1
|
Liborio-Ramos S, Quiros-Fernandez I, Ilan N, Soboh S, Farhoud M, Süleymanoglu R, Bennek M, Calleja-Vara S, Müller M, Vlodavsky I, Cid-Arregui A. An integral membrane constitutively active heparanase enhances the tumor infiltration capability of NK cells. Oncoimmunology 2025; 14:2437917. [PMID: 39651893 PMCID: PMC11633225 DOI: 10.1080/2162402x.2024.2437917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Eradication of cancer cells by the immune system requires extravasation, infiltration and progression of immune cells through the tumor extracellular matrix (ECM). These are also critical determinants for successful adoptive cell immunotherapy of solid tumors. Together with structural proteins, such as collagens and fibronectin, heparan sulfate (HS) proteoglycans are major components of the ECM. Heparanase 1 (HPSE) is the only enzyme known to have endoglycosidase activity that degrades HS. HPSE is expressed at high levels in almost all hematopoietic cells, which suggests that it plays a relevant role in immune cell migration through solid tissues. Besides, tumor cells express also HPSE as a way to facilitate tumor cell resettlement and metastasis. Therefore, an increase in HPSE in the tumor ECM would be detrimental. Here, we analyzed the effects of constitutive expression of an active, membrane-bound HPSE on the ability of human natural killer (NK) cells to infiltrate tumors and eliminate tumor cells. We demonstrate that NK cells expressing a chimeric active form of HPSE on the cell surface as an integral membrane protein, display significantly enhanced infiltration capability into spheroids of various cancer cell lines, as well as into xenograft tumors in immunodeficient mice. As a result, tumor growth was significantly suppressed without causing noticeable side effects. Altogether, our results suggest that a constitutively expressed active HSPE on the surface of immune effector cells enhances their capability to access and eliminate tumor cells. This strategy opens new possibilities for improving adoptive immune treatments using NK cells.
Collapse
Affiliation(s)
- Sofia Liborio-Ramos
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isaac Quiros-Fernandez
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Center on Tropical Diseases (CIET)/Research Center on Surgery and Cancer (CICICA), Faculty of Microbiology, Universidad de Costa Rica, San Jose, Costa Rica
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Soaad Soboh
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Malik Farhoud
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruken Süleymanoglu
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michele Bennek
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Calleja-Vara
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Abulimiti N, Long R, He Y, Dong J, Wang X. Solid pancancer analysis reveals immune and hematopoietic stem cell and DNA damage repair signatures to distinguish different cancer subtypes. Adv Biol Regul 2025; 96:101090. [PMID: 40315551 DOI: 10.1016/j.jbior.2025.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 05/04/2025]
Abstract
PURPOSE Immunity, stemness, and DNA damage repair (DDR) are crucial for cancer development and therapy resistance. With advancements in multiomics technology, the exploration of cancers related to immunity, stemness, and the DDR has triggered interest, but the combination of these levels for analyzing multiple cancers remains insufficient. METHODS In this study, 9906 solid tumor samples from 31 TCGA cancer types were clustered on the basis of the enrichment levels of 13 gene sets associated with stemness, immunity, and DDR. Moreover, a soft ensemble model was constructed on the basis of the enrichment levels of these 13 gene sets to predict cancer subtypes via other omics data. RESULTS We identified four pancancer subtypes, termed C1, C2, C3, and C4, which presented distinct molecular and clinical features, including the immune microenvironment, stemness, genome instability, intratumor heterogeneity, methylation levels, tumor progression, sensitivity to chemotherapy and immunotherapy, and survival prognosis. The soft ensemble model validated this subtyping method in two breast cancer datasets (gene expression level), a pancancer proteomic dataset (protein expression level), and a pancancer cell line dataset (cell line gene expression level). CONCLUSION Our findings indicate that immune, stemness, and DDR signature-based subtyping offers new perspectives on cancer biology and holds promise for improving the clinical management of cancers.
Collapse
Affiliation(s)
- Nayila Abulimiti
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongzhuo Long
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Yin He
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| | - Junze Dong
- Nanjing Foreign Language School, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Intelligent Pharmacy Interdisciplinary Research Center, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Stewart R, Sharma S, Wu T, Okuda S, Xie G, Zhou XZ, Shilton B, Lu KP. The role of the master cancer regulator Pin1 in the development and treatment of cancer. Front Cell Dev Biol 2024; 12:1343938. [PMID: 38745861 PMCID: PMC11091292 DOI: 10.3389/fcell.2024.1343938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis. The molecular mechanisms by which Pin1 contributes to oncogenesis are reviewed, including Pin1 overexpression and its correlation with poor cancer prognosis, and the contribution of Pin1 to aggressive tumor phenotypes involved in therapeutic resistance is discussed, with an emphasis on cancer stem cells, the epithelial-to-mesenchymal transition (EMT), and immunosuppression. The therapeutic potential of Pin1 inhibition in cancer is discussed, along with the promise and the difficulties in identifying potent, drug-like, small-molecule Pin1 inhibitors. The available evidence supports the efficacy of targeting Pin1 as a novel cancer therapeutic by analyzing the role of Pin1 in a complex network of cancer-driving pathways and illustrating the potential of synergistic drug combinations with Pin1 inhibitors for treating aggressive and drug-resistant tumors.
