1
|
Wang Q, Gou X, Liu L, Deng D, Zhao Y, Zhou J, Xie Y, Jiang Y, Li J, Zhang J, Liu Y. Heterogeneous nuclear ribonucleoprotein C promotes non-small cell lung cancer progression by enhancing XB130 mRNA stability and translation. Cancer Cell Int 2025; 25:10. [PMID: 39800708 PMCID: PMC11727598 DOI: 10.1186/s12935-025-03638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood. Heterogeneous nuclear ribonucleoprotein C (hnRNPC), as an RNA-binding protein, is known to modulate multiple aspects of RNA metabolism and has been implicated in the pathogenesis of various cancers. We have previously discovered that hnRNPC is one of the candidate proteins that interact with the 3' untranslated region (3'UTR) of XB130 in non-small cell lung cancer (NSCLC). Therefore, this study aims to comprehensively elucidate how hnRNPC regulates the expression of XB130 in NSCLC. MATERIALS AND METHODS We evaluated the expression of hnRNPC in cancer and assessed the correlation between hnRNPC expression and prognosis in cancer patients using public databases. Subsequently, several stable cell lines were constructed. The proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of these cells were detected through Real-time cellular analysis, adherent colony formation, wound healing assay, invasion assay, and Western blotting. The specific regulatory manner between hnRNPC and XB130 was investigated by Real-time quantitative PCR, Western blotting, RNA pull‑down assay, dual‑luciferase reporter assay, RNA immunoprecipitation, and Co-Immunoprecipitation. RESULTS We identified that hnRNPC expression is significantly elevated in NSCLC and correlates with poor prognosis in patients with lung adenocarcinoma. HnRNPC overexpression in NSCLC cells increased the expression of XB130, subsequently activating the PI3K/Akt signaling pathway and ultimately promoting cell proliferation and EMT. Additionally, overexpressing XB130 in hnRNPC-silenced cells partially restored cell proliferation and EMT. Mechanistically, hnRNPC specifically bound to the 3'UTR segments of XB130 mRNA, enhancing mRNA stability by inhibiting the recruitment of nucleases 5'-3' exoribonuclease 1 (XRN1) and DIS3-like 3'-5' exoribonuclease 2 (DIS3L2). Furthermore, hnRNPC simultaneously interacted with the eukaryotic initiation factor 4E (eIF4E), a component of the eIF4F complex, facilitating the circularization of XB130 mRNA and thereby increasing its translation efficiency. CONCLUSIONS HnRNPC overexpression promotes NSCLC progression by enhancing XB130 mRNA stability and translation, suggesting that hnRNPC might be a potential therapeutic and prognostic target for NSCLC.
Collapse
Affiliation(s)
- Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Xuanjing Gou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Daolan Deng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China
| | - Jianglun Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Jian Zhang
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, 28 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| | - Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
| |
Collapse
|
2
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
3
|
Wang Y, Xiang YY, Sugihara J, Lu WY, Liao XH, Arvan P, Refetoff S, Liu M. XB130 Plays an Essential Role in Folliculogenesis Through Mediating Interactions Between Microfilament and Microtubule Systems in Thyrocytes. Thyroid 2022; 32:128-137. [PMID: 34652970 PMCID: PMC8861928 DOI: 10.1089/thy.2021.0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: XB130 (actin filament-associated protein 1-like 2, AFAP1L2) is a thyroid-abundant adaptor/scaffold protein. Xb130-/- mice exhibit transient growth retardation postnatally due to congenital hypothyroidism with diminished thyroglobulin iodination and release at both embryonic and early postnatal stages due to disorganized thyroid apical membrane structure and function. We hypothesized that XB130 is crucial for polarity and folliculogenesis by mediating proper cytoskeletal structure and function in thyrocytes. Methods: Primary thyrocytes isolated from thyroid glands of Xb130-/- mice and their wild-type littermates at postnatal week 2 were cultured in 10% Matrigel for different time periods. Folliculogenesis was studied with immunofluorescence staining, followed by confocal microscopy. Cells were also transfected to express human XB130 fused Green Fluorescent Protein (XB130-GFP) or Green Fluorescent Protein (GFP) only before morphological analysis. Cytoskeletal structures from embryo and postnatal thyroid glands were also studied. Results: In three-dimensional cultures of thyrocytes, XB130, aligned with actin filaments, participated in defining the site of apical membrane formation and coalescence to form a thyroid follicle lumen. Xb130-/- thyrocytes displayed delayed folliculogenesis, reduced recruitment of a microtubule (MT)-associated proteins, and disorganized acetylated tubulin under the apical membrane, resulting in delayed folliculogenesis with reduced efficiency in formation of the thyroid follicle lumen. Conclusions: XB130 critically regulates thyrocyte polarization by functioning as a link between the actin filament cortex and MT network at the apical membrane of thyrocytes. Defects of adaptor scaffold proteins may affect cellular polarity and cytoskeletal structure and function and result in disorders of epithelial function, such as congenital hypothyroidism.
