1
|
Habibi S, Bahramian S, Saeedeh ZJ, Mehri S, Ababzadeh S, Kavianpour M. Novel strategies in breast cancer management: From treatment to long-term remission. Crit Rev Oncol Hematol 2025; 211:104715. [PMID: 40187709 DOI: 10.1016/j.critrevonc.2025.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related mortality worldwide. Although improvements in early detection and therapy have been made, metastatic breast cancer (mBC) continues to be an incurable disease. Although existing treatments can prolong survival and enhance quality of life, they do not provide a definitive cure. Targeted therapies have significantly improved outcomes, particularly for subtypes such as human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor (HR)-positive (HR+) BC. Key innovations include antibodydrug conjugates (ADCs) and next-generation endocrine therapies. ADCs combine monoclonal antibodies with cytotoxic agents, allowing targeted delivery to tumor cells while minimizing systemic toxicity. Immunotherapy is emerging as a promising approach for aggressive subtypes, such as triple-negative breast cancer (TNBC). Strategies under investigation include chimeric antigen receptor T-cell (CAR-T) therapy, tumor-infiltrating lymphocyte (TIL) therapies, and natural killer (NK) cell treatments, all aimed at enhancing the ability of the immune system to target and eliminate resistant tumor cells. Tissue engineering, particularly hydrogel-based delivery systems, offers the potential for localized treatment. These systems enable the controlled release of therapeutic agents or immune cells directly to the tumor site, supporting tissue regeneration and enhancing immune surveillance to reduce recurrence. Despite these advancements, challenges remain, including treatment resistance, the immunosuppressive tumor microenvironment, and high costs. Overcoming these barriers requires further innovation in drug delivery systems and a deeper understanding of tumor biology.
Collapse
Affiliation(s)
- Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabbou Bahramian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Zare Jalise Saeedeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
2
|
Chai F, Wang G, Shen Y, Niu Y, Huang Y, Fu T, Yang T, Jiang Y, Zhang J. KGF impedes TRIM21-enhanced stabilization of keratin 10 mediating differentiation in hypopharyngeal cancer. Cell Signal 2025; 127:111614. [PMID: 39848455 DOI: 10.1016/j.cellsig.2025.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
KGF, also known as FGF7, is a member of the fibroblast growth factor (FGF) family that binds with high affinity to the FGF receptor 2b (FGFR2b) and regulates various cellular processes, including cell proliferation and differentiation in a variety of tumors. However, its potential role in hypopharyngeal cancer (HPC) remains largely unknown. In our study, we observed increased expression of FGFR2b in HPC. KGF treatment inhibited the expression of the differentiation marker keratin 10 (K10) protein at the post-transcriptional level in FaDu cells. Furthermore, treatment with the proteasome inhibitor MG132 was found to attenuate KGF-induced K10 reduction, suggesting the involvement of the ubiquitin-proteasome system. Using mass spectrometry and immunoprecipitation analysis, we identified the E3 ubiquitin ligase TRIM21 as a K10-interacting protein. Unexpectedly, instead of causing degradation, TRIM21 enhanced K10 protein stability through K6-linked ubiquitination of K10 at lysine 163 (K163) in the context of KGF exposure. Meanwhile, KGF treatment decreased TRIM21 protein levels, which were regulated by the p38 MAPK pathway, leading to K48-linked ubiquitination-mediated degradation of TRIM21. Notably, TRIM21 knockdown significantly promoted proliferation, inhibited differentiation and migration of FaDu cells, whereas TRIM21 overexpression had opposite effects in vitro and suppressed xenograft tumor growth in vivo. Our study demonstrates that TRIM21 may act as a tumor suppressor in HPC. However, TRIM21 overexpression decreased the sensitivity of FaDu cells to 5-fluorouracil, whereas TRIM21 knockdown or KGF administration significantly increased 5-fluorouracil sensitivity. Taken together, these findings highlight the intricate balance between protein stabilization and degradation orchestrated by KGF. This ubiquitination-mediated non-degradation mechanism of TRIM21 may provide novel therapeutic strategies for HPC and other cancers.
Collapse
Affiliation(s)
- Fangyu Chai
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Guangyi Wang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Yibang Shen
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Yanfang Niu
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yichuan Huang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Tao Fu
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Yan Jiang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China.
| | - Jisheng Zhang
- Key Laboratory, Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, 266003 Qingdao, China.
