1
|
Niu X, Zhang Y, Wang Y. Co-culture models for investigating cellular crosstalk in the glioma microenvironment. CANCER PATHOGENESIS AND THERAPY 2024; 2:219-230. [PMID: 39371093 PMCID: PMC11447344 DOI: 10.1016/j.cpt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Glioma is the most prevalent primary malignant tumor in the central nervous system (CNS). It represents a diverse group of brain malignancies characterized by the presence of various cancer cell types as well as an array of noncancerous cells, which together form the intricate glioma tumor microenvironment (TME). Understanding the interactions between glioma cells/glioma stem cells (GSCs) and these noncancerous cells is crucial for exploring the pathogenesis and development of glioma. To invesigate these interactions requires in vitro co-culture models that closely mirror the actual TME in vivo. In this review, we summarize the two- and three-dimensional in vitro co-culture model systems for glioma-TME interactions currently available. Furthermore, we explore common glioma-TME cell interactions based on these models, including interactions of glioma cells/GSCs with endothelial cells/pericytes, microglia/macrophages, T cells, astrocytes, neurons, or other multi-cellular interactions. Together, this review provides an update on the glioma-TME interactions, offering insights into glioma pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Zhang X, Lu P, Shen X. Morphologies and potential roles of telocytes in nervous tissue. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 01/03/2025]
Abstract
AbstractStructurally similar cells have been found and termed telocytes (TCs) since the first characterisation of interstitial Cajal‐like cells in 1911. TCs are a novel and peculiar interstitial cell type with a small cellular body, markedly long cell processes named telopodes and a wide distribution in numerous tissues throughout the body. Besides specific morphological characteristics and immunohistochemical profiles, TCs build three‐dimensional mixed networks through homocellular (connection to each other) and/or heterocellular contacts (connection with other cell types), interaction with extracellular matrix and their vicinity to nerve endings, and thus might play, as part of an integrated system, roles in maintaining organ/tissue function. In this mini‐review, we summarise physical properties, general characteristics and distribution of TCs in diverse organs and tissues, focusing on their potential functions in nervous tissue and current challenges in investigating TCs as a distinct cell type.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Ping Lu
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| | - Xiaorong Shen
- Institute for Reproductive Health Shanghai Institute for Biomedical and Pharmaceutical Technologies Shanghai China
| |
Collapse
|
3
|
Mengozzi A, Costantino S, Mongelli A, Mohammed SA, Gorica E, Delfine V, Masi S, Virdis A, Ruschitzka F, Paneni F. Epigenetic Signatures in Arterial Hypertension: Focus on the Microvasculature. Int J Mol Sci 2023; 24:ijms24054854. [PMID: 36902291 PMCID: PMC10003673 DOI: 10.3390/ijms24054854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Systemic arterial hypertension (AH) is a multifaceted disease characterized by accelerated vascular aging and high cardiometabolic morbidity and mortality. Despite extensive work in the field, the pathogenesis of AH is still incompletely understood, and its treatment remains challenging. Recent evidence has shown a deep involvement of epigenetic signals in the regulation of transcriptional programs underpinning maladaptive vascular remodeling, sympathetic activation and cardiometabolic alterations, all factors predisposing to AH. After occurring, these epigenetic changes have a long-lasting effect on gene dysregulation and do not seem to be reversible upon intensive treatment or the control of cardiovascular risk factors. Among the factors involved in arterial hypertension, microvascular dysfunction plays a central role. This review will focus on the emerging role of epigenetic changes in hypertensive-related microvascular disease, including the different cell types and tissues (endothelial cells, vascular smooth muscle cells and perivascular adipose tissue) as well as the involvement of mechanical/hemodynamic factors, namely, shear stress.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Shafeeq A. Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, 8091 Zurich, Switzerland
- Correspondence: or francesco.paneni@uzh; Tel.: +41-44-6355096
| |
Collapse
|
4
|
