1
|
Ramesh P, Al Kadi AR, Borse GM, Webendörfer M, Zaun G, Metzenmacher M, Doerr F, Bölükbas S, Hegedüs B, Lueong SS, Magne J, Liu B, Nunez G, Schuler M, Green DR, Kalkavan H. BCL-B Promotes Lung Cancer Invasiveness by Direct Inhibition of BOK. Cells 2025; 14:246. [PMID: 39996719 PMCID: PMC11853756 DOI: 10.3390/cells14040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Expression of BCL-B, an anti-apoptotic BCL-2 family member, is correlated with worse survival in lung adenocarcinomas. Here, we show that BCL-B can mitigate cell death initiation through interaction with the effector