1
|
Sun Y, Hao G, Zhuang M, Lv H, Liu C, Su K. MEG3 LncRNA from Exosomes Released from Cancer-Associated Fibroblasts Enhances Cisplatin Chemoresistance in SCLC via a MiR-15a-5p/CCNE1 Axis. Yonsei Med J 2022; 63:229-240. [PMID: 35184425 PMCID: PMC8860932 DOI: 10.3349/ymj.2022.63.3.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) may act as oncogenes in small-cell lung cancer (SCLC). Exosomes containing lncRNAs released from cancer-associated fibroblasts (CAF) accelerate tumorigenesis and confer chemoresistance. This study aimed to explore the action mechanism of the CAF-derived lncRNA maternally expressed gene 3 (MEG3) on cisplatin (DDP) chemoresistance and cell processes in SCLC. MATERIALS AND METHODS Quantitative real-time PCR was conducted to determine the expression levels of MEG3, miR-15a-5p, and CCNE1. Cell viability and metastasis were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide and invasion assays, respectively. A xenograft tumor model was developed to confirm the effect of MEG3 overexpression on SCLC progression in vivo. Relationships between miR-15a-5p and MEG3/CCNE1 were predicted using StarBase software and validated by dual luciferase reporter assay. Western blotting was used to determine protein levels. A co-culture model was established to explore the effects of exosomes on MEG3 expression in SCLC cell lines. RESULTS MEG3 was overexpressed in SCLC tissues and cells. MEG3 silencing significantly repressed cell viability and metastasis in SCLC. High expression of MEG3 was observed in CAF-derived conditioned medium (CM) and exosomes, and promoted chemoresistance and cancer progression. Additionally, MEG3 was found to serve as a sponge of miR-15a-5p to mediate CCNE1 expression. Overexpression of miR-15a-5p and knockout of CCNE1 reversed the effects of MEG3 overexpression on cell viability and metastasis. CONCLUSION MEG3 lncRNA released from CAF-derived exosomes promotes DDP chemoresistance via regulation of a miR-15a-5p/CCNE1 axis. These findings may provide insight into SCLC therapy.
Collapse
Affiliation(s)
- Yulu Sun
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Guijun Hao
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Mengqi Zhuang
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Huijuan Lv
- Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chunhong Liu
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, China
| | - Keli Su
- Department of Oncology, The Fourth People's Hospital of Jinan, Jinan, China.
| |
Collapse
|
2
|
Mairinger F, Bankfalvi A, Schmid KW, Mairinger E, Mach P, Walter RF, Borchert S, Kasimir-Bauer S, Kimmig R, Buderath P. Digital Immune-Related Gene Expression Signatures In High-Grade Serous Ovarian Carcinoma: Developing Prediction Models For Platinum Response. Cancer Manag Res 2019; 11:9571-9583. [PMID: 31814759 PMCID: PMC6858803 DOI: 10.2147/cmar.s219872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose Response to platinum-based therapy is a major prognostic factor in high-grade serous ovarian cancer (HGSOC). While the exact mechanisms of platinum-resistance remain unclear, evidence is accumulating for a connection between the organism’s immune-response and response to platinum. However, predictive tools are missing. This study was performed to examine the putative role of the genetic tumor immune-microenvironment in mediating differential chemotherapy response in HGSOC patients. Patients and methods Expression profiling of 770 immune-related genes was performed in tumor tissues from 23 HGSOC cases. Tumors were screened for prognostic and predictive biomarkers using the NanoString nCounter platform for digital gene expression analysis with the appurtenant PanCancer Immune Profiling panel. As validation cohort, gene expression data (RNA Seq) of 303 patients with epithelial ovarian carcinoma (EOC) were retrieved from the The Cancer Genome Atlas (TCGA) database. Different scoring-systems were computed for prediction of risk-of-resistance to cisplatin, disease-free survival (DFS) and overall survival (OS). Results Validated on the TCGA-dataset, the developed scores identified 11 significantly differentially expressed genes (p <0.01**) associated with platinum response. HSD11B1 was highly significantly associated with lower risk of recurrence and 7 targets were found highly significantly influencing OS time (p <0.01**). Conclusion Our results suggest that response to platinum-based therapy and DFS in ovarian HGSOC is associated with distinct gene-expression patterns related to the tumor immune-system. We generated predictive scoring systems which proved valid when applied to a set of 303 EOC patients.
