1
|
Robinson RM, Reyes L, Christopher BN, Duncan RM, Burge RA, Siegel J, Nasarre P, Wang P, O'Bryan JP, Hobbs GA, Klauber-DeMore N, Dolloff NG. A High-Affinity Monoclonal Antibody Against the Pancreatic Ductal Adenocarcinoma Target, Anterior Gradient-2 (AGR2/PDIA17). Antibodies (Basel) 2024; 13:101. [PMID: 39727484 DOI: 10.3390/antib13040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies. RESULTS We found that AGR2 was expressed in approximately 90% of PDAC but not normal pancreas biopsies, and the level of AGR2 expression correlated with increasing disease stage. AGR2 expression was inversely related to SMAD4 status in PDAC and colorectal cancer cell models and was secreted from cells into their media. In normal tissues, a high density of AGR2 was detected in the epithelium of cells in the digestive tract but was lacking in most other normal tissue systems. The addition of recombinant AGR2 to cell culture and genetic overexpression of AGR2 increased the adhesion, motility, and invasiveness of both human and mouse PDAC cells. Human phage display library screening led to the discovery of multiple AGR2-specific scFv clones that were affinity-matured to produce monoclonal antibody (MAb) clones with low picomolar binding affinity (S31R/A53F/Y). These high-affinity MAbs inhibited AGR2-mediated cell adhesion, migration, and binding to LYPD3, which is a putative cell surface binding partner of AGR2. CONCLUSIONS Our study provides novel, high-affinity, fully human, anti-AGR2 MAbs that neutralize the pro-tumor effects of extracellular AGR2 in PDAC.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ravyn M Duncan
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel A Burge
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Julie Siegel
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - John P O'Bryan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Qu S, Jia W, Nie Y, Shi W, Chen C, Zhao Z, Song W. AGR2: The Covert Driver and New Dawn of Hepatobiliary and Pancreatic Cancer Treatment. Biomolecules 2024; 14:743. [PMID: 39062458 PMCID: PMC11275012 DOI: 10.3390/biom14070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The anterior gradient protein 2 (AGR2) plays a crucial role in facilitating the formation of protein disulfide bonds within the endoplasmic reticulum (ER). Research suggests that AGR2 can function as an oncogene, with its heightened expression linked to the advancement of hepatobiliary and pancreatic cancers through invasion and metastasis. Notably, AGR2 not only serves as a pro-oncogenic agent but also as a downstream targeting protein, indirectly fostering cancer progression. This comprehensive review delves into the established functions and expression patterns of AGR2, emphasizing its pivotal role in cancer progression, particularly in hepatobiliary and pancreatic malignancies. Furthermore, AGR2 emerges as a potential cancer prognostic marker and a promising target for immunotherapy, offering novel avenues for the treatment of hepatobiliary and pancreatic cancers and enhancing patient outcomes.
Collapse
Affiliation(s)
- Shen Qu
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Weili Jia
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wen Shi
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Chao Chen
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Zihao Zhao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| |
Collapse
|
3
|
Roy D, Liu GS, Zeling Wang A, Zhou B, Yunus FUN, Raza G, Bharath Merugu S, Saidi Mashausi D, Li D, Zhao B. Construction and stable gene expression of AGR2xPD1 bi-specific antibody that enhances attachment between T-Cells and lung tumor cells, suppress tumor cell migration and promoting CD8 expression in cytotoxic T-cells. Saudi Pharm J 2023; 31:85-95. [PMID: 36685298 PMCID: PMC9845114 DOI: 10.1016/j.jsps.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
There has been a substantial and consistent rise in the number of clinical trials to develop advanced and potent bispecific antibodies (BsAb) over the past two decades with multiple targets to improve the efficacy or tissue specificity of monoclonal antibodies (mAb) treatment for diseases with multiple determining factors or widely-expressed targets. In this study, we designed and synthesized BsAb AGR2xPD1 targeting extracellular AGR2, a paracrine signal, and PD1, an immune checkpoint protein. Our design is intended to use AGR2 binding to guide PD1 targeting for AGR2+cancer. We used this construction to produce AGR2xPD1 BsAb by generating clonally selected stable 293F cell line with high expression. Applying this BsAb in a T cell-Tumor cell co-culture system showed that targeting both PD1 and AGR2 with this BsAb induces the attachment of TALL-104 (CD8+ T-lymphocytes) cells onto co-cultured H460 AGR2+ Lung tumor cells and significantly reduces migration of H460 cells. T-cell expression of CD8 and IFNγ is also synergistically enhanced by the AGR2xPD1 BsAb treatment in the AGR2+H460 co-culture system. These effects are significantly reduced with AGR2 expression negative WI38 cells. Our results demonstrate that the AGR2xPD1 BsAb could be a potential therapeutic agent to provide better solid tumor targeting and synergetic efficacy for treating AGR2+ cancer by blocking AGR2 paracrine signaling to reduce tumor survival, and redirecting cytotoxic T-cells into AGR2+ cancer cells.
