1
|
Patel Y, Thapa P, Prajapati A. New insights into prostate Cancer from the renin-angiotensin-aldosterone system. Cell Signal 2024; 124:111442. [PMID: 39368790 DOI: 10.1016/j.cellsig.2024.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Prostate cancer is among the most common malignancies found in men, with multifactorial changes occurring altogether to disrupt the pathophysiology of this gland. The Renin-Angiotensin-Aldosterone System (RAAS) is an extensively studied pathway that has newly attributed fundamental roles in cancer biology that impact cell growth, migration, metastasis, and death. These processes are significantly influenced by various components of the RAAS, including prorenin, AT1R, AT2R, and Ang 1-7/Mas receptors. Although the pathophysiology of prostate cancer is complex, targeting the RAAS shows promise as a therapeutic approach. RAAS dysregulation is evident in prostate cancer, and treatments traditionally used for cardiovascular diseases are being explored for cancer therapy. The RAAS pathway has significant effects on the formation of new blood vessels (angiogenesis), the spread of cancer cells to other parts of the body (metastasis), and cell proliferation. In this pathway, angiotensin II and its receptors have crucial functions. Angiotensin II stimulates angiogenesis and cell proliferation through the AT1R, whereas the AT2R has the opposite effect by inhibiting cell growth. Additional pathways involving ACE2/Ang 1-7/Mas also provide potential targets for therapeutic intervention, mitigating the impact of the traditional ACE/Angiotensin II/AT1R pathway. The components of the RAAS influence multiple signalling pathways, such as Androgen Receptor (AR), NF-κB, and PI3K/AKT/mTOR, which enhances our understanding of how it contributes to the progression of prostate cancer. This also provides new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Yashvi Patel
- Life Science Department, School of Science, GSFC University, Vadodara 391750, India
| | - Payal Thapa
- Life Science Department, School of Science, GSFC University, Vadodara 391750, India
| | - Akhilesh Prajapati
- Life Science Department, School of Science, GSFC University, Vadodara 391750, India.
| |
Collapse
|
2
|
Said R, Jenni R, Boussetta S, Ammous F, Zouari S, Zaghbib S, Chakroun M, Derouiche A, Chebil M, Ouerhani S. Association of a common genetic variant (insertion/deletion) in ACE gene with prostate cancer susceptibility in a Tunisian population. J Clin Lab Anal 2021; 36:e24129. [PMID: 34799866 PMCID: PMC8761439 DOI: 10.1002/jcla.24129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/11/2023] Open
Abstract
Background Angiotensin‐converting enzyme (ACE) plays a pivotal role in several pathologies including cancers. The association of insertion/deletion (I/D) polymorphism of the ACE gene with prostate cancer (PC) risk remains controversial. We aimed to investigate for the first time, to our Knowledge, in North Africa the potential relationship between ACE I/D polymorphism with PC susceptibility and clinical outcomes of PC patients. Methods This case‐control study included 143 healthy individuals and 124 patients diagnosed with PC. Using genomic DNA, the samples were genotyped for ACE I/D polymorphism by polymerase chain reaction (PCR). Results We found that The D allele is significantly associated with an increased risk of PC and D/D + D/I genotypes were at 3 times increased risk of PC ([p = 0.005], OR = 2.95, IC 95% = 1.26–7.09) compared with I/I genotype (p = 0.003, OR = 0.3, IC 95% = 0.12–0.74). We observed an association between D/D and D/I genotypes with advanced age (≥70 years) (p = 0.014; r2 = 0.22). Furthermore, there is a significant prediction of advanced Gleason score ≥8 based on epidemiological parameters and ACE genotype (p = 0.000; R2 = 0.349), although no significant association was observed with stage and metastasis. Conclusion The ACE I/D polymorphism is likely to predispose to PC and could play a role in PC progression and aggressiveness.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Rim Jenni
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis
| | - Feryel Ammous
- Laboratory of Genetics, Immunology, and Human Pathology, Faculty of Sciences of Tunis
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Selim Zaghbib
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | | | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| |
Collapse
|
3
|
