1
|
Park SS, Uzelac A, Kotsopoulos J. Delineating the role of osteoprotegerin as a marker of breast cancer risk among women with a BRCA1 mutation. Hered Cancer Clin Pract 2022; 20:14. [PMID: 35418083 PMCID: PMC9008947 DOI: 10.1186/s13053-022-00223-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Women with a pathogenic germline mutation in the BRCA1 gene face a very high lifetime risk of developing breast cancer, estimated at 72% by age 80. Prophylactic bilateral mastectomy is the only effective way to lower their risk; however, most women with a mutation opt for intensive screening with annual MRI and mammography. Given that the BRCA1 gene was identified over 20 years ago, there is a need to identify a novel non-surgical approach to hereditary breast cancer prevention. Here, we provide a review of the emerging preclinical and epidemiologic evidence implicating the dysregulation of progesterone-mediated receptor activator of nuclear factor κB (RANK) signaling in the pathogenesis of BRCA1-associated breast cancer. Experimental studies have demonstrated that RANK inhibition suppresses Brca1-mammary tumorigenesis, suggesting a potential target for prevention. Data from studies conducted among women with a BRCA1 mutation further support this pathway in BRCA1-associated breast cancer development. Progesterone-containing (but not estrogen-alone) hormone replacement therapy is associated with an increased risk of breast cancer in women with a BRCA1 mutation. Furthermore, BRCA1 mutation carriers have significantly lower levels of circulating osteoprotegerin (OPG), the decoy receptor for RANK-ligand (RANKL) and thus endogenous inhibitor of RANK signaling. OPG levels may be associated with the risk of disease, suggesting a role of this protein as a potential biomarker of breast cancer risk. This may improve upon current risk prediction models, stratifying women at the highest risk of developing the disease, and further identify those who may be targets for anti-RANKL chemoprevention. Collectively, the evidence supports therapeutic inhibition of the RANK pathway for the primary prevention of BRCA1-associated breast cancer, which may generate unique prevention strategies (without prophylactic surgery) and enhance quality of life.
Collapse
Affiliation(s)
- Sarah Sohyun Park
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Aleksandra Uzelac
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Physical activity and Mediterranean diet as potential modulators of osteoprotegerin and soluble RANKL in gBRCA1/2 mutation carriers: results of the lifestyle intervention pilot study LIBRE-1. Breast Cancer Res Treat 2021; 190:463-475. [PMID: 34570303 PMCID: PMC8558155 DOI: 10.1007/s10549-021-06400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/19/2021] [Indexed: 11/24/2022]
Abstract
Purpose Emerging evidence suggests that the progesterone-mediated receptor activator of nuclear factor κB (RANK)/soluble RANK ligand (sRANKL)/osteoprotegerin (OPG) pathway plays an important role in mammary carcinogenesis and is hyperactivated in germline (g)BRCA1/2 mutation carriers. We analyzed the effects of a 3-month intensive lifestyle intervention within the LIBRE-1 study on the serum levels of OPG and sRANKL and hypothesized that the intervention program provides a beneficial impact on the biomarkers by increasing OPG and reducing sRANKL serum concentrations. Methods Serum levels of OPG and sRANKL of 49 gBRCA1/2 mutation carriers were quantified using enzyme-linked immunosorbent assays. We used previously collected blood samples from participants of the prospective LIBRE-1 study, who were randomized into an intervention group (IG), increasing physical activity and adherence to the Mediterranean diet (MedD) through supervised sessions from study entry to the first study visit after 3 months and a usual-care control group (CG). Differences in biomarker levels before and after the 3-month intervention were tested within and between study groups. Results The lifestyle intervention resulted in a significant increase in OPG for participants in both the IG (q = 0.022) and CG (q = 0.002). sRANKL decreased significantly in the IG (q = 0.0464) and seemed to decrease in the CG (q = 0.5584). An increase in the intake of Omega-3 polyunsaturated fatty acids was significantly associated with an increase in OPG (r = 0.579, q = 0.045). Baseline serum levels of sRANKL were a strong predictor for the change of sRANKL in the course of the intervention (ß-estimate = − 0.70; q = 0.0018). Baseline physical fitness (assessed as VO2peak) might predict the change of OPG in the course of the intervention program (ß-estimate = 0.133 pg/ml/ml/min/kg; p = 0.0319; q = 0.2871). Conclusion Findings from this pilot study seem to confirm our hypothesis by showing an increase in OPG and decrease in sRANKL over a 3-month lifestyle intervention and suggest that increased physical activity and adherence to the MedD are potent modulators of the biomarkers OPG and potentially sRANKL. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06400-7.
Collapse
|
3
|
Penkert J, Märtens A, Seifert M, Auber B, Derlin K, Hille-Betz U, Hörmann P, Klopp N, Prokein J, Schlicker L, Wacker F, Wallaschek H, Schlegelberger B, Hiller K, Ripperger T, Illig T. Plasma Metabolome Signature Indicative of BRCA1 Germline Status Independent of Cancer Incidence. Front Oncol 2021; 11:627217. [PMID: 33898308 PMCID: PMC8058469 DOI: 10.3389/fonc.2021.627217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in gBRCA1+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between gBRCA1+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in gBRCA1+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Judith Penkert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Ursula Hille-Betz
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Norman Klopp
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Jana Prokein
- Center for Information Management, Hannover Medical School, Hannover, Germany
| | - Lisa Schlicker
- Division of Tumour Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover, Germany
| |
Collapse
|
4
|
Holliday LS, Patel SS, Rody WJ. RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:18-28. [PMID: 33982033 PMCID: PMC8112638 DOI: 10.20517/evcna.2020.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.
Collapse
Affiliation(s)
- L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA.,Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Shivani S Patel
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook School of Dental Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Deligiorgi MV, Panayiotidis MI, Trafalis DT. Repurposing denosumab in breast cancer beyond prevention of skeletal related events: Could nonclinical data be translated into clinical practice? Expert Rev Clin Pharmacol 2020; 13:1235-1252. [PMID: 33070648 DOI: 10.1080/17512433.2020.1839416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Denosumab is a human monoclonal antibody inhibiting the receptor activator of nuclear factor kappa-B ligand (RANKL). Initially approved as antiosteοporotic agent, denosumab is being currently pursued as a candidate for drug repurposing in oncology, especially breast cancer. AREAS COVERED The present review provides an overview of the therapeutic potential of denosumab in breast cancer beyond prevention of skeletal-related events (SREs), with focus on prevention of carcinogenesis in BRCA mutation carriers and on adjuvant treatment in early breast cancer patients. Study search was conducted on the following electronic databases: PubMed, Google scholar, Scopus.com, ClinicalTrials.gov, and European Union Clinical Trials Register from 2008 until June 2020. EXPERT OPINION Nonclinical data have established links between RANKL signaling and breast cancer initiation and progression, rationalizing exploring the potential bone-independent anticancer role of denosumab beyond SREs prevention. Preclinical and preliminary clinical data show that denosumab may inhibit carcinogenesis in BRCA mutation carriers. Denosumab adjuvant in early breast cancer has been shown, though inconsistently, to provide a disease-free survival benefit for a subgroup of patients. Despite promising results, the incorporation of denosumab in preventive and therapeutic protocols of breast cancer beyond prevention of SREs cannot be endorsed until further research consolidates its efficacy.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology, Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics , Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Dimitrios T Trafalis
- Department of Pharmacology, Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens , Athens, Greece
| |
Collapse
|