Collapse
Affiliation(s)
- Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel Refetoff
- Department of Medicine, Chicago, Illinois, USA
- Department of Pediatrics, Chicago, Illinois, USA
- Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Medicine and Physiology, and Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Address correspondence to: Mingyao Liu, MD, Department of Surgery Medicine, Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room: PMCRT2-814, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
4
|
Wang Y, Shimizu H, Xiang YY, Sugihara J, Lu WY, Liao XH, Cho HR, Toba H, Bai XH, Asa SL, Arvan P, Refetoff S, Liu M. XB130 Deficiency Causes Congenital Hypothyroidism in Mice due to Disorganized Apical Membrane Structure and Function of Thyrocytes. Thyroid 2021; 31:1650-1661. [PMID: 34470464 PMCID: PMC8917886 DOI: 10.1089/thy.2021.0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Congenital hypothyroidism is often caused by genetic mutations that impair thyroid hormone (TH) production, resulting in growth and development defects. XB130 (actin filament associated protein 1 like 2) is an adaptor/scaffold protein that plays important roles in cell proliferation, migration, intracellular signal transduction, and tumorigenesis. It is highly expressed in thyrocytes, however, its function in the thyroid remains largely unexplored. Methods:Xb130-/- mice and their littermates were studied. Postnatal growth and growth hormone levels were measured, and responses to low or high-iodine diet, and levothyroxine treatment were examined. TH and thyrotropin in the serum and TH in the thyroid glands were quantified. Structure and function of thyrocytes in embryos and postnatal life were studied with histology, immunohistochemistry, immunofluorescence staining, Western blotting, and quantitative reverse transcription polymerase chain reaction. Results:Xb130-/- mice exhibited transient growth retardation postnatally, due to congenital hypothyroidism with reduced TH synthesis and secretion, which could be rescued by exogenous thyroxine supplementation. The thyroid glands of Xb130-/- mice displayed diminished thyroglobulin iodination and release at both embryonic and early postnatal stages. XB130 was found mainly on the apical membrane of thyroid follicles. Thyroid glands of embryonic and postnatal Xb130-/- mice exhibited disorganized apical membrane structure, delayed folliculogenesis, and abnormal formation of thyroid follicle lumina. Conclusion: XB130 critically regulates folliculogenesis by maintaining apical membrane structure and function of thyrocytes, and its deficiency leads to congenital hypothyroidism.