Collapse
Affiliation(s)
- Robert Stewart
- Department of Biochemistry, Western University, London, ON, Canada
| | - Shaunik Sharma
- Department of Biochemistry, Western University, London, ON, Canada
| | - Timothy Wu
- Department of Biochemistry, Western University, London, ON, Canada
| | - Sho Okuda
- Department of Biochemistry, Western University, London, ON, Canada
| | - George Xie
- Department of Biochemistry, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brian Shilton
- Department of Biochemistry, Western University, London, ON, Canada
| | - Kun Ping Lu
- Department of Biochemistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
| |
Collapse
|
4
|
Xie Q, Wang J, Peng X. Dysregulated Forkhead Box (FOX) Genes Association with Survival Prognosis, Anti-tumor Immunity, and Key Targeting Drugs in Colon Adenocarcinoma. ARCHIVES OF IRANIAN MEDICINE 2023; 26:510-528. [PMID: 38310407 PMCID: PMC10862056 DOI: 10.34172/aim.2023.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/03/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Several studies have revealed that the aberrant expressions of forkhead box (FOX) genes are associated with carcinogenesis. However, the crucial biological functions of the FOX gene in colon adenocarcinoma (COAD) remain unknown. METHODS The TCGA-COAD dataset (n=328) was utilized for determining the deregulated FOX genes and their association with functional enrichment, protein-protein interaction (PPI), survival prognosis, anti-tumor immunity, cancer-associated pathways, and biological processes in COAD. In addition, we used GSE166427 (GPL13667) as a validation cohort (n=196). Molecular docking studies were applied to perform the drug interactions. RESULTS The FOX genes are deregulated in the COAD (Log2 FC>0.50, P<0.05), and the PPI network of FOX members is substantially related to the enrichment of cancerous signaling, immune responses, and cellular development (FDR<0.05). A worse prognosis for overall survival in COAD individuals is connected with the subgroup of FOX transcripts (P≤0.05). FOXD4, FOXH1, and FOXS1 were identified as predictive variables in the univariate and multivariate Cox regression models (P≤0.05). FOXH1 and FOXS1 are substantially linked to the deregulated immunity in COAD (R>0.20, P<0.01). Furthermore, FOXS1 expression regulates cancer-associated pathways and biological processes (P<0.05). Moreover, FOXD4, FOXH1, and FOXS1 are genetically altered and showed diagnostic efficacy in COAD. We revealed that FOXD4, FOXH1, and FOXS1 are consistently deregulated in GSE166427 (P<0.05). Finally, molecular docking revealed that FOXH1 interacted with various drugs, including belinostat, entinostat, and panobinostat. CONCLUSION The FOX genes have a strong correlation with the poor prognosis for survival, tumor immunity, cancer-associated pathways, and biochemical processes that cause the pathogenesis of COAD.