Collapse
Affiliation(s)
- Debmalya Roy
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Song Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Aru Zeling Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Boelelaan 1117, Amsterdam, the Netherlands
| | - Bingjie Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fakhar-Un-Nisa Yunus
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Siva Bharath Merugu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
- Corresponding authors at: School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, Shanghai, China
- Corresponding authors at: School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Zhang K, Li Y, Kong X, Lei C, Yang H, Wang N, Wang Z, Chang H, Xuan L. AGR2: a secreted protein worthy of attention in diagnosis and treatment of breast cancer. Front Oncol 2023; 13:1195885. [PMID: 37197416 PMCID: PMC10183570 DOI: 10.3389/fonc.2023.1195885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
AGR2 is a secreted protein widely existing in breast. In precancerous lesions, primary tumors and metastatic tumors, the expression of AGR2 is increased, which has aroused our interest. This review introduces the gene and protein structure of AGR2. Its endoplasmic reticulum retention sequence, protein disulfide isomerase active site and multiple protein binding sequences endow AGR2 with diverse functions inside and outside breast cancer cells. This review also enumerates the role of AGR2 in the progress and prognosis of breast cancer, and emphasizes that AGR2 can be a promising biomarker and a target for immunotherapy of breast cancer, providing new ideas for early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| |
Collapse
|
5
|
Law ME, Yaaghubi E, Ghilardi AF, Davis BJ, Ferreira RB, Koh J, Chen S, DePeter SF, Schilson CM, Chiang CW, Heldermon CD, Nørgaard P, Castellano RK, Law BK. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett 2022; 534:215604. [PMID: 35247515 DOI: 10.1016/j.canlet.2022.215604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
Breast cancer mortality remains unacceptably high, indicating a need for safer and more effective therapeutic agents. Disulfide bond Disrupting Agents (DDAs) were previously identified as a novel class of anticancer compounds that selectively kill cancers that overexpress the Epidermal Growth Factor Receptor (EGFR) or its family member HER2. DDAs kill EGFR+ and HER2+ cancer cells via the parallel downregulation of EGFR, HER2, and HER3 and activation/oligomerization of Death Receptors 4 and 5 (DR4/5). However, the mechanisms by which DDAs mediate these effects are unknown. Affinity purification analyses employing biotinylated-DDAs reveal that the Protein Disulfide Isomerase (PDI) family members AGR2, PDIA1, and ERp44 are DDA target proteins. Further analyses demonstrate that shRNA-mediated knockdown of AGR2 and ERp44, or expression of ERp44 mutants, enhance basal DR5 oligomerization. DDA treatment of breast cancer cells disrupts PDIA1 and ERp44 mixed disulfide bonds with their client proteins. Together, the results herein reveal DDAs as the first small molecule, active site inhibitors of AGR2 and ERp44, and demonstrate roles for AGR2 and ERp44 in regulating the activity, stability, and localization of DR4 and DR5, and activation of Caspase 8.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sadie F DePeter
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital Herlev, DK, 2730, Herlev, Denmark
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Ferri C, Di Biase A, Bocchetti M, Zappavigna S, Wagner S, Le Vu P, Luce A, Cossu AM, Vadakekolathu J, Miles A, Boocock DJ, Robinson A, Schwerdtfeger M, Tirino V, Papaccio F, Caraglia M, Regad T, Desiderio V. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J Exp Clin Cancer Res 2022; 41:20. [PMID: 35016717 PMCID: PMC8751098 DOI: 10.1186/s13046-021-02233-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.