Collapse
Affiliation(s)
- Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Hiroki Shimizu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Xiao-Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Sylvia L. Asa
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
- University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel Refetoff
- Department of Medicine and Chicago, Illinois, USA
- Department of Pediatrics; and Chicago, Illinois, USA
- Department of Committee on Genetics; The University of Chicago, Chicago, Illinois, USA
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, and University of Toronto, Toronto, Ontario, Canada
- Department of Medicine; and University of Toronto, Toronto, Ontario, Canada
- Department of Institute of Medical Science; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Address correspondence to: Mingyao Liu, MD, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Room: PMCRT2-814, Toronto M5G 1L7, Canada
| |
Collapse
|
5
|
Saren G, Wong A, Lu YB, Baciu C, Zhou W, Zamel R, Soltanieh S, Sugihara J, Liu M. Ischemia-Reperfusion Injury in a Simulated Lung Transplant Setting Differentially Regulates Transcriptomic Profiles between Human Lung Endothelial and Epithelial Cells. Cells 2021; 10:cells10102713. [PMID: 34685693 PMCID: PMC8534993 DOI: 10.3390/cells10102713] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Current understanding of mechanisms of ischemia-reperfusion-induced lung injury during lung preservation and transplantation is mainly based on clinical observations and animal studies. Herein, we used cell and systems biology approaches to explore these mechanisms at transcriptomics levels, especially by focusing on the differences between human lung endothelial and epithelial cells, which are crucial for maintaining essential lung structure and function. Human pulmonary microvascular endothelial cells and human lung epithelial cells were cultured to confluent, subjected to different cold ischemic times (CIT) to mimic static cold storage with preservation solution, and then subjected to warm reperfusion with a serum containing culture medium to simulate lung transplantation. Cell morphology, viability, and transcriptomic profiles were studied. Ischemia-reperfusion injury induced a CIT time-dependent cell death, which was associated with dramatic changes in gene expression. Under normal control conditions, endothelial cells showed gene clusters enriched in the vascular process and inflammation, while epithelial cells showed gene clusters enriched in protein biosynthesis and metabolism. CIT 6 h alone or after reperfusion had little effect on these phenotypic characteristics. After CIT 18 h, protein-biosynthesis-related gene clusters disappeared in epithelial cells; after reperfusion, metabolism-related gene clusters in epithelial cells and multiple gene clusters in the endothelial cells also disappeared. Human pulmonary endothelial and epithelial cells have distinct phenotypic transcriptomic signatures. Severe cellular injury reduces these gene expression signatures in a cell-type-dependent manner. Therapeutics that preserve these transcriptomic signatures may represent new treatment to prevent acute lung injury during lung transplantation.
Collapse
Affiliation(s)
- Gaowa Saren
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Aaron Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
| | - Yun-Bi Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Wenyong Zhou
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Sahar Soltanieh
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Junichi Sugihara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (G.S.); (A.W.); (Y.-B.L.); (C.B.); (W.Z.); (R.Z.); (S.S.); (J.S.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
- Department of Surgery, Medicine and Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1X8, Canada
- Correspondence:
| |
Collapse
|
6
|
Chen N, Zhang G, Fu J, Wu Q. Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer 2020; 11:3168-3174. [PMID: 32930509 PMCID: PMC7606025 DOI: 10.1111/1759-7714.13636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Matrix metalloproteinase‐14 (MMP‐14) is known to be a key regulator of oncogenesis and tumor progression. The present study was designed to assess the relationship between the downregulation of MMP‐14 and the in vitro proliferative, migratory, and invasive activity of esophageal squamous cell carcinoma (ESCC) cells. Methods MMP‐14 expression in human ESCC and paracancerous normal esophageal tissue samples was evaluated via immunohistochemistry, and correlations between MMP‐14 staining and patient clinicopathological features were examined. In addition, siRNA was used to knockdown MMP‐14 in ESCC cells, and the proliferation and invasive activity of these cells were then evaluated via MTT and Transwell assays, respectively. Flow cytometry was additionally used to assess cell cycle progression, while Western blotting was employed to measure protein levels within these cells. Results ESCC samples were found to exhibit MMP‐14 overexpression relative to paracancerous tissue samples, and this overexpression was positively correlated with tumor T classification (T1‐2 vs. T3; P < 0.05), N classification (negative vs. positive; P < 0.001), degree of differentiation (G1 vs. G3, P < 0.05; G2 vs. G3, P < 0.05) and clinical stage (I–IIA vs. IIB–III; P < 0.05). When MMP‐14 was knocked down in ESCC cells, this induced cell cycle arrest, impairing their proliferative and invasive activity. Conclusions MMP‐14 is a key regulator of the proliferation and invasion of ESCC cells, making it a viable therapeutic target for the treatment of this cancer.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Amararathna M, Hoskin DW, Rupasinghe HPV. Anthocyanin-rich haskap (Lonicera caerulea L.) berry extracts reduce nitrosamine-induced DNA damage in human normal lung epithelial cells in vitro. Food Chem Toxicol 2020; 141:111404. [PMID: 32413456 DOI: 10.1016/j.fct.2020.111404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Diets rich in polyphenols are known to reduce cancer among high-risk populations. Haskap (Lonicera caerulea L.) berry has abundant phenolic acids and flavonoids, especially anthocyanins. Tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) present in cigarette smoke, is a major lung carcinogenic factor. We analyzed the efficacy of anthocyanin-rich haskap berry extracts in preventing DNA damage induced by 4-[(acetoxymethyl) nitrosamino]-1-(3-pyridyl)-1-butanone (NNKOAc), a precursor of NKK, in human lung epithelial BEAS-2B cells in vitro. A cocktail of monomeric polyphenols from haskap berries was extracted separately in ethanol and water and profiled. Sub-lethal concentrations of NNKOAc were used to induce DNA damage in BEAS-2B cells, and a cell viability assay was performed to confirm that the tested concentrations of haskap extracts were not cytotoxic to BEAS-2B cells. Cells were pre-treated with the haskap extracts prior to NNKOAc exposure. Dose-dependent DNA damage was observed with carcinogenic NNKOAc, but did not occur in the presence of the haskap extracts. Pre-treatment of the cells with the haskap extracts significantly reduced NNKOAc-induced DNA damage, DNA fragmentation, and intracellular reactive oxygen species and upregulated the ATM-dependent DNA damage repair cascade compared to non-treated BEAS-2B cells. The protective effect of haskap extracts could be related to their polyphenol content and high antioxidant capacity.