Collapse
Affiliation(s)
- Fabian Mairinger
- Institute for Pathology, University Hospital Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute for Pathology, University Hospital Essen, Essen, Germany
| | | | - Elena Mairinger
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Robert Fh Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Borchert
- Institute for Pathology, University Hospital Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Prusinski Fernung LE, Yang Q, Sakamuro D, Kumari A, Mas A, Al-Hendy A. Endocrine disruptor exposure during development increases incidence of uterine fibroids by altering DNA repair in myometrial stem cells. Biol Reprod 2019; 99:735-748. [PMID: 29688260 DOI: 10.1093/biolre/ioy097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the major negative impact uterine fibroids (UFs) have on female reproductive health, little is known about early events that initiate development of these tumors. Somatic fibroid-causing mutations in mediator complex subunit 12 (MED12), the most frequent genetic alterations in UFs (up to 85% of tumors), are implicated in transforming normal myometrial stem cells (MSCs) into tumor-forming cells, though the underlying mechanism(s) leading to these mutations remains unknown. It is well accepted that defective DNA repair increases the risk of acquiring tumor-driving mutations, though defects in DNA repair have not been explored in UF tumorigenesis. In the Eker rat UF model, a germline mutation in the Tsc2 tumor suppressor gene predisposes to UFs, which arise due to "second hits" in the normal allele of this gene. Risk for developing these tumors is significantly increased by early-life exposure to endocrine-disrupting chemicals (EDCs), suggesting increased UF penetrance is modulated by early drivers for these tumors. We analyzed DNA repair capacity using analyses of related gene and protein expression and DNA repair function in MSCs from adult rats exposed during uterine development to the model EDC diethylstilbestrol. Adult MSCs isolated from developmentally exposed rats demonstrated decreased DNA end-joining ability, higher levels of DNA damage, and impaired ability to repair DNA double-strand breaks relative to MSCs from age-matched, vehicle-exposed rats. These data suggest that early-life developmental EDC exposure alters these MSCs' ability to repair and reverse DNA damage, providing a driver for acquisition of mutations that may promote the development of these tumors in adult life.
Collapse
Affiliation(s)
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daitoku Sakamuro
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Alpana Kumari
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, USA
| | - Aymara Mas
- Reproductive Medicine Research Group, La Fe Health Research Institute, Valencia, Spain.,Igenomix, Paterna, Valencia, Spain.,Department of Obstetrics and Gynecology, Valencia University and INCLIVA, Valencia, Spain
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Shen Y, Pan X, Yang J. Gene regulation and prognostic indicators of lung squamous cell carcinoma: TCGA-derived miRNA/mRNA sequencing and DNA methylation data. J Cell Physiol 2019; 234:22896-22910. [PMID: 31169310 DOI: 10.1002/jcp.28852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 05/01/2019] [Indexed: 11/07/2022]
Abstract
Lung squamous cell carcinoma (LSCC) is a common cancer worldwide, and this study aimed to investigate the key regulatory networks and prognostic indicators of LSCC. MicroRNA (miRNA)/messenger RNA (mRNA) sequencing and DNA methylation data were obtained from the Cancer Genome Atlas. Differentially expressed miRNAs (DEmiRNAs) and genes (DEGs) were identified by the limma package. Then, the transcription factors (TFs) of DEmiRNAs/DEGs, as well as the targets of miRNAs, were predicted by the TFmiR online tool. Using the t test, aberrant methylation was detected in TF binding sites (TFBSs) in promoters. Finally, integrated network and survival analyses were conducted using SPSS software. We obtained 104 DEmiRNAs and 4,491 DEGs, and validated 2,113 DEGs (VDEGs). Then, 103 TFs, 295 TFs, and 14 DEmiRNAs were predicted to target 95 DEmiRNAs, 821 DEGs and 283 DEGs, respectively. After TF-DEmiRNA/DEG and TF-DEmiRNA-DEG networks were constructed (e.g., E2F1-CDC25A, miR29a-RAN, miR326-TBL1XR1), five feedforward loops between ZEB1 and miR-141/200a/200b/200c/429 were found. Furthermore, VDEGs CDC25A, RAN, TBL1XR1 as well as miR-130b and miR-590 were negatively correlated with survival rates. E2F1-CDC25A, miR29a-RAN, miR326-TBL1XR1, and the feedforward loops between ZEB1/ZEB2 and miR-141/200a/200b/200c/429 might participate in LSCC development. Compared with BEAS-2B cells, the SK-MES-1 cells presented a higher expression level of miR-141, miR-200a, miR-200b, miR-200c but a lower expression level of ZEB1. Overexpressed miR-200c significantly attenuated the expression of ZEB1 and ZEB2 and inhibited the proliferation and migration of SK-MES-1 cells (all p < 0.05). In addition, CDC25A, miR-200a, miR-200b, miR-200c, miR-130b, and miR-590 are potential prognostic indicators of LSCC.
