1
|
Chaiyawat P, Sangkhathat S, Chiangjong W, Wongtrakoongate P, Hongeng S, Pruksakorn D, Chutipongtanate S. Targeting pediatric solid tumors in the new era of RNA therapeutics. Crit Rev Oncol Hematol 2024; 200:104406. [PMID: 38834094 DOI: 10.1016/j.critrevonc.2024.104406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Despite substantial progress in pediatric cancer treatment, poor prognosis remained for patients with recurrent or metastatic disease, given the limitations of approved targeted treatments and immunotherapies. RNA therapeutics offer significant potential for addressing a broad spectrum of diseases, including cancer. Advances in manufacturing and delivery systems are paving the way for the rapid development of therapeutic RNAs for clinical applications. This review summarizes therapeutic RNA classifications and the mechanisms of action, highlighting their potential in manipulating major cancer-related pathways and biological effects. We also focus on the pre-clinical investigation of RNA molecules with efficient delivery systems for their therapeutic potential targeting pediatric solid tumors.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Surasak Sangkhathat
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ra-mathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
3
|
P-glycoprotein Mediates Resistance to the Anaplastic Lymphoma Kinase Inhiitor Ensartinib in Cancer Cells. Cancers (Basel) 2022; 14:cancers14092341. [PMID: 35565470 PMCID: PMC9104801 DOI: 10.3390/cancers14092341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ensartinib (X-396) is a promising second-generation small-molecule inhibitor of anaplastic lymphoma kinase (ALK) that was developed for the treatment of ALK-positive non-small-cell lung cancer. Preclinical and clinical trial results for ensartinib showed superior efficacy and a favorable safety profile compared to the first-generation ALK inhibitors that have been approved by the U.S. Food and Drug Administration. Although the potential mechanisms of acquired resistance to ensartinib have not been reported, the inevitable emergence of resistance to ensartinib may limit its therapeutic application in cancer. In this work, we investigated the interaction of ensartinib with P-glycoprotein (P-gp) and ABCG2, two ATP-binding cassette (ABC) multidrug efflux transporters that are commonly associated with the development of multidrug resistance in cancer cells. Our results revealed that P-gp overexpression, but not expression of ABCG2, was associated with reduced cancer cell susceptibility to ensartinib. P-gp directly decreased the intracellular accumulation of ensartinib, and consequently reduced apoptosis and cytotoxicity induced by this drug. The cytotoxicity of ensartinib could be significantly reversed by treatment with the P-gp inhibitor tariquidar. In conclusion, we report that ensartinib is a substrate of P-gp, and provide evidence that this transporter plays a role in the development of ensartinib resistance. Further investigation is needed.
Collapse
|
4
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Brenner AK, Gunnes MW. Therapeutic Targeting of the Anaplastic Lymphoma Kinase (ALK) in Neuroblastoma-A Comprehensive Update. Pharmaceutics 2021; 13:pharmaceutics13091427. [PMID: 34575503 PMCID: PMC8470592 DOI: 10.3390/pharmaceutics13091427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma (NBL) is an embryonic malignancy of the sympathetic nervous system and mostly affects children under the age of five. NBL is highly heterogeneous and ranges from spontaneously regressing to highly aggressive disease. One of the risk factors for poor prognosis are aberrations in the receptor tyrosine kinase anaplastic lymphoma kinase (ALK), which is involved in the normal development and function of the nervous system. ALK mutations lead to constitutive activation of ALK and its downstream signalling pathways, thus driving tumorigenesis. A wide range of steric ALK inhibitors has been synthesized, and several of these inhibitors are already in clinical use. Major challenges are acquired drug resistance to steric inhibitors and pathway evasion strategies of cancer cells upon targeted therapy. This review will give a comprehensive overview on ALK inhibitors in clinical use in high-risk NBL and on the potential and limitations of novel inhibitors. Because combinatory treatment regimens are probably less likely to induce drug resistance, a special focus will be on the combination of ALK inhibitors with drugs that either target downstream signalling pathways or that affect the survival and proliferation of cancer cells in general.