Collapse
Affiliation(s)
- M Amararathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - D W Hoskin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Cho HR, Wang Y, Bai X, Xiang YY, Lu C, Post A, Al Habeeb A, Liu M. XB130 deficiency enhances carcinogen-induced skin tumorigenesis. Carcinogenesis 2019; 40:1363-1375. [DOI: 10.1093/carcin/bgz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractXB130 is an adaptor protein that functions as a mediator of multiple tyrosine kinases important for regulating cell proliferation, survival, migration and invasion. Formerly predicted as an oncogene, alterations of its expression are documented in various human cancers. However, the exact role of XB130 in tumorigenesis is unknown. To address its function in skin tumorigenesis, a two-stage dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol 13-acetate (TPA) study was performed on XB130 knockout (KO), heterozygous (HZ) and wild-type (WT) littermate mice. DMBA/TPA-treated XB130 KO and HZ males developed a significantly higher number of epidermal tumors that were notably larger in size than did WT mice. Interestingly, DMBA/TPA-treated female mice did not show any difference in tumor multiplicity regardless of the genotypes. The skin tumor lesions of XB130 KO males were more progressed with an increased frequency of keratoacanthoma. Deficiency of XB130 dramatically increased epidermal tumor cell proliferation. The responses to DMBA and TPA stimuli were also individually investigated to elucidate the mechanistic role of XB130 at different stages of tumorigenesis. DMBA-treated male XB130 KO mice showed compensatory p53-mediated stress response. TPA-treated XB130 KO males demonstrated more skin ulceration with more severe edema, enhanced cell proliferation, accumulation of infiltrating neutrophils and increased production of pro-inflammatory cytokine genes compared with WT mice. Enhanced activities of nuclear factor-kappa B pathway, increased protein expression of metalloproteinase-9 and ERK1/2 phosphorylation were found in these KO mice. These findings demonstrate that XB130 acts as a tumor suppressor in carcinogen-induced skin tumorigenesis that may be mediated through inhibiting inflammation.
Collapse
Affiliation(s)
- Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Yun-Yan Xiang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Christina Lu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Alexander Post
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
| | - Ayman Al Habeeb
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Assessment of E-cigarette impact on smokers: The importance of experimental conditions relevant to human consumption. Proc Natl Acad Sci U S A 2018. [PMID: 29535226 DOI: 10.1073/pnas.1801967115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Moodley S, Derouet M, Bai XH, Xu F, Kapus A, Yang BB, Liu M. Stimulus-dependent dissociation between XB130 and Tks5 scaffold proteins promotes airway epithelial cell migration. Oncotarget 2018; 7:76437-76452. [PMID: 27835612 PMCID: PMC5363521 DOI: 10.18632/oncotarget.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Repair of airway epithelium after injury requires migration of neighboring epithelial cells to injured areas. However, the molecular mechanisms regulating airway epithelial cell migration is not well defined. We have previously shown that XB130, a scaffold protein, is required for airway epithelial repair and regeneration in vivo, and interaction between XB130 and another scaffold protein, Tks5, regulates cell proliferation and survival in human bronchial epithelial cells. The objective of the present study was to determine the role of XB130 and Tks5 interaction in airway epithelial cell migration. Interestingly, we found that XB130 only promotes lateral cell migration, whereas, Tks5 promotes cell migration/invasion via proteolysis of extracellular matrix. Upon stimulation with EGF, PKC activator phorbol 12, 13-dibutyrate or a nicotinic acetylcholine receptor ligand, XB130 and Tks5 translocated to the cell membrane in a stimulus-dependent manner. The translocation and distribution of XB130 is similar to lamellipodial marker, WAVE2; whereas Tks5 is similar to podosome marker, N-WASP. Over-expression of XB130 or Tks5 alone enhances cell migration, whereas co-expression of both XB130 and Tks5 inhibits cell migration processes and signaling. Furthermore, XB130 interacts with Rac1 whereas Tks5 interacts with Cdc42 to promote Rho GTPase activity. Our results suggest that dissociation between XB130 and Tks5 may facilitate lateral cell migration via XB130/Rac1, and vertical cell migration via Tks5/Cdc42. These molecular mechanisms will help our understanding of airway epithelial repair and regeneration.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Mathieu Derouet