Collapse
Affiliation(s)
- Yuzhou Shen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jun Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Inhibition of MDM2 via Nutlin-3A: A Potential Therapeutic Approach for Pleural Mesotheliomas with MDM2-Induced Inactivation of Wild-Type P53. JOURNAL OF ONCOLOGY 2018; 2018:1986982. [PMID: 30112000 PMCID: PMC6077509 DOI: 10.1155/2018/1986982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma (MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2 leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced stress and/or DNA damage response of cancer cells. Nutlin-3A (a cis-imidazoline analogue) has been described as a potent and selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of MDM2. In the present study, the effects of MDM2 inhibition in MPM via Nutlin-3A and standard platinum based chemotherapeutic agents were comparatively tested in three MPM cell lines (NCI-H2052, MSTO-211H, and NCI-H2452) showing different expression profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Our in vitro experiments on MPM cell lines revealed that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5 times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A, a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.
Collapse
|
6
|
Moris D, Ntanasis-Stathopoulos I, Tsilimigras DI, Adam MA, Yang CFJ, Harpole D, Theocharis S. Insights into Novel Prognostic and Possible Predictive Biomarkers of Lung Neuroendocrine Tumors. Cancer Genomics Proteomics 2018; 15:153-163. [PMID: 29496694 PMCID: PMC5892602 DOI: 10.21873/cgp.20073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
Primary lung neuroendocrine tumors (NETs) consist of typical and atypical carcinoids, large-cell neuroendocrine carcinomas and small-cell lung carcinomas. NETs are highly heterogeneous in histological characteristics, clinical presentation and natural history. While there are morphological and immunohistochemical criteria to establish diagnosis, there is a lack of universal consensus for prognostic factors or therapeutic targets for personalized treatment of the disease. Thus, identifying potential markers of neuroendocrine differentiation and prognostic factors remains of high importance. This review provides an insight into promising molecules and genes that are implicated in NET carcinogenesis, cell-cycle regulation, chromatin remodeling, apoptosis, intracellular cascades and cell-cell interactions. Additionally it supports a basis for classifying these tumors into categories that distinct molecular characteristics and disease natural history, which may have a direct impact on treatment options. In light of the recent approval of everolimus, mammalian target of rapamycin pathway inhibition and related biomarkers may play a central role in the treatment of pulmonary NETs. Future clinical trials that integrate molecular profiling are deemed necessary in order to treat patients with NET on a personalized basis.
Collapse
Affiliation(s)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis I Tsilimigras
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | - Mohamad A Adam
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | | | - David Harpole
- Department of Surgery, Duke University, Durham, NC, U.S.A
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Walter RFH, Mairinger FD, Werner R, Vollbrecht C, Hager T, Schmid KW, Wohlschlaeger J, Christoph DC. Folic-acid metabolism and DNA-repair phenotypes differ between neuroendocrine lung tumors and associate with aggressive subtypes, therapy resistance and outcome. Oncotarget 2018; 7:20166-79. [PMID: 27064343 PMCID: PMC4991445 DOI: 10.18632/oncotarget.7737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 02/02/2023] Open
Abstract
Purpose 25% of all lung cancer cases are neuroendocrine (NELC) including typical (TC) and atypical carcinoid (AC), large-cell neuroendocrine (LCNEC) and small cell lung cancer (SCLC). Prognostic and predictive biomarkers are lacking. Experimental Design Sixty patients were used for nCounter mRNA expression analysis of the folic-acid metabolism (ATIC, DHFR, FOLR1, FPGS, GART, GGT1, SLC19A1, TYMS) and DNA-repair (ERCC1, MLH1, MSH2, MSH6, XRCC1). Phenotypic classification classified tumors (either below or above the median expression level) with respect to the folic acid metabolism or DNA repair. Results Expression of FOLR1, FPGS, MLH1 and TYMS (each p<0.0001) differed significantly between all four tumor types. FOLR1 and FPGS associated with tumor differentiation (both p<0.0001), spread to regional lymph nodes (FOLR1 p=0.0001 and FPGS p=0.0038), OS and PFS (FOLR1 p<0.0050 for both and FPGS p<0.0004 for OS). Phenotypic sorting revealed the Ft-phenotype to be the most prominent expression profile in carcinoids, whereas SCLC presented nearly univocal with the fT and LCNEC with fT or ft. These results were significant for tumor subtype (p<0.0001). Conclusions The assessed biomarkers and phenotypes allow for risk stratification (OS, PFS), diagnostic classification and enhance the biological understanding of the different subtypes of neuroendocrine tumors revealing potential new therapy options and clarifying known resistance mechanisms.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik Essen, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, Ev.-Luth. Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Lam D, Lively S, Schlichter LC. Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K + channels and migration. J Neuroinflammation 2017; 14:166. [PMID: 28830445 PMCID: PMC5567442 DOI: 10.1186/s12974-017-0941-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.