Collapse
Affiliation(s)
- Carmela Ferri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- Medicina Futura Group, Coleman S.p.A, Via Alcide De Gasperi 107/109/111, 80011, Acerra, NA, Italy
| | - Anna Di Biase
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031, Ariano Irpino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Sarah Wagner
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Pauline Le Vu
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Coxford Rd, Southampton, SO16 5YA, UK
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Alessia Maria Cossu
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031, Ariano Irpino, Italy
| | - Jayakumar Vadakekolathu
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Amanda Miles
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David J Boocock
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Alex Robinson
- Department of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081, Baronissi, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy.
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031, Ariano Irpino, Italy.
| | - Tarik Regad
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 7, 80138, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
7
|
Liu AY. The opposing action of stromal cell proenkephalin and stem cell transcription factors in prostate cancer differentiation. BMC Cancer 2021; 21:1335. [PMID: 34911496 PMCID: PMC8675470 DOI: 10.1186/s12885-021-09090-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Loss of prostate cancer differentiation or de-differentiation leads to an untreatable disease. Patient survival would benefit if this can be prevented or reversed. Cancer de-differentiation transforms luminal-like (differentiated) adenocarcinoma into less luminal-like and more stem-like (undifferentiated) small cell carcinoma through a sequential activation of stem cell transcription factors (scTF) POU5F1, LIN28A, SOX2 and NANOG. Like stem cells, prostate small cell carcinoma express this quartet of scTF as well as a 10-fold lower level of β2-microglobulin (B2M) than that of differentiated cell types. In organ development, prostate stromal mesenchyme cells mediate epithelial differentiation in part by secreted factors. Methods The identified prostate stromal-specific factor proenkephalin (PENK) was cloned, and transfected into scTF+B2Mlo stem-like small cell carcinoma LuCaP 145.1, reprogrammed luminal-like scTF−B2Mhi LNCaP, and luminal-like scTF−B2Mhi adenocarcinoma LuCaP 70CR. The expression of scTF, B2M and anterior gradient 2 (AGR2) was analyzed in the transfected cells. Results PENK caused down-regulation of scTF and up-regulation of B2M to indicate differentiation. When transfected into reprogrammed LNCaP, PENK reversed the reprogramming by down-regulation of scTF with attendant changes in cell appearance and colony morphology. When transfected into LuCaP 70CR, PENK up-regulated the expression of adenocarcinoma antigen AGR2, a marker associated with cancer cell differentiation. Conclusions Prostate cancer cells appear to retain their responsiveness to stromal PENK signaling. PENK can induce differentiation to counter de-differentiation caused by scTF activation. The many mutations and aneuploidy characteristic of cancer cells appear not to hinder these two processes. Loss of prostate cancer differentiation is like reprogramming from luminal-like to stem-like. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09090-y.
Collapse
Affiliation(s)
- Alvin Y Liu
- Department of Urology and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Jach D, Cheng Y, Prica F, Dumartin L, Crnogorac-Jurcevic T. From development to cancer - an ever-increasing role of AGR2. Am J Cancer Res 2021; 11:5249-5262. [PMID: 34873459 PMCID: PMC8640830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Anterior gradient 2, AGR2, is a small, 20 kDa protein that plays a vital role in oxidative protein folding in the endoplasmic reticulum. AGR2 is involved in several signal transduction pathways that are essential for cell survival. It was initially discovered in the African clawed frog, Xenopus laevis, where it plays an important function in embryonic development. Akin to several other developmental genes, it is also frequently deregulated in cancer, where it plays a decisive role in tumor initiation, progression and metastasis. In this review, we have summarized currently known AGR2 functions, its expression and function in embryonic and cancer development, as well as its potential as a candidate tumor biomarker and promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Daria Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Yuzhu Cheng
- Institute of Human Genetics, International Centre for Life, Newcastle UniversityNewcastle Upon Tyne, UK
| | - Filip Prica
