by cytidine deaminase (CDA). Here, we investigated the association between CDA phenotype, toxicity and efficacy of Aza in real-world adult patients. Median overall survival (OS) was 15 months and 13 months in AML and high-risk MDS patients respectively. In addition, our data suggest that delaying Aza treatment was not associated with lack of efficacy and should not be considered a signal to switch to an alternative treatment. Half of the patients had deficient CDA activity (i.e. <2 UA/mg), with a lower proportion of deficient patients in MDS patients (34%) compared to AML patients (67%). In MDS patients, CDA deficiency correlated with longer landmark OS (14 vs. 8 months; p = 0.03), but not in AML patients. Taken together, our data suggest that CDA is an independent covariate and may therefore be a marker for predicting clinical outcome in MDS patients treated with Aza.
Collapse
Affiliation(s)
- Melanie Donnette
- SMARTc: Simulation and Modeling: Adaptative Response for Therapeutics in Cancer, Faculté de Pharmacie de Marseille, CRCM Inserm UMR 1068, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068, INRIA Sophia Antipolis, Marseille, France
| | - Mourad Hamimed
- SMARTc: Simulation and Modeling: Adaptative Response for Therapeutics in Cancer, Faculté de Pharmacie de Marseille, CRCM Inserm UMR 1068, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068, INRIA Sophia Antipolis, Marseille, France
| | - Joseph Ciccolini
- SMARTc: Simulation and Modeling: Adaptative Response for Therapeutics in Cancer, Faculté de Pharmacie de Marseille, CRCM Inserm UMR 1068, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068, INRIA Sophia Antipolis, Marseille, France
- Laboratoire de Pharmacocinétique et Toxicologie, La Timone University Hospital of Marseille, Marseille, France
| | - Guillaume Sicard
- SMARTc: Simulation and Modeling: Adaptative Response for Therapeutics in Cancer, Faculté de Pharmacie de Marseille, CRCM Inserm UMR 1068, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068, INRIA Sophia Antipolis, Marseille, France
| | - Florian Correard
- Pharmacie, La Timone University Hospital of Marseille, Marseille, France
| | - Laure Farnault
- Hematology and Cellular Therapy Department, La Conception University Hospital of Marseille, Marseille, France
| | - L'Houcine Ouafik
- Laboratoire de Transfert en Oncologie Biologie, Nord University Hispoital of Marseille, Marseille, France
| | - Geoffroy Venton
- Hematology and Cellular Therapy Department, La Conception University Hospital of Marseille, Marseille, France
| | - Raphaëlle Fanciullino
- SMARTc: Simulation and Modeling: Adaptative Response for Therapeutics in Cancer, Faculté de Pharmacie de Marseille, CRCM Inserm UMR 1068, Marseille, France
- Faculté de Pharmacie de Marseille, COMPO, CRCM Inserm UMR 1068, INRIA Sophia Antipolis, Marseille, France
- Pharmacie de La Conception University Hospital Of Marseille, Marseille, France
| |
Collapse
|
3
|
Yoshida-Sakai N, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Kimura S. Adult T-cell leukemia-lymphoma acquires resistance to DNA demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. Int J Cancer 2021; 150:1184-1197. [PMID: 34913485 PMCID: PMC9303000 DOI: 10.1002/ijc.33901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.
Collapse
Affiliation(s)
- Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
4
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|
5
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
6
|
Teodorescu P, Pasca S, Dima D, Tomuleasa C, Ghiaur G. Targeting the Microenvironment in MDS: The Final Frontier. Front Pharmacol 2020; 11:1044. [PMID: 32742264 PMCID: PMC7364152 DOI: 10.3389/fphar.2020.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of malignant disorders of hematopoietic stem and progenitor cells (HSPC), mainly characterized by ineffective hematopoiesis leading to peripheral cytopenias and progressive bone marrow failure. While clonal dominance is nearly universal at diagnosis, most genetic mutations identified in patients with MDS do not provide a conspicuous advantage to the malignant cells. In this context, malignant cells alter their adjacent bone marrow microenvironment (BME) and rely on cell extrinsic factors to maintain clonal dominance. The profoundly disturbed BME favors the myelodysplastic cells and, most importantly is detrimental to normal hematopoietic cells. Thus, the MDS microenvironment not only contributes to the observed cytopenias seen in these patients but could also negatively impact the engraftment of normal, allogeneic HSPCs in patients with MDS undergoing bone marrow transplant. Therefore, successful therapies in MDS should not only target the malignant cells but also reprogram their bone marrow microenvironment. Here, we will provide a synopsis of how drugs currently used or on the verge of being approved for the treatment of MDS may achieve this goal.
Collapse
Affiliation(s)
- Patric Teodorescu
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hategan University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E, Zoulia E, Vrachiolias G, Papoutselis M, Bernard E, Papaemmanuil E, Kotsianidis I, Kassiotis G. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 2019; 11:86. [PMID: 31870430 PMCID: PMC6929315 DOI: 10.1186/s13073-019-0707-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.
Collapse
Affiliation(s)
- Anastasiya Kazachenka
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Chrysoula Kordella
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanuela Zoulia
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|