Collapse
Affiliation(s)
- Doris Lam
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Krembil Research Institute, University Health Network, Krembil Discovery Tower, Room 7KD417, 60 Leonard Avenue, Toronto, ON, M5T 2S8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Li H, Lv B, Kong L, Xia J, Zhu M, Hu L, Zhen D, Wu Y, Jia X, Zhu S, Cui H. Nova1 mediates resistance of rat pheochromocytoma cells to hypoxia-induced apoptosis via the Bax/Bcl-2/caspase-3 pathway. Int J Mol Med 2017; 40:1125-1133. [PMID: 28791345 PMCID: PMC5593465 DOI: 10.3892/ijmm.2017.3089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Neuro-oncological ventral antigen 1 (Nova1) is a well known brain-specific splicing factor. Several studies have identified Nova1 as a regulatory protein at the top of a hierarchical network. However, the function of Nova1 during hypoxia remains poorly understood. This study aimed to investigate the protective effect of Nova1 against cell hypoxia and to further explore the Bax/Bcl-2/caspase-3 pathway as a potential mechanism. During hypoxia, the survival rate of pheochromocytoma PC12 cells was gradually decreased and the apoptosis rate was gradually increased, peaking at 48 h of hypoxia. At 48 h after transfection of PC12 cells with pCMV-Myc-Nova1, the expression of Nova1 was significantly increased, with wide distribution in the cytoplasm and nucleus. Moreover, the survival rate was significantly increased and the apoptosis rate was significantly decreased. Additionally, the mRNA and protein expression levels of Bax and caspase-3 were significantly increased in the pCMV-Myc group and significantly decreased in the pCMV-Myc-Nova1 group, whereas that of Bcl-2 was significantly decreased in the pCMV-Myc group and significantly increased in the pCMV-Myc-Nova1 group. This study indicated that Nova1 could be linked to resistance to the hypoxia-induced apoptosis of PC12 cells via the Bax/Bcl-2/caspase-3 pathway, and this finding may be of significance for exploring novel mechanisms of hypoxia and the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Hualing Li
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Bei Lv
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ling Kong
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jing Xia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Ming Zhu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Lijuan Hu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Danyang Zhen
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Yifan Wu
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaoqin Jia
- Department of Biochemistry, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Sujuan Zhu
- Department of Biochemistry, Biosciences and Biotechnology College of Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
10
|
Mairinger FD, Werner R, Flom E, Schmeller J, Borchert S, Wessolly M, Wohlschlaeger J, Hager T, Mairinger T, Kollmeier J, Christoph DC, Schmid KW, Walter RFH. miRNA regulation is important for DNA damage repair and recognition in malignant pleural mesothelioma. Virchows Arch 2017; 470:627-637. [PMID: 28466156 DOI: 10.1007/s00428-017-2133-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
Abstract
Platin-containing regimes are currently considered as state-of-the-art therapies in malignant pleural mesotheliomas (MPM) but show dissatisfying response rates ranging from 6 to 16% only. Still, the reasons for the rather poor efficacy remain largely unknown. A clear stratification of patients based on new biomarkers seems to be a promising approach to enhance clinical management, which would be a long-needed improvement for MPM patients but does not seem likely soon unless new biomarkers can be validated. Twenty-four formalin-fixed, paraffin-embedded (FFPE) tumour specimens were subjected to a miRNA expression screening of 800 important miRNAs using digital quantification via the nCounter technique (NanoString). We defined a small subset of miRNAs regulating the key enzymes involved in the repair of platin-associated DNA damage. Particularly, the TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main miRNA targets within this context. The TP53 pathway network for DNA damage recognition as well as genes related to the term "BRCAness" are the main players for risk stratification in patients suffering from this severe disease. Taking the specific molecular profile of the tumour into account can help to enhance the clinical management prospectively and to smooth the way to better response prediction.