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Feng Xu
- Advanced Optical Microscopy Facility, UHN, Toronto, Canada
| | - Andras Kapus
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada
| | - Burton B Yang
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Mingyao Liu
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
11
|
Chen B, Liao M, Wei Q, Liu F, Zeng Q, Wang W, Liu J, Hou J, Yu X, Liu J. XB130 is overexpressed in prostate cancer and involved in cell growth and invasion. Oncotarget 2018; 7:59377-59387. [PMID: 27509056 PMCID: PMC5312318 DOI: 10.18632/oncotarget.11074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
XB130 is a cytosolic adaptor protein involved in various physiological processes and oncogenesis of certain malignancies, but its role in the development of prostate cancer remains unclear. In current study, we examined XB130 expression in prostate cancer tissues and found that XB130 expression was remarkably increased in prostate cancer tissues and significantly correlated with increased prostate specific antigen (PSA), free PSA (f-PSA), prostatic acid phosphatase (PAP) and T classification. Patients with highly expressed XB130 had significantly decreased survival, which suggested XB130 as a possible prognostic indicator for prostate cancer. In vitro experiments showed that reduced XB130 expression restrained tumor growth both in vitro and in vivo. Furthermore, XB130 knockdown hindered transition of G1 to S phase in prostate cancer cell line DU145 and LNCap, which might contribute to the inhibition of cellular proliferation. Results from transwell assay demonstrated that downregulation of XB130 may attenuate invasion and metastasis of prostate cancer. Semiquantitative analysis of Western blot suggested that decreased XB130 expression was accompanied by diminished Akt signaling and EMT process. Thus, above observations suggest that XB130 may be a novel molecular marker and potent therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Bin Chen
- Department of Science and Training, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China.,Guangzhou Huabo Biopharmaceutical Research Institute, Guangzhou, Guangdong, China
| | - Mengying Liao
- Department Of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qinsong Zeng
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Urology, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | | | - Xinpei Yu
- Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support and Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support, Guangzhou, Guangdong, China.,Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| | - Jian Liu
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People's Liberation Army, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Toba H, Tomankova T, Wang Y, Bai X, Cho HR, Guan Z, Adeyi OA, Tian F, Keshavjee S, Liu M. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury. Oncotarget 2018; 7:25420-31. [PMID: 27029000 PMCID: PMC5041914 DOI: 10.18632/oncotarget.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Tomankova
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zhehong Guan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele A Adeyi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Tian
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Toba H, Wang Y, Bai X, Zamel R, Cho HR, Liu H, Lira A, Keshavjee S, Liu M. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration. Oncotarget 2016; 6:30803-17. [PMID: 26360608 PMCID: PMC4741569 DOI: 10.18632/oncotarget.5062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Ricardo Zamel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Hongmei Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Alonso Lira
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, Universal Health Network, Toronto, ON, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Yamanaka D, Akama T, Chida K, Minami S, Ito K, Hakuno F, Takahashi SI. Phosphatidylinositol 3-Kinase-Associated Protein (PI3KAP)/XB130 Crosslinks Actin Filaments through Its Actin Binding and Multimerization Properties In Vitro and Enhances Endocytosis in HEK293 Cells. Front Endocrinol (Lausanne) 2016; 7:89. [PMID: 27462298 PMCID: PMC4939424 DOI: 10.3389/fendo.2016.