Collapse
Affiliation(s)
- Qian Xie
- International Medical Center/Ward of General Practice, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
5
|
Rousset X, Maillet D, Grolleau E, Barthelemy D, Calattini S, Brevet M, Balandier J, Raffin M, Geiguer F, Garcia J, Decaussin-Petrucci M, Peron J, Benzerdjeb N, Couraud S, Viallet J, Payen L. Embryonated Chicken Tumor Xenografts Derived from Circulating Tumor Cells as a Relevant Model to Study Metastatic Dissemination: A Proof of Concept. Cancers (Basel) 2022; 14:cancers14174085. [PMID: 36077622 PMCID: PMC9454737 DOI: 10.3390/cancers14174085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Circulating Tumor Cells (CTCs) are heterogeneous and rare in the bloodstream, but responsible for cancer metastasis. Their in vitro or in vivo expansion remains a major challenge. The chicken Chorioallantoic Membrane (CAM) assay has proven to be a reliable alternative to the murine model, notably for tumor xenografts. We have developed a promising model of CTC-derived xenografts in the chicken CAM and demonstrated the feasibility of Next Generation Sequencing (NGS) analysis in this assay, with a genomic concordance between the in ovo tumor and the original patient’s tumor. We also evidenced metastatic dissemination from the xenograft in the chicken embryo’s distant organs. Further characterization of the in ovo tumors and metastases may provide new insights into the mechanisms of tumor dissemination. The development of a xenograft from a given patient’s CTCs, in a time frame compatible with managing the patient’s treatment, could also be a step forward towards personalized medicine. Abstract Patient-Derived Xenografts (PDXs) in the Chorioallantoic Membrane (CAM) are a representative model for studying human tumors. Circulating Tumor Cells (CTCs) are involved in cancer dissemination and treatment resistance mechanisms. To facilitate research and deep analysis of these few cells, significant efforts were made to expand them. We evaluated here whether the isolation of fresh CTCs from patients with metastatic cancers could provide a reliable tumor model after a CAM xenograft. We enrolled 35 patients, with breast, prostate, or lung metastatic cancers. We performed microfluidic-based CTC enrichment. After 48–72 h of culture, the CTCs were engrafted onto the CAM of embryonated chicken eggs at day 9 of embryonic development (EDD9). The tumors were resected 9 days after engraftment and histopathological, immunochemical, and genomic analyses were performed. We obtained in ovo tumors for 61% of the patients. Dedifferentiated small tumors with spindle-shaped cells were observed. The epithelial-to-mesenchymal transition of CTCs could explain this phenotype. Beyond the feasibility of NGS in this model, we have highlighted a genomic concordance between the in ovo tumor and the original patient’s tumor for constitutional polymorphism and somatic alteration in one patient. Alu DNA sequences were detected in the chicken embryo’s distant organs, supporting the idea of dedifferentiated cells with aggressive behavior. To our knowledge, we performed the first chicken CAM CTC-derived xenografts with NGS analysis and evidence of CTC dissemination in the chicken embryo.
Collapse
Affiliation(s)
| | - Denis Maillet
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Department of Medical Oncology, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052 CNRS UMR 5286, 69008 Lyon, France
| | - Emmanuel Grolleau
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
| | - David Barthelemy
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Sara Calattini
- Clinical Research Plateform, Institut de Cancérologie des Hospices Civils de Lyon, 69002 Lyon, France
| | - Marie Brevet
- Department of Pathology, Lyon Est Hospital, Hospices Civils de Lyon, 69677 Bron, France
| | - Julie Balandier
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Margaux Raffin
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Florence Geiguer
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Jessica Garcia
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
| | - Myriam Decaussin-Petrucci
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Department of Pathology, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Julien Peron
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, CNRS UMR 5558, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Nazim Benzerdjeb
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Department of Pathology, Lyon Sud Hospital, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
| | - Sébastien Couraud
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- Acute Respiratory Disease and Thoracic Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
| | | | - Léa Payen
- University Claude Bernard Lyon, 69100 Villeurbanne, France
- EMR-3738 Therapeutic Targeting in Oncology, Lyon Sud Medical Faculty, 69000 Lyon, France
- Laboratoire de Biochimie et Biologie Moléculaire, Groupe Hospitalier Sud, Hospices Civils de Lyon, 69495 Pierre-Bénite, France
- Circulating Cancer (CIRCAN) Program, Hospices Civils de Lyon, Cancer Institute, 69495 Pierre Bénite, France
- Correspondence:
| |
Collapse
|
6
|
Wang J, Akter R, Shahriar MF, Uddin MN. Cancer-Associated Stromal Fibroblast-Derived Transcriptomes Predict Poor Clinical Outcomes and Immunosuppression in Colon Cancer. Pathol Oncol Res 2022; 28:1610350. [PMID: 35991839 PMCID: PMC9385976 DOI: 10.3389/pore.2022.1610350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/15/2022] [Indexed: 11/11/2022]
Abstract