- Medical Clinic and Polyclinic I, Basic and Translational Research, Department of Cardiology Basic and Translational ResearchMunich, Germany
| | - Laurent Dumartin
- Advanced Accelerator Applications, Novartis CompanyBoulogne-Billancourt, France
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| |
Collapse
|
9
|
Extracellular AGR2 activates neighboring fibroblasts through endocytosis and direct binding to β-catenin that requires AGR2 dimerization and adhesion domains. Biochem Biophys Res Commun 2021; 573:86-92. [PMID: 34399098 DOI: 10.1016/j.bbrc.2021.08.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in several types of cancer. AGR2 is cytoplasmic or secreted as an extracellular signal. Intracellular AGR2 properties and role in cancer have been well studied, but its extracellular function is largely unclear. It has been shown that extracellular AGR2 activates endothelial cells and fibroblasts in culture, but the mechanism of AGR2 signaling is not well elucidated. Here, we report that tumor secreted or externally added AGR2 translocates into cytoplasm by endocytosis, binds to β-catenin and further co-translocates to the nucleus in NIH3T3 fibroblasts. Externally added AGR2 also increased β-catenin expression, stability, and accumulation in the nucleus in both fibroblasts and cancer cells. External AGR2 rescued the expression of β-catenin, which was suppressed by EGFR inhibitor AG1478 indicating an alternative pathway to regulate β-catenin independent of EGFR signal. These effects were abolished when a monoclonal antibody against AGR2 was added to the experiments, confirming the effects are caused by AGR2 only. Putting together, our results show that extracellular AGR2 signaling pathway involves endocytosis mediated cellular translocation, direct binding and regulating β-catenin nuclear accumulation. It is also a target against tumor initiated AGR2 signaling to form and maintain tumor microenvironment.
Collapse
|
10
|
Białobrzeska W, Dziąbowska K, Lisowska M, Mohtar MA, Muller P, Vojtesek B, Krejcir R, O’Neill R, Hupp TR, Malinowska N, Bięga E, Bigus D, Cebula Z, Pala K, Czaczyk E, Żołędowska S, Nidzworski D. An Ultrasensitive Biosensor for Detection of Femtogram Levels of the Cancer Antigen AGR2 Using Monoclonal Antibody Modified Screen-Printed Gold Electrodes. BIOSENSORS 2021; 11:184. [PMID: 34200338 PMCID: PMC8230265 DOI: 10.3390/bios11060184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
The detection of cancer antigens is a major aim of cancer research in order to develop better patient management through early disease detection. Many cancers including prostate, lung, and ovarian secrete a protein disulfide isomerase protein named AGR2 that has been previously detected in urine and plasma using mass spectrometry. Here we determine whether a previously developed monoclonal antibody targeting AGR2 can be adapted from an indirect two-site ELISA format into a direct detector using solid-phase printed gold electrodes. The screen-printed gold electrode was surface functionalized with the anti-AGR2 specific monoclonal antibody. The interaction of the recombinant AGR2 protein and the anti-AGR2 monoclonal antibody functionalized electrode changed its electrochemical impedance spectra. Nyquist diagrams were obtained after incubation in an increasing concentration of purified AGR2 protein with a range of concentrations from 0.01 fg/mL to 10 fg/mL. In addition, detection of the AGR2 antigen can be achieved from cell lysates in medium or artificial buffer. These data highlight the utility of an AGR2-specific monoclonal antibody that can be functionalized onto a gold printed electrode for a one-step capture and quantitation of the target antigen. These platforms have the potential for supporting methodologies using more complex bodily fluids including plasma and urine for improved cancer diagnostics.
Collapse
Affiliation(s)
- Wioleta Białobrzeska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | | | - Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
| | - M. Aiman Mohtar
- UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (P.M.); (B.V.); (R.K.)
| | - Robert O’Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24 St., 80-822 Gdańsk, Poland; (M.L.); (T.R.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Natalia Malinowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Ewelina Bięga
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Daniel Bigus
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Zofia Cebula
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Katarzyna Pala
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Elżbieta Czaczyk
- SensDx, 14b Postępu St., 02-676 Warszawa, Poland; (K.D.); (K.P.); (E.C.)
| | - Sabina Żołędowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland; (N.M.); (E.B.); (D.B.); (Z.C.); (S.Ż.); (D.N.)