Collapse
|
6
|
Wang Y, Yuan X, Xiong J, Hao Z, Peng X, Chen W, Cui L, Li H, Wang X, He X, Yang M, Liang C, Ma Y, Ding L, Mao L. [Pharmacology and Clinical Evaluation of Ensartinib Hydrochloride Capsule]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:719-729. [PMID: 32838492 PMCID: PMC7467989 DOI: 10.3779/j.issn.1009-3419.2020.102.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
肺癌是全世界发病率和致死率最高的恶性肿瘤,其中非小细胞肺癌(non-small cell lung cancer, NSCLC)约占肺癌的85%。间变性淋巴瘤激酶(anaplastic lymphoma kinase, ALK)重排阳性的NSCLC仅占全部NSCLC的5%,但预后较差,因此积极的治疗非常迫切。盐酸恩沙替尼胶囊(ensartinib hydrochloride capsule,X-396,商品名贝美纳TM)是第二代ALK抑制剂,对ALK的抑制活性和肺癌中枢神经系统转移的有效性较克唑替尼更强,并且可抑制多个克唑替尼耐药突变位点,临床拟用于治疗克唑替尼耐药的ALK阳性NSCLC。文中对盐酸恩沙替尼胶囊在国内外开展的Ⅰ期-Ⅲ期临床试验进行了总结,并对其药理作用、药代动力学和药效学、临床疗效和安全性评价进行了综述。
Collapse
Affiliation(s)
- Yang Wang
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Xiaobin Yuan
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Jiayan Xiong
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Zhidong Hao
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Xingzhe Peng
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Wanlin Chen
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Lingling Cui
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Hua Li
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Xiulan Wang
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Xiangbo He
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Min Yang
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Congxin Liang
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Yongbin Ma
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Lieming Ding
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| | - Li Mao
- Betta Pharmaceuticals Co., Ltd, Hangzhou 311100, China
| |
Collapse
|
7
|
Verma A, Tiwari A, Panda PK, Saraf S, Jain A, Raikwar S, Bidla P, Jain SK. Liposomes for Advanced Drug Delivery. ADVANCED BIOPOLYMERIC SYSTEMS FOR DRUG DELIVERY 2020. [DOI: 10.1007/978-3-030-46923-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Rodríguez-Nogales C, Noguera R, Couvreur P, Blanco-Prieto MJ. Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. J Pharmacol Exp Ther 2019; 370:625-635. [PMID: 30635473 DOI: 10.1124/jpet.118.255067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 03/08/2025] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor preferentially occurring in preschoolers. Its characteristic aggressiveness and heterogeneous clinical behavior are especially visible in relapsed or refractory cases and hamper therapeutic success. Although the introduction of novel antitumor agents, such as dinutuximab, isotretinoin, irinotecan, or I-131- metaiodobenzylguanidine, has increased survival rates, the situation in high-risk NB remains dismal. Moreover, treatment is particularly aggressive in these patients, leading to short- and long-term toxicities. The extensive research performed using nanotechnology in recent decades has prompted its application as a therapeutic alternative to overcome some of the common limitations of conventional chemotherapy. Nevertheless, the therapeutic role of nanomedicine in pediatric tumors like NB is not fully elucidated, and to date, only albumin-bound paclitaxel nanoparticles have reached clinic stages. In this review, we summarize the current therapeutic strategies for NB with special attention to the use of nanomedicine. We also highlight the preclinical studies on passive and active targeting nanodelivery of therapeutics in experimental NB models.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department, University of Navarra (C.R.-N., M.J.B.-P.), and Instituto de Investigación Sanitaria de Navarra (IdiSNA) (C.R.-N., M.J.B.-P.), Pamplona, Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia (R.N.), and Cancer CIBER (CIBERONC), Madrid (R.N.), Spain; and Institut Galien Paris-Sud, UMR, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France (P.C.)
| | - Rosa Noguera
- Pharmacy and Pharmaceutical Technology Department, University of Navarra (C.R.-N., M.J.B.-P.), and Instituto de Investigación Sanitaria de Navarra (IdiSNA) (C.R.-N., M.J.B.-P.), Pamplona, Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia (R.N.), and Cancer CIBER (CIBERONC), Madrid (R.N.), Spain; and Institut Galien Paris-Sud, UMR, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France (P.C.)
| | - Patrick Couvreur
- Pharmacy and Pharmaceutical Technology Department, University of Navarra (C.R.-N., M.J.B.-P.), and Instituto de Investigación Sanitaria de Navarra (IdiSNA) (C.R.-N., M.J.B.-P.), Pamplona, Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia (R.N.), and Cancer CIBER (CIBERONC), Madrid (R.N.), Spain; and Institut Galien Paris-Sud, UMR, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France (P.C.)
| | - María J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, University of Navarra (C.R.-N., M.J.B.-P.), and Instituto de Investigación Sanitaria de Navarra (IdiSNA) (C.R.-N., M.J.B.-P.), Pamplona, Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia (R.N.), and Cancer CIBER (CIBERONC), Madrid (R.N.), Spain; and Institut Galien Paris-Sud, UMR, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex, France (P.C.)