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Actin-crosslinking proteins control actin filament networks and bundles and contribute to various cellular functions including regulation of cell migration, cell morphology, and endocytosis. Phosphatidylinositol 3-kinase-associated protein (PI3KAP)/XB130 has been reported to be localized to actin filaments (F-actin) and required for cell migration in thyroid carcinoma cells. Here, we show a role for PI3KAP/XB130 as an actin-crosslinking protein. First, we found that the carboxyl terminal region of PI3KAP/XB130 containing amino acid residues 830-840 was required and sufficient for localization to F-actin in NIH3T3 cells, and this region is directly bound to F-actin in vitro. Moreover, actin-crosslinking assay revealed that recombinant PI3KAP/XB130 crosslinked F-actin. In general, actin-crosslinking proteins often multimerize to assemble multiple actin-binding sites. We then investigated whether PI3KAP/XB130 could form a multimer. Blue native-PAGE analysis showed that recombinant PI3KAP/XB130 was detected at 250-1200 kDa although the molecular mass was approximately 125 kDa, suggesting that PI3KAP/XB130 formed multimers. Furthermore, we found that the amino terminal 40 amino acids were required for this multimerization by co-immunoprecipitation assay in HEK293T cells. Deletion mutants of PI3KAP/XB130 lacking the actin-binding region or the multimerizing region did not crosslink actin filaments, indicating that actin binding and multimerization of PI3KAP/XB130 were necessary to crosslink F-actin. Finally, we examined roles of PI3KAP/XB130 on endocytosis, an actin-related biological process. Overexpression of PI3KAP/XB130 enhanced dextran uptake in HEK 293 cells. However, most of the cells transfected with the deletion mutant lacking the actin-binding region incorporated dextran to a similar extent as control cells. Taken together, these results demonstrate that PI3KAP/XB130 crosslinks F-actin through both its actin-binding region and multimerizing region and plays an important role in endocytosis.
Collapse
Affiliation(s)
- Daisuke Yamanaka
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Takeshi Akama
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Kazuhiro Chida
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | - Shiro Minami
- Department of Bioregulation, Nippon Medical School, Kawasaki, Japan
| | - Koichi Ito
- Laboratory of Food and Physiological Models, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Japan
- *Correspondence: Fumihiko Hakuno, ; Shin-Ichiro Takahashi,
| |
Collapse
|
15
|
Moodley S, Hui Bai X, Kapus A, Yang B, Liu M. XB130/Tks5 scaffold protein interaction regulates Src-mediated cell proliferation and survival. Mol Biol Cell 2015; 26:4492-502. [PMID: 26446840 PMCID: PMC4666142 DOI: 10.1091/mbc.e15-07-0483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Tks5, like XB130, plays a role in cell proliferation and cell survival, and the interaction between XB130 and Tks5 is critical for regulation of Src-mediated cell proliferation and survival. The scaffold protein XB130 regulates cell growth, survival, and migration. Yeast two-hybrid screening suggests that XB130 interacts with another scaffold protein, Tks5. We hypothesized that XB130 and Tks5 form a macromolecular complex to mediate signal transduction cascades for the regulation of cell growth and survival. Coimmunoprecipitation demonstrated that XB130 and Tks5 interact endogenously and form a complex with Src tyrosine kinase. Structure–function studies showed that the fifth SH3 domain of Tks5 binds to the N-terminus of XB130, which contains polyproline-rich motifs. Cell growth and survival studies revealed that down-regulation of XB130 and/or Tks5 reduced cell proliferation, resulting in cell cycle inhibition at the G1 phase and increased caspase 3 activity and apoptosis. Moreover, cell proliferation and survival were increased by overexpression of XB130 or Tks5 but decreased when XB130/Tks5 binding was disrupted by overexpression of XB130 N-terminal deleted mutant and/or Tks5 fifth SH3 domain W1108A mutant. Furthermore, down-regulation of XB130 and/or Tks5 inhibited serum- and growth factor–induced Src activation and downstream phosphorylation of PI3K and Akt. Our results suggest that Tks5, similar to XB130, plays a role in cell proliferation and cell survival and that the interaction between XB130 and Tks5 appears to be critical for regulation of Src-mediated cellular homeostasis.
Collapse
Affiliation(s)
- Serisha Moodley
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Xiao Hui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andras Kapus
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Burton Yang
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mingyao Liu
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|