Popova IA, Lubbe L, Petukhov PA, Kalantarov GF, Trakht IN, Chernykh ER, Leplina OY, Lyubimov AV, Garcia JGN, Dudek SM, Sturrock ED, Danilov SM. Epitope mapping of novel monoclonal antibodies to human angiotensin I-converting enzyme. Protein Sci 2021; 30:1577-1593. [PMID: 33931897 DOI: 10.1002/pro.4091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Angiotensin I-converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach-conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE. The epitopes for these novel mAbs were defined using recombinant ACE constructs with truncated N and C domains, species cross-reactivity, ACE mutagenesis, and competition with the previously mapped anti-ACE mAbs. Nine mAbs recognized regions on the N domain, and 5 mAbs-on the C domain of ACE. The epitopes for most of these novel mAbs partially overlap with epitopes mapped onto ACE by the previously generated mAbs, whereas mAb 8H1 recognized yet unmapped region on the C domain where three ACE mutations associated with Alzheimer's disease are localized and is a marker for ACE mutation T877M. mAb 2H4 could be considered as a specific marker for ACE in dendritic cells. This novel set of mAbs can identify even subtle changes in human ACE conformation caused by tissue-specific glycosylation of ACE or mutations, and can detect human somatic and testicular ACE in biological fluids and tissues. Furthermore, the high reactivity of these novel mAbs provides an opportunity to study changes in the pattern of ACE expression or glycosylation in different tissues, cells, and diseases, such as sarcoidosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Isolda A Popova
- Recombinant Protein Production Core (rPPC), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Pavel A Petukhov
- School of Pharmacy, University of Illinois, Chicago, Illinois, USA
| | | | - Ilya N Trakht
- Department of Medicine, Columbia University, New York, New York, USA
| | - Elena R Chernykh
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Olga Y Leplina
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alex V Lyubimov
- Toxicology Research Laboratory, University of Illinois, Chicago, Illinois, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sergei M Danilov
- Department of Medicine, University of Arizona, Tucson, Arizona, USA.,Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Illinois, USA.,Medical Center, Moscow University, Moscow, Russia
| |
Collapse
|
4
|
Djomkam ALZ, Olwal CO, Sala TB, Paemka L. Commentary: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Front Oncol 2020; 10:1448. [PMID: 32974166 PMCID: PMC7466403 DOI: 10.3389/fonc.2020.01448] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Alexandra Lindsey Zune Djomkam
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Abstract
Background Pulmonary vascular endothelium is the main metabolic site for Angiotensin I-Converting Enzyme (ACE)-mediated degradation of several biologically-active peptides (angiotensin I, bradykinin, hemo-regulatory peptide Ac-SDKP). Primary lung cancer growth and lung cancer metastases decrease lung vascularity reflected by dramatic decreases in both lung and serum ACE activity. We performed precise ACE phenotyping in tissues from subjects with lung cancer. Methodology ACE phenotyping included: 1) ACE immunohistochemistry with specific and well-characterized monoclonal antibodies (mAbs) to ACE; 2) ACE activity measurement with two ACE substrates (HHL, ZPHL); 3) calculation of ACE substrates hydrolysis ratio (ZPHL/HHL ratio); 4) the pattern of mAbs binding to 17 different ACE epitopes to detect changes in ACE conformation induced by tumor growth (conformational ACE fingerprint). Results ACE immunostaining was dramatically decreased in lung cancer tissues confirmed by a 3-fold decrease in ACE activity. The conformational fingerprint of ACE from tumor lung tissues differed from normal lung (6/17 mAbs) and reflected primarily higher ACE sialylation. The increase in ZPHL/HHL ratio in lung cancer tissues was consistent with greater conformational changes of ACE. Limited analysis of the conformational ACE fingerprint in normal lung tissue and lung cancer tissue form the same patient suggested a remote effect of tumor tissue on ACE conformation and/or on “field cancerization” in a morphologically-normal lung tissues. Conclusions/Significance Local conformation of ACE is significantly altered in tumor lung tissues and may be detected by conformational fingerprinting of human ACE.
Collapse
|