Tanrıverdi G, Abdulova A, Çölgeçen H, Atar H, Kaleci B, Ekiz-Yılmaz T. Investigation of apoptotic and antiproliferative effects of Turkish natural tetraploids Trifolium pratense L. extract on C6 glioblastoma cells via light and electron microscopy. Ultrastruct Pathol 2023; 47:160-171. [PMID: 36857517 DOI: 10.1080/01913123.2023.2184893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumors in adults, characterized by its ability to proliferate rapidly and its tendency to aggressively and strongly invaded the surrounding brain tissue. The standard treatment approach of GBM is surgical resection followed by simultaneous chemotherapy and radiation. However, a significant number of GBM cases develop resistance to currently used chemotherapeutic drugs. Therefore, there is a need for the development of new chemotherapeutic agents. Trifoliumpratense L. is an endemic plant containing various isoflavones such as biochanin A, genistein, daidzein, and formononetin in high concentrations, and it has been shown in various studies that these molecules can function as anticancer agents. The present study was designed to determine the effect of the possible anticarcinogenic effects of the Trifolium pratense L. which grown in our country and to obtain new treatment approaches alternative to the classical treatment protocols applied in the treatment of GBM. C6 glioblastoma cells were cultured with Trifolium pratense L. Cell proliferation, apoptotic cell morphology, and cell structure were evaluated with CCK8, Annexin V, cytochrome c, CD117, and Betatubulin labeling, respectively. And also, investigated effects of this Turkish tetraploid on GBM by TEM. Decreased cell proliferation and increased number of apoptotic cells were observed depending on the increasing doses of Trifolium pratense L. In addition, intense morphological changes were detected depending on increasing doses. In this context, we believe that the plant Trifolium pratense L., may be a new alternative and adjuvant agent for the treatment of GBM.
Collapse
Affiliation(s)
- Gamze Tanrıverdi
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, İstanbul, Turkey
| | - Aynur Abdulova
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, İstanbul, Turkey
| | - Hatice Çölgeçen
- Faculty of Arts and Sciences, Department of Biology, Botany, Bülent Ecevit University, Zonguldak, Turkey
| | - Havva Atar
- Faculty of Arts and Sciences, Department of Biology, Botany, Bülent Ecevit University, Zonguldak, Turkey
| | - Belisa Kaleci
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Medical School, İstanbul, Turkey
| | - Tuğba Ekiz-Yılmaz
- Department of Histology and Embryology, Istanbul University, Istanbul Medical School, İstanbul, Turkey
| |
Collapse
|
5
|
Xu T, Zhang H, Zhu Z. Telocytes and endometriosis. Arch Gynecol Obstet 2023; 307:39-49. [PMID: 35668319 DOI: 10.1007/s00404-022-06634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/14/2022] [Indexed: 02/02/2023]
Abstract
Endometriosis involving the presence and growth of glands and stroma outside the uterine cavity is a common, inflammatory, benign gynecologic disease. Nevertheless, no single theory can exactly account for the pathogenesis of endometriosis. Telocytes, a kind of novel mesenchymal cells, have been suggested to be crucial in promoting angiogenesis and increasing the activity of endometrial interstitial cells and inflammatory cells. Given above roles, telocytes may be considered as the possible pathogenesis of endometriosis. We reviewed the current literature on telocytes. The following aspects were considered: (A) the telocytes' typical characteristics, function, and morphological changes in endometriosis; (B) the potential role of telocytes in endometriosis by impacting the inflammation, invasion, and angiogenesis; (C) telocytes as the potential treatment options for endometriosis.
Collapse
Affiliation(s)
- Ting Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhiling Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.128, Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
6
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
7
|
Maldarine JS, Sanches BDA, Santos VA, Góes RM, Vilamaior PSL, Carvalho HF, Taboga SR. The complex role of telocytes in female prostate tumorigenesis in a rodent model. Cell Biol Int 2022; 46:1495-1509. [PMID: 35598087 DOI: 10.1002/cbin.11816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023]
Abstract
The prostate is not an organ exclusive to the male. It is also found in females of several species, including humans, in which part of the Skene gland is homologous to the male prostate. Evidence is accumulating that changes in the stroma are central to tumorigenesis. Equally, telocytes, a recently discovered type of interstitial cell, are essential for the maintenance of stromal organization. However, it is still uncertain whether there are telocytes in the female prostate and if they play a role in tumorigenesis. The present study used ultrastructural and immunofluorescence techniques to investigate the presence of telocytes in the prostate of Mongolian gerbil females, a rodent model that often has a functional prostate in females, as well as to assess the impact of a combination of N-ethyl-N-nitrosourea, testosterone, and estradiol on telocytes. The results point to the presence of telocytes in the female prostate in the perialveolar and interalveolar regions, and reveal that these cells are absent in regions of benign and premalignant lesions in the gland, in which the perialveolar smooth muscle is altered. Additionally, telocytes are also closely associated with infiltrated immune cells in the stroma. Our data suggest that telocytes are important for both the maintenance of smooth muscle and prostatic epithelium integrity, which indicates a protective role against the advancement of tumorigenesis. But telocytes are also associated with immune cells and a proinflammatory/proangiogenic role for these cells cannot be ruled out, implying that telocytes have a complex role in prostatic tumorigenesis in females.