Collapse
Affiliation(s)
- Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Robert Werner
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Elena Flom
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Thomas Mairinger
- Institute of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Jens Kollmeier
- Institute of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Robert Fred Henry Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Sgariglia R, Pisapia P, Nacchio M, De Luca C, Pepe F, Russo M, Bellevicine C, Troncone G, Malapelle U. Multiplex digital colour-coded barcode technology on RNA extracted from routine cytological samples of patients with non-small cell lung cancer: pilot study. J Clin Pathol 2017; 70:803-806. [DOI: 10.1136/jclinpath-2017-204373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
In the advanced stages of non-small cell lung cancer (NSCLC), molecular testing is often performed on archival cytological smears. The nCounter system (NanoString Technologies) is a new promising multiplex digital colour-coded barcode technology. However, its feasibility to evaluate the RNA expression of clinical relevant biomarkers on routine cytological smears is still uncertain. To this end, RNA was extracted from 12 NSCLC routine stained cytological smears, and nCounter analysis performed by using a 48-gene panel. Overall, 11/12 (92%) of the smears were adequate for the secondary analysis, fulfilling the quality check parameter analysis of nSolver software. This pilot study shows that RNA nCounter analysis is feasible on routine cytological smears preparing the field for the implementation of this technology in the routine setting.
Collapse
|
12
|
Walter RFH, Vollbrecht C, Werner R, Wohlschlaeger J, Christoph DC, Schmid KW, Mairinger FD. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma. Oncotarget 2017; 7:18713-21. [PMID: 26918730 PMCID: PMC4951323 DOI: 10.18632/oncotarget.7666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, University Hospital Cologne, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| |
Collapse
|
13
|
ACTB, CDKN1B, GAPDH, GRB2, RHOA and SDCBP Were Identified as Reference Genes in Neuroendocrine Lung Cancer via the nCounter Technology. PLoS One 2016; 11:e0165181. [PMID: 27802291 PMCID: PMC5089548 DOI: 10.1371/journal.pone.0165181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/08/2016] [Indexed: 01/18/2023] Open
Abstract
Background Neuroendocrine lung cancer (NELC) represents 25% of all lung cancer cases and large patient collectives exist as formalin-fixed, paraffin-embedded (FFPE) tissue only. FFPE is controversially discussed as source for molecular biological analyses and reference genes for NELC are poorly establishes. Material and methods Forty-three representative FFPE-specimens were used for mRNA expression analysis using the digital nCounter technology (NanoString). Based on recent literature, a total of 91 mRNA targets were investigated as potential tumor markers or reference genes. The geNorm, NormFinder algorithms and coefficient of correlation were used to identify the most stable reference genes. Statistical analysis was performed by using the R programming environment (version 3.1.1) Results RNA integrity (RIN) ranged from 1.8 to 2.6 and concentrations from 34 to 2,109 ng/μl. However, the nCounter technology gave evaluable results for all samples tested. ACTB, CDKN1B, GAPDH, GRB2, RHOA and SDCBP were identified as constantly expressed genes with high stability (M-)values according to geNorm, NormFinder and coefficients of correlation. Conclusion FFPE-derived mRNA is suitable for molecular biological investigations via the nCounter technology, although it is highly degraded. ACTB, CDKN1B, GAPDH, GRB2, RHOA and SDCBP are potent reference genes in neuroendocrine tumors of the lung.