| |
Collapse
|
9
|
Alessandri G, Coccè V, Pastorino F, Paroni R, Dei Cas M, Restelli F, Pollo B, Gatti L, Tremolada C, Berenzi A, Parati E, Brini AT, Bondiolotti G, Ponzoni M, Pessina A. Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. J Control Release 2019; 302:2-18. [DOI: 10.1016/j.jconrel.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
|
10
|
Cao Z, Gao Q, Fu M, Ni N, Pei Y, Ou WB. Anaplastic lymphoma kinase fusions: Roles in cancer and therapeutic perspectives. Oncol Lett 2019; 17:2020-2030. [PMID: 30675269 PMCID: PMC6341817 DOI: 10.3892/ol.2018.9856] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) serves a crucial role in brain development. ALK is located on the short arm of chromosome 2 (2p23) and exchange of chromosomal segments with other genes, including nucleophosmin (NPM), echinoderm microtubule-associated protein-like 4 (EML4) and Trk-fused gene (TFG), readily occurs. Such chromosomal translocation results in the formation of chimeric X-ALK fusion oncoproteins, which possess potential oncogenic functions due to constitutive activation of ALK kinase. These proteins contribute to the pathogenesis of various hematological malignancies and solid tumors, including lymphoma, lung cancer, inflammatory myofibroblastic tumors (IMTs), Spitz tumors, renal carcinoma, thyroid cancer, digestive tract cancer, breast cancer, leukemia and ovarian carcinoma. Targeting of ALK fusion oncoproteins exclusively, or in combination with ALK kinase inhibitors including crizotinib, is the most common therapeutic strategy. As is often the case for small-molecule tyrosine kinase inhibitors (TKIs), drug resistance eventually develops via an adaptive secondary mutation in the ALK fusion oncogene, or through engagement of alternative signaling mechanisms. The updated mechanisms of a variety of ALK fusions in tumorigenesis, proliferation and metastasis, in addition to targeted therapies are discussed below.
Collapse
Affiliation(s)
- Zhifa Cao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Qian Gao
- Emergency Department, Tianjin Fourth Central Hospital, Fourth Central Hospital Affiliated with Nankai University, Tianjin 300140, P.R. China
| | - Meixian Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yuting Pei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactors and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, P.R. China
| |
Collapse
|
11
|
Rapamycin inhibits proliferation and induces autophagy in human neuroblastoma cells. Biosci Rep 2018; 38:BSR20181822. [PMID: 30393233 PMCID: PMC6265625 DOI: 10.1042/bsr20181822] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the effect of Rapamycin on proliferation and autophagy in human neuroblastoma (NB) cell lines and to elucidate the possible mechanism. Methods NB cells were treated with different concentrations of Rapamycin. Cell counting kit-8 (CCK-8) was used to measure proliferation, and flow cytometry (FCM) was used to analyze the cell cycle. EM was used to observe cell morphological changes. Western blotting (WB) was performed to detect the expression of Beclin-1, LC3-I/II, P62, mammalian target of Rapamycin (mTOR), and p-mTOR. Results Rapamycin inhibited the spread of NB cells in a dose- and time-dependent manner and arrested the cell cycle at the G0/G1 phase. EM showed autophagosomes in NB cells treated with Rapamycin. The WB results showed that the expression levels of Beclin-1 and LC3-II/LC3-I were significantly elevated in NB cells treated with Rapamycin, while the expression levels of P62, mTOR, and p-mTOR proteins were significantly reduced compared with the control cells (P<0.05). Conclusion Rapamycin inhibits cell proliferation and induces autophagy in human NB cell lines. The mechanism may be related to suppression of the mTOR signaling pathway.