Collapse
Affiliation(s)
- Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Vitória A Santos
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Rejane M Góes
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil.,Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, Universidade Estadual Paulista-UNESP, São Paulo, Brazil
| |
Collapse
|
8
|
Mirancea N, Mirancea GV, Moroşanu AM, Moroşanu AM, Department of General Surgery, St. Pantelimon Emergency Clinical Hospital, Bucharest, Romania, Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania. Telocytes inside of the peripheral nervous system - a 3D endoneurial network and putative role in cell communication. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:335-347. [PMID: 36374139 PMCID: PMC9804078 DOI: 10.47162/rjme.63.2.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we developed the hypothesis concerning the reasons to assimilate endoneurial fibroblast-like dendritic phenotype [shortly termed endoneurial dendritic cells (EDCs)] to the endoneurial telocytes (TCs). We reviewed the literature concerning EDCs status and report our observations on ultrastructure and some immune electron microscopic aspects of the cutaneous peripheral nerves. Our data demonstrate that EDCs long time considered as fibroblasts or fibroblast-like, with an ovoidal nucleus and one or more moniliform cell extensions [telopodes (Tps)], which perform homocellular junctions, also able to shed extracellular microvesicles can be assimilated to TC phenotype. Sometimes, small profiles of basement membrane accompany to some extent Tps. Altogether data resulted from scientific literature and our results strength the conclusion EDCs are really TCs inside of the peripheral nervous system. The inner three-dimensional (3D) network of endoneurial TCs by their homo- and heterocellular communications appears as a genuine cell-to-cell communication system inside of each peripheral nerve.
Collapse
Affiliation(s)
- Nicolae Mirancea
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | - Ana-Maria Moroşanu
- Department of Developmental Biology, Institute of
Biology Bucharest of Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
9
|
Abd-Elhafeez HH, Abou-Elhamd AS, Soliman SA. Morphological and immunohistochemical phenotype of TCs in the intestinal bulb of Grass carp and their potential role in intestinal immunity. Sci Rep 2020; 10:14039. [PMID: 32820212 PMCID: PMC7441181 DOI: 10.1038/s41598-020-70032-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigated telocytes (TCs) in the intestinal bulb of Grass carp using light microscopy (LM), Transmission electron microscopy (TEM), scanning electron microscopy, and immunohistochemistry (IHC). By LM, TCs were distinguished by the typical morphological features that had a cell body and telopodes using HE, toluidine blue, methylene blue, Marsland silver stain, Grimelius's silver nitrate, Giemsa, PAS, combined AB pH2,5/PAS, Crossmon's and Mallory triple trichrome, Van Gieson stains, Verhoeff's stain, Sudan black, osmic acid, performic acid with methylene blue and bromophenol blue. TCs were identified under the epithelium as an individual cell or formed a TCs sheath. They detected in the lamina propria, between muscle fibers, around the myenteric plexus and fibrous tissue. TCs acquired immunological features of endocrine cells that exhibited high affinity for silver stain, performic acid with methylene blue, Marsland stain, and immunohistochemical staining using chromogranin A. Sub epithelial TCs were closely related to the endocrine cells. TCs and their secretory activities were recognized using acridine orange. TCs were identified by IHC using CD34, CD117, S100-protein, desmin. TCs formed a3D network that established contact with macrophage, mast cells, dendritic cells, lymphocytes, smooth muscle fibers, fibroblast, Schwann cells and nerve fibers. In conclusion, the localization of TCs in relation to different types of immune cells indicated their potential role in the maintenance of intestinal immunity.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Alaa S Abou-Elhamd
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|