Collapse
|
14
|
Walter RFH, Vollbrecht C, Werner R, Mairinger T, Schmeller J, Flom E, Wohlschlaeger J, Barbetakis N, Paliouras D, Chatzinikolaou F, Adamidis V, Tsakiridis K, Zarogoulidis P, Trakada G, Christoph DC, Schmid KW, Mairinger FD. Screening of Pleural Mesotheliomas for DNA-damage Repair Players by Digital Gene Expression Analysis Can Enhance Clinical Management of Patients Receiving Platin-Based Chemotherapy. J Cancer 2016; 7:1915-1925. [PMID: 27698933 PMCID: PMC5039377 DOI: 10.7150/jca.16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/14/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumour leading to a dismal prognosis. Multimodality therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons for the rather poor efficacy of platinum compounds remain largely unknown. Material and Methods: For this exploratory mRNA study, 24 FFPE tumour specimens were screened by digital gene expression analysis. Based on data from preliminary experiments and recent literature, a total of 366 mRNAs were investigated using a Custom CodeSet from NanoString. All statistical analyses were calculated with the R i386 statistical programming environment. Results: CDC25A and PARP1 gene expression were correlated with lymph node spread, BRCA1 and TP73 expression levels with higher IMIG stage. NTHL1 and XRCC3 expression was associated with TNM stage. CHECK1 as well as XRCC2 expression levels were correlated with tumour progression in the overall cohort of patients. CDKN2A and MLH1 gene expression influenced overall survival in this collective. In the adjuvant treated cohort only, CDKN2A, CHEK1 as well as ERCC1 were significantly associated with overall survival. Furthermore, TP73 expression was associated with progression in this subgroup. Conclusion: DNA-damage response plays a crucial role in response to platin-based chemotherapeutic regimes. In particular, CHEK1, XRCC2 and TP73 are strongly associated with tumour progression. ERCC1, MLH1, CDKN2A and most promising CHEK1 are prognostic markers for OS in MPM. TP73, CDKN2A, CHEK1 and ERCC1 seem to be also predictive markers in adjuvant treated MPMs. After a prospective validation, these markers may improve clinical and pathological practice, finally leading to a patients' benefit by an enhanced clinical management.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Flom
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;; Institute of Pathology, Ev.-Luth. Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Nikolaos Barbetakis
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | - Dimitrios Paliouras
- Thoracic Surgery Department, Theagenio Cancer Hospital, Thessaloniki, Greece
| | | | - Vasilis Adamidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Tsakiridis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Trakada
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
15
|
Rudd J, Zelaya RA, Demidenko E, Goode EL, Greene CS, Doherty JA. Leveraging global gene expression patterns to predict expression of unmeasured genes. BMC Genomics 2015; 16:1065. [PMID: 26666289 PMCID: PMC4678722 DOI: 10.1186/s12864-015-2250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/27/2015] [Indexed: 12/31/2022] Open
Abstract
Background Large collections of paraffin-embedded tissue represent a rich resource to test hypotheses based on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately predict the expression of a maximized number of unmeasured genes. Results We developed a greedy gene set selection (GGS) algorithm which returns a DM set of user specified size based on a specific correlation threshold (|rP|) and minimum number of DM genes that must be correlated to an unmeasured gene in order to infer the value of the unmeasured gene (redundancy). We evaluated GGS in the Cancer Genome Atlas (TCGA) HGSC data across 144 combinations of DM size, redundancy (1–3), and |rP| (0.60, 0.65, 0.70). Across the parameter sweep, GGS allows on average 9 times more gene expression information to be captured compared to the DM set alone. GGS successfully augments prognostic HGSC gene sets; the addition of 20 GGS selected genes more than doubles the number of genes whose expression is predictable. Moreover, the expression prediction is highly accurate. After training regression models for the predictable gene set using 2/3 of the TCGA data, the average accuracy (ranked correlation of true and predicted values) in the 1/3 testing partition and four independent populations is above 0.65 and approaches 0.8 for conservative parameter sets. We observe similar accuracies in the TCGA HGSC RNA-sequencing data. Specifically, the prediction accuracy increases with increasing redundancy and increasing |rP|. Conclusions GGS-selected genes, which maximize expression information about unmeasured genes, can be combined with candidate gene sets as a cost effective way to increase the amount of gene expression information obtained in large studies. This method can be applied to any organism, model system, disease, or tissue type for which whole genome gene expression data exists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2250-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Rudd
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| | - René A Zelaya
- Department of Genetics, Geisel School of Medicine at Dartmouth College; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 10-131 SCTR, 34th & Civic Center Boulevard, Philadelphia, PA, 19104-5158, USA.
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| | - Ellen L Goode
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Casey S Greene
- Department of Genetics, Geisel School of Medicine at Dartmouth College; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, 10-131 SCTR, 34th & Civic Center Boulevard, Philadelphia, PA, 19104-5158, USA.
| | - Jennifer A Doherty
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, 7927 Rubin Building, Lebanon, NH, 03756, USA.
| |
Collapse
|