1
|
Mamidi MK, Sinha S, Mendez MT, Sanyal T, Mahmud H, Kay NE, Gupta M, Xu C, Vesely SK, Mukherjee P, Chakrabarty JH, Ghosh AK. Aberrantly Expressed Mitochondrial Lipid Kinase, AGK, Activates JAK2-Histone H3 Axis and BCR Signal: A Mechanistic Study with Implication in CLL Therapy. Clin Cancer Res 2025; 31:588-602. [PMID: 39636206 PMCID: PMC11790368 DOI: 10.1158/1078-0432.ccr-24-1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Although the B-cell receptor (BCR) signal plays a critical role in chronic lymphocytic leukemia (CLL) cell survival and a target of current therapies (ibrutinib targets Bruton's tyrosine kinase; idelalisib targets PI3Kδ), contribution of the cytokine-driven JAK2 pathway to the "CLL cell-survival signaling network" is largely undefined. EXPERIMENTAL DESIGN Patients with CLL were enrolled to investigate expression/activation of JAK2 and acylglycerol kinase (AGK), and their functional implication in primary CLL cell survival. A series of biochemical and molecular biology assays were employed to uncover the underlying mechanism. RESULTS We detected that compared with normal B cells, CLL cells aberrantly express constitutively active JAK2. Mechanistically, HSP90 forms a chaperoning complex with JAK2, resulting in its aberrant accumulation in CLL cells. We also discovered aberrant upregulation of a novel mitochondrial lipid kinase, AGK, which remains complexed with HSP90 in CLL cells activating JAK2. Although AGK is typically mitochondrial, we detected its nuclear localization in association with JAK2 in some CLL cells. Functionally, JAK2 phosphorylates its noncanonical substrate, histone H3(Y41), but not STAT3, activating transcription of diverse sets of genes in a patient-specific manner. Additionally, JAK2 activates the BCR signal in CLL cells via LYN/Bruton's tyrosine kinase axis. Targeted inhibition of JAK2 as monotherapy, or in combination with the BCR inhibitors or venetoclax (a BCL2 inhibitor), induced apoptosis synergistically in CLL cells. CONCLUSIONS These findings suggest that aberrantly expressed AGK activates JAK2, independent of cytokine, leading to activation of diverse sets of gene transcription in CLL cells. Combined targeting of JAK2 and BCR signals or BCL2 may be effective in some patients with CLL.
Collapse
MESH Headings
- Humans
- Janus Kinase 2/metabolism
- Janus Kinase 2/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Signal Transduction/drug effects
- Histones/metabolism
- Histones/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Mitochondria/genetics
- Cell Line, Tumor
Collapse
Affiliation(s)
- Murali K. Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - Mariana T. Mendez
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Tapojyoti Sanyal
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Neil E. Kay
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, George Washington University, Washington DC
| | - Chao Xu
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Priyabrata Mukherjee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | - Asish K. Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
2
|
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel) 2023; 15:cancers15030984. [PMID: 36765939 PMCID: PMC9913431 DOI: 10.3390/cancers15030984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Collapse
|
3
|
Mamidi MK, Mahmud H, Maiti GP, Mendez MT, Fernandes SM, Vesely SK, Holter-Chakrabarty J, Brown JR, Ghosh AK. Idelalisib activates AKT via increased recruitment of PI3Kδ/PI3Kβ to BCR signalosome while reducing PDK1 in post-therapy CLL cells. Leukemia 2022; 36:1806-1817. [PMID: 35568768 PMCID: PMC10874218 DOI: 10.1038/s41375-022-01595-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
Idelalisib targets PI3Kδ in the BCR pathway generating only a partial response in CLL patients, indicating that the leukemic cells may have evolved escape signals. Indeed, we detected increased activation of AKT accompanied by upregulation of MYC/BCL2 in post-therapy CLL cells from patients treated with idelalisib/ofatumumab. To unravel the mechanism of increased AKT-activation, we studied the impact of idelalisib on a CLL-derived cell line, MEC1, as a model. After an initial inhibition, AKT-activation level was restored in idelalisib-treated MEC1 cells in a time-dependent manner. As BCAP (B-cell adaptor for PI3K) and CD19 recruit PI3Kδ to activate AKT upon BCR-stimulation, we examined if idelalisib-treatment altered PI3Kδ-recruitment. Immunoprecipitation of BCAP/CD19 from idelalisib-treated MEC1 cells showed increased recruitment of PI3Kδ in association with PI3Kβ, but not PI3Kα or PI3Kγ and that, targeting both PI3Kδ with PI3Kβ inhibited AKT-reactivation. We detected similar, patient-specific recruitment pattern of PI3K-isoforms by BCAP/CD19 in post-idelalisib CLL cells with increased AKT-activation. Interestingly, a stronger inhibitory effect of idelalisib on P-AKT (T308) than S473 was discernible in idelalisib-treated cells despite increased recruitment of PI3Kδ/PI3Kβ and accumulation of phosphatidylinositol-3,4,5-triphosphate; which could be attributed to reduced PDK1 activity. Thus, administration of isoform-specific inhibitors may prove more effective strategy for treating CLL patients.
Collapse
Affiliation(s)
- Murali K Mamidi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guru P Maiti
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mariana T Mendez
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stacey M Fernandes
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Jennifer R Brown
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Asish K Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|