Background: Previous studies revealed that colonic cancer-associated fibroblasts (CAFs) are associated with the modulation of the colon tumor microenvironment (TME). However, identification of key transcriptomes and their correlations with the survival prognosis, immunosuppression, tumor progression, and metastasis in colon cancer remains lacking. Methods: We used the GSE46824, GSE70468, GSE17536, GSE35602, and the cancer genome atlas (TCGA) colon adenocarcinoma (COAD) datasets for this study. We identified the differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, hub genes, and survival-associated genes in colon cancer. Finally, we investigated the correlation of key genes with the survival prognosis, immunosuppression, and metastasis. Results: We identified 246 common DEGs between the GSE46824 and GSE70468 datasets of colonic CAFs, which included 72 upregulated and 174 downregulated genes. The upregulated pathways are mainly involved with cancers and cellular signaling, and downregulated pathways are involved with immune regulation and cellular metabolism. The search tool for the retrieval of interacting genes (STRING)-based analysis identified 15 hub genes and 9 significant clusters in colonic CAFs. The upregulation of CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 and downregulation of FBN2 are correlated with a shorter survival time in colon cancer. The CTHRC1, PDGFC, PDLIM3, and NTM genes are positively correlated with the infiltration of tumor-associated macrophages (TAM), macrophages, M2 macrophages, the regulatory T cells (Tregs), T cell exhaustion, and myeloid-derived suppressor cells (MDSCs), indicating the immunosuppressive roles of these transcriptomes in colon cancer. Moreover, the CTHRC1, PDGFC, PDLIM3, NTM, and SLC16A3 genes are gradually increased from normal tissue to the tumor and tumor to the metastatic tumor, and FBN2 showed the reverse pattern. Furthermore, the CTHRC1, FBN2, PDGFC, PDLIM3, and NTM genes are positively correlated with the metastatic scores in colon cancer. Then, we revealed that the expression value of CTHRC1, FBN2, PDGFC, PDLIM3, NTM, and SLC16A3 showed the diagnostic efficacy in colonic CAFs. Finally, the expression level of CTHRC1, PDGFC, and NTM genes are consistently altered in colon tumor stroma as well as in the higher CAFs-group of TCGA COAD patients. Conclusion: The identified colonic CAFs-derived key genes are positively correlated with survival prognosis, immunosuppression, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rehana Akter
- Bioinformatics Research Lab, Center for Research Innovation and Development (CRID), Dhaka, Bangladesh
| | | | - Md. Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh,*Correspondence: Md. Nazim Uddin,
| |
Collapse
|
7
|
Li DF, Tulahong A, Uddin MN, Zhao H, Zhang H. Meta-analysis identifying epithelial-derived transcriptomes predicts poor clinical outcome and immune infiltrations in ovarian cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6527-6551. [PMID: 34517544 DOI: 10.3934/mbe.2021324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies revealed that the epithelial component is associated with the modulation of the ovarian tumor microenvironment (TME). However, the identification of key transcriptional signatures of laser capture microdissected human ovarian cancer epithelia remains lacking. METHODS We identified the differentially expressed transcriptional signatures of human ovarian cancer epithelia by meta-analysis of GSE14407, GSE2765, GSE38666, GSE40595, and GSE54388. Then we investigated the enrichment of KEGG pathways that are associated with epithelia-derived transcriptomes. Finally, we investigated the correlation of key epithelia-hub genes with the survival prognosis and immune infiltrations. Finally, we investigated the genetic alterations of key prognostic hub genes and their diagnostic efficacy in ovarian cancer epithelia. RESULTS We identified 1339 differentially expressed genes (DEGs) in ovarian cancer epithelia including 541upregulated and 798 downregulated genes. We identified 21 (such as E2F4, FOXM1, TFDP1, E2F1, and SIN3A) and 11 (such as JUN, DDX4, FOSL1, NOC2L, and HMGA1) master transcriptional regulators (MTRs) that are interacted with upregulated and the downregulated genes in ovarian tumor epithelium, respectively. The STRING-based analysis identified hub genes (such as CDK1, CCNB1, AURKA, CDC20, and CCNA2) in ovarian cancer epithelia. The significant clusters of identified hub genes are associated with the enrichment of KEGG pathways including cell cycle, DNA replication, cytokine-cytokine receptor interaction, pathways in cancer, and focal adhesion. The upregulation of SCNN1A and CDCA3 and the downregulation of SOX6 are correlated with a shorter survival prognosis in ovarian cancer (OV). The expression level of SOX6 is negatively correlated with immune score and positively correlated with tumor purity in OV. Moreover, SOX6 is negatively correlated with the infiltration of TILs, CD8+ T cells, CD4+ Regulatory T cells, cytolytic activity, T cell activation, pDC, neutrophils, and macrophages in OV. Also, SOX6 is negatively correlated with various immune markers including CD8A, PRF1, GZMA, GZMB, NKG7, CCL3, and CCL4, indicating the immune regulatory efficiency of SOX6 in the TME of OV. Furthermore, SCNN1A, CDCA3, and SOX6 genes are genetically altered in OV and the expression levels of SCNN1A and SOX6 genes showed diagnostic efficacy in ovarian cancer epithelia. CONCLUSIONS The identified ovarian cancer epithelial-derived key transcriptional signatures are significantly correlated with survival prognosis and immune infiltrations, and may provide new insight into the diagnosis and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Dong-Feng Li
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Aisikeer Tulahong
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huan Zhao
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Hua Zhang
- Department of Oncology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|