| |
Collapse
|
3
|
Kong Y, Jia Z, Sun Y, Jin L, Zhang T, Xu Q, Huang Y. Identification of PLAC1 as a prognostic biomarker and molecular target in clear cell renal cell carcinoma. Cell Signal 2025; 127:111606. [PMID: 39814247 DOI: 10.1016/j.cellsig.2025.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common clinical tumor of the urinary system. The lack of effective diagnostic and treatment options poses a serious challenge to clinical treatment. Therefore, identifying effective molecular targets has become one of the potential means to treat this disease. Firstly, the analysis of the TCGA database found that PLAC1 was abnormally highly expressed in ccRCC and was negatively correlated with patient prognosis. Western blotting and immunofluorescence experiments further verified that PLAC1 was highly expressed in ccRCC patients, and knockdown of PLAC1 inhibited the development of ccRCC in vitro. Last, high-throughput virtual screening technology (HTVS) was performed to identify two molecular inhibitors ,AmB and Cana, which were able to reduce the expression of PLAC1 and inhibited the progression of ccRCC. In conclusion, the current investigation indicated that the PLAC1 could serve as a prognostic biomarker, and AmB and Cana inhibit the progression of ccRCC by reducing PLAC1, making it a potential therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Ying Kong
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Zongming Jia
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yizhang Sun
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lichen Jin
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Tong Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Qiya Xu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| | - Yuhua Huang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215000, China.
| |
Collapse
|
4
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jamioł M, Sozoniuk M, Wawrzykowski J, Kankofer M. Changes in plasma PLAC-1 concentration and its expression during early-mid pregnancy in bovine placental tissues - a pilot study. BMC Vet Res 2024; 20:59. [PMID: 38378537 PMCID: PMC10877859 DOI: 10.1186/s12917-024-03898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Placenta-specific protein 1 (PLAC1) is a small secreted protein considered to be a molecule with a significant role in the development of the placenta and the establishment of the mother-foetus interface. This study aimed to confirm the presence of bovine PLAC1 and to examine its profile in the placenta and plasma in the first six months of pregnancy. The expression pattern of PLAC1 was analysed by RT-qPCR and Western Blotting. Quantitative evaluation was carried out using ELISA. RESULTS PLAC1 concentrations in the plasma of pregnant cows were significantly higher (p < 0.05) than those obtained from non-pregnant animals. PLAC1 protein concentrations in the placental tissues of the foetal part were significantly (p < 0.05) higher than in the tissues of the maternal part of the placenta. PLAC1 transcripts were detected in both placental tissue samples and epithelial cell cultures. CONCLUSIONS In conclusion, the results of the present preliminary study suggest that PLAC1 is involved in the development of bovine placenta. The presence of this protein in the plasma of pregnant animals as early as the first month may make it a potential candidate as a pregnancy marker in cows. Further studies on exact mechanisms of action of PLAC1 in bovine placenta are necessary.
Collapse
Affiliation(s)
- Monika Jamioł
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, Akademicka Street 15, Lublin, 20-950, Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka Street 12, Lublin, 20-033, Poland.
| |
Collapse
|
6
|
Cagliani R, Fayed B, Jagal J, Shakartalla SB, Soliman SSM, Haider M. Peptide-functionalized zinc oxide nanoparticles for the selective targeting of breast cancer expressing placenta-specific protein 1. Colloids Surf B Biointerfaces 2023; 227:113357. [PMID: 37210795 DOI: 10.1016/j.colsurfb.2023.113357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Functionalized metal oxide nanoparticles (NPs) have demonstrated specific binding affinity to antigens or receptors presented on the cancer cell surface, favouring selective targeting and minimizing side effects during the chemotherapy. Placenta-specific protein 1 (PLAC-1) is a small cell surface protein overexpressed in certain types of breast cancer (BC); therefore, it can be used as a therapeutic target. The objective of this study is to develop NPs that can bind PLAC-1 and hence can inhibit the progression and metastatic potential of BC cells. Zinc oxide (ZnO) NPs were coated with a peptide (GILGFVFTL), which possesses a strong binding ability to PLAC-1. The physical attachment of the peptide to ZnO NPs was verified through various physicochemical and morphological characterization techniques. The selective cytotoxicity of the designed NPs was investigated using PLAC-1-bearing MDA-MB 231 human BC cell line and compared to LS-180 cells that do not express PLAC-1. The anti-metastatic and pro-apoptotic effects of the functionalized NPs on MDA-MB 231 cells were examined. Confocal microscopy was used to investigate the mechanism of NPs uptake by MDA-MB 231 cells. Compared to non-functionalized NPs, peptide functionalization significantly improved the targeting and uptake of the designed NPs by PLAC-1-expressing cancer cells with significant pro-apoptotic and anti-metastatic effects. The uptake of peptide functionalized ZnO NPs (ZnO-P NPs) occurred via peptide-PLAC1 interaction-assisted clathrin-mediated endocytosis. These findings highlight the potential targeted therapy of ZnO-P NPs against PLAC-1-expressing breast cancer cells.