| |
Collapse
|
11
|
Moidu NA, A Rahman NS, Syafruddin SE, Low TY, Mohtar MA. Secretion of pro-oncogenic AGR2 protein in cancer. Heliyon 2020; 6:e05000. [PMID: 33005802 PMCID: PMC7519367 DOI: 10.1016/j.heliyon.2020.e05000] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Anterior gradient-2 (AGR2) protein mediates the formation, breakage and isomerization of disulphide bonds during protein maturation in the endoplasmic reticulum (ER) and contributes to the homoeostasis of the secretory pathway. AGR2 promotes tumour development and metastasis and its elevated expression is almost completely restricted to malignant tumours. Interestingly, this supposedly ER-resident protein can be localised to other compartments of cancer cells and can also be secreted into the extracellular milieu. There are emerging evidences that describe the gain-of-function activities of the extracellular AGR2, particularly in cancer development. Here, we reviewed studies detailing the expression, pathological and physiological roles associated with AGR2 and compared the duality of localization, intracellular and extracellular, with special emphasis on the later. We also discussed the possible mechanisms of AGR2 secretion as well as deliberating the functional impacts of AGR2 in cancer settings. Last, we deliberate the current therapeutic strategies and posit the potential use AGR2, as a prognosis and diagnosis marker in cancer.
Collapse
Affiliation(s)
- Nurshahirah Ashikin Moidu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Nisa Syakila A Rahman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Abstract
Introduction: FOXM1 is one of the most frequently overexpressed proteins in human solid cancers. Here, we discuss novel direct targets of FOXM1 as well as new pathways involving FOXM1, through which this protein exerts its oncogenic activity.Areas covered: We give a detailed review of FOXM1 transcriptional targets involved in 16 different types of human cancer as published in the literature in the last 5 years. We also discuss a novel positive feedback loop between FOXM1 and AKT - both well-established master regulators of cancer.Expert opinion: Despite the discovery of several FOXM1 inhibitors over the years (by our team and others), their therapeutic use is limited by their adverse off-target effects.Newly-discovered proteins regulated by FOXM1 present a promising alternative approach to target its pro-cancer activity. In addition, targeting regulating proteins that take part in the positive feedback loop between FOXM1/AKT has the double advantage of suppressing both, and can lead to developing novel anti-cancer drugs.
Collapse
Affiliation(s)
- Soheila Borhani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Bian J, He L, Wu Y, Liu W, Ma H, Sun M, Yu J, Yu Z, Wei M. Anterior gradient 2-derived peptide upregulates major histocompatibility complex class I-related chains A/B in hepatocellular carcinoma cells. Life Sci 2020; 246:117396. [PMID: 32035130 DOI: 10.1016/j.lfs.2020.117396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/23/2020] [Accepted: 02/02/2020] [Indexed: 12/31/2022]
Abstract
AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. Decrease in NKG2D ligand levels and exhaustion of NK cells in HCC patients are major causes of immune escape, high recurrence, poor prognosis, and low overall survival. Enhancing the susceptibility of HCC to NK cells by upregulating NKG2DLs on tumor cells is an effective treatment strategy. This study aimed to identify the effect of the Anterior gradient 2 (AGR2)-derived peptide P1, which was reported to bind to HLA-A*0201 as an epitope, on both the expression of major histocompatibility complex class I-related chains A/B (MICA/B) on HCC cells and the cytotoxicity of NK cells. MAIN METHODS The effect of P1 on MICA/B expression on HCC cells was determined by qRT-PCR, western blotting, and flow cytometry analysis. HCC cells were pre-treated with various pathway inhibitors to identify the molecular pathways associated with P1 treatment. The cytotoxicity of NK cells toward HCC was investigated by LDH cytotoxicity assay. The tumor-suppression effect of P1 was determined in vivo using a NOD/SCID mice HCC model. KEY FINDINGS P1 significantly increased MICA/B expression on HCC cells, thereby enhancing their susceptibility to the cytotoxicity of NK cells in vitro and in vivo. Further, p38 MAPK cell signaling pathway inhibitor SB203580 significantly attenuated the effects of P1 in vivo and in vitro. SIGNIFICANCE P1 upregulates MICA and MICB expression on HCC cells, thereby promoting their recognition and elimination by NK cells, which makes P1 an attractive novel immunotherapy agent.
Collapse
Affiliation(s)
- Jing Bian
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Linxiu He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Heyao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China..
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation; Liaoning Cancer immune peptide drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning Province, China..
| |
Collapse
|