Collapse
|
12
|
Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802886. [PMID: 30294852 DOI: 10.1002/smll.201802886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Flavio Curnis
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Roberto Marotta
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Angelina Sacchi
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Matteo Bauckneht
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Andrea Rossi
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Daniela Di Paolo
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Alessandro Gori
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali, Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, 20131, Milan, Italy
| | - Angela R Sementa
- Department of Pathology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124, Bari, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), 16163, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, 20133, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16131, Genoa, Italy
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, 16132, Milan, Italy
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
13
|
Rodríguez-Nogales C, González-Fernández Y, Aldaz A, Couvreur P, Blanco-Prieto MJ. Nanomedicines for Pediatric Cancers. ACS NANO 2018; 12:7482-7496. [PMID: 30071163 DOI: 10.1021/acsnano.8b03684] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemotherapy protocols for childhood cancers are still problematic due to the high toxicity associated with chemotherapeutic agents and incorrect dosing regimens extrapolated from adults. Nanotechnology has demonstrated significant ability to reduce toxicity of anticancer compounds. Improvement in the therapeutic index of cytostatic drugs makes this strategy an alternative to common chemotherapy in adults. However, the lack of nanomedicines specifically for pediatric cancer care raises a medical conundrum. This review highlights the current state and progress of nanomedicine in pediatric cancer and discusses the real clinical challenges and opportunities.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department , University of Navarra , Pamplona 31008 , Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona 31008 , Spain
| | | | - Azucena Aldaz
- Department of Pharmacy , Clínica Universidad de Navarra , Pamplona 31008 , Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex 92296 , France
| | - María J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department , University of Navarra , Pamplona 31008 , Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona 31008 , Spain
| |
Collapse
|
14
|
Duong C, Yoshida S, Chen C, Barisone G, Diaz E, Li Y, Beckett L, Chung J, Antony R, Nolta J, Nitin N, Satake N. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA. Pediatr Res 2017; 82:527-535. [PMID: 28419087 PMCID: PMC5766270 DOI: 10.1038/pr.2017.74] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/03/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.
Collapse
Affiliation(s)
- Connie Duong
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California
| | - Sakiko Yoshida
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California,Department of Pediatrics, Niigata University, Japan
| | - Cathy Chen
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California
| | - Gustavo Barisone
- Department of Pharmacology, University of California, Davis, California,Department of Internal Medicine, University of California, Davis, California
| | - Elva Diaz
- Department of Pharmacology, University of California, Davis, California
| | - Yueju Li
- Department of Public Health Sciences, University of California, Davis, California
| | - Laurel Beckett
- Department of Public Health Sciences, University of California, Davis, California
| | - Jong Chung
- Department of Pediatrics, University of California, Davis, California
| | - Reuben Antony
- Department of Pediatrics, University of California, Davis, California
| | - Jan Nolta
- Stem Cell Program, University of California, Davis, California
| | - Nitin Nitin
- Department of Biological & Agricultural Engineering, University of California, Davis, California
| | - Noriko Satake
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California,Corresponding author: Noriko Satake, Department of Pediatrics, 2516 Stockton Blvd., Sacramento, CA 95817, Phone: 916-734-2781, FAX: 916-451-3014,
| |
Collapse
|
15
|
De Mariano M, Stigliani S, Moretti S, Parodi F, Croce M, Bernardi C, Pagano A, Tonini GP, Ferrini S, Longo L. A genome-wide microRNA profiling indicates miR-424-5p and miR-503-5p as regulators of ALK expression in neuroblastoma. Oncotarget 2017; 8:56518-56532. [PMID: 28915608 PMCID: PMC5593579 DOI: 10.18632/oncotarget.17033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3′-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.
Collapse
Affiliation(s)
- Marilena De Mariano
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Sara Stigliani
- UOS Fisiopatologia della Riproduzione Umana, Dipartimento di Chirurgia Generale, Specialistica ed Oncologica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefano Moretti
- Université Paris-Dauphine, PSL Research University, CNRS, Department UMR [7243], LAMSADE, Paris, France
| | - Federica Parodi
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Cinzia Bernardi
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Aldo Pagano
- Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Padua, Italy
| | - Silvano Ferrini
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
16
|
Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA, Shaw KR, Mendelsohn J, Mills GB, Meric-Bernstam F, Simon GR. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud 2017; 3:a001115. [PMID: 28050598 PMCID: PMC5171696 DOI: 10.1101/mcs.a001115] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations.
Collapse
Affiliation(s)
- Vijaykumar R Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ann Marie Bailey
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yekaterina B Khotskaya
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nora S Sanchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jia Zeng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Md Abu Shufean
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenna R Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Mendelsohn
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Funda Meric-Bernstam
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - George R Simon
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Guo ZL, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GCF. The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 2016; 9:98. [PMID: 27678372 PMCID: PMC5039880 DOI: 10.1186/s13045-016-0330-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. Methods Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. Results DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3 weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4 mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). Conclusions DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0330-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhu-Ling Guo
- Department of Stomatology, Affiliated Hospital of Hainan Medical University, Hainan, People's Republic of China.,School of Stomatology, Hainan Medical University, Hainan, People's Republic of China.,Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia.
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | - Kian Cheng Tan-Un
- School of Professional and Continuing Education, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|