Collapse
Affiliation(s)
- Roberta Cagliani
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Sarra B Shakartalla
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O. Box. 21111, Wadmedani, Sudan
| | - Sameh S M Soliman
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Mohamed Haider
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Peptide-Based Vaccines in Clinical Phases and New Potential Therapeutic Targets as a New Approach for Breast Cancer: A Review. Vaccines (Basel) 2022; 10:vaccines10081249. [PMID: 36016136 PMCID: PMC9416350 DOI: 10.3390/vaccines10081249] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer is the leading cause of death in women from 20 to 59 years old. The conventional treatment includes surgery, chemotherapy, hormonal therapy, and immunotherapy. This immunotherapy is based on administering monoclonal therapeutic antibodies (passive) or vaccines (active) with therapeutic purposes. Several types of vaccines could be used as potential treatments for cancer, including whole-cell, DNA, RNA, and peptide-based vaccines. Peptides used to develop vaccines are derived from tumor-associated antigens or tumor-specific antigens, such as HER-2, MUC1, ErbB2, CEA, FRα, MAGE A1, A3, and A10, NY-ESO-1, among others. Peptide-based vaccines provide some advantages, such as low cost, purity of the antigen, and the induction of humoral and cellular immune response. In this review, we explore the different types of vaccines against breast cancer with a specific focus on the description of peptide-based vaccines, their composition, immune response induction, and the description of new potential therapeutic targets.
Collapse
|
8
|
Francavilla C, O'Brien CS. Fibroblast growth factor receptor signalling dysregulation and targeting in breast cancer. Open Biol 2022; 12:210373. [PMID: 35193394 PMCID: PMC8864352 DOI: 10.1098/rsob.210373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023] Open
Abstract
Fibroblast Growth Factor Receptor (FGFR) signalling plays a critical role in breast embryonal development, tissue homeostasis, tumorigenesis and metastasis. FGFR, its numerous FGF ligands and signalling partners are often dysregulated in breast cancer progression and are one of the causes of resistance to treatment in breast cancer. Furthermore, FGFR signalling on epithelial cells is affected by signals from the breast microenvironment, therefore increasing the possibility of breast developmental abnormalities or cancer progression. Increasing our understanding of the multi-layered roles of the complex family of FGFRs, their ligands FGFs and their regulatory partners may offer novel treatment strategies for breast cancer patients, as a single agent or rational co-target, which will be explored in depth in this review.
Collapse
Affiliation(s)
- Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester M13 9PT, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| | - Ciara S. O'Brien
- The Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester M20 2BX, UK
- The Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
9
|
Liu D, Shi K, Fu M, Chen F. Placenta-specific protein 1 promotes cell proliferation via the AKT/GSK-3β/cyclin D1 signaling pathway in gastric cancer. IUBMB Life 2021; 73:1131-1141. [PMID: 34110086 DOI: 10.1002/iub.2514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a malignant tumor with a poor prognosis. Therefore, it is important to search for molecules that play a vital role in the development, diagnosis, and treatment of this disease. Placenta-specific 1 (PLAC1) is one of the cancer-testis antigens; it plays an important role in both placental development and tumorigenesis. However, the role of PLAC1 in gastric cancer has not been fully investigated, and its underlying mechanism needs further study. We first explored the expression and clinical relevance of PLAC1 in gastric cancer and performed gene set enrichment analysis of PLAC1-related genes using online databases. Subsequently, we studied the function and mechanism of PLAC1 in gastric cancer cells through in vitro experiments. Our results showed that PLAC1 is highly expressed in gastric cancer, is associated with poor prognosis, and can promote gastric cancer cell proliferation through the AKT/GSK-3β/cyclin D1 signaling pathway. Moreover, we discovered that AKTi attenuates the effect of PLAC1. Our study further revealed the role and mechanism of PLAC1 in gastric cancer and suggested that this antigen might be a useful molecular marker for gastric cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Dongyang Liu
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Ke Shi
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Mingshi Fu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Feng Chen
- Division of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| |
Collapse
|
10
|
Chen Y, Stagg C, Schlessinger D, Nagaraja R. PLAC1 affects cell to cell communication by interacting with the desmosome complex. Placenta 2021; 110:39-45. [PMID: 34118612 DOI: 10.1016/j.placenta.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION X-linked PLAC1 is highly expressed in placenta during embryogenesis, and when ablated in mice, causes aberrant placental cell layer organization. It is also highly expressed in many types of cancer cell-lines. Although it has been shown that it promotes AKT phosphorylation in cancer cells, the exact mechanism by which it influences placental layer differentiation is unclear. METHODS To investigate the mechanism of action of PLAC1 we did cell fractionation and immunoprecipitation of the protein and Mass Spectrometry analysis to identify its interaction partners. The associated proteins were directly tested for interactions by co-transfection with PLAC1 and immunoprecipitation. Mutations in the ZP-N domain of PLAC1 were introduced to assess its involvement in the interactions. RESULTS We provide evidence that Desmoglein-2 (DSG2), a component of the membrane-associated desmosomal complex, directly interacts with PLAC1. Mutations of cysteines in ZP-N domain disrupt the interaction between PLAC1 and DSG-2. DISCUSSION Because desmosomes are responsible for establishing lateral cell-cell junctions, we suggest that direct interaction with the lateral junction protein complex may be implicated in the PLAC1 effects on cell-cell interactions, and thereby on the layer structure of the placenta.
Collapse
Affiliation(s)
- Yaohui Chen
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Carole Stagg
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Ramaiah Nagaraja
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, 21224, USA.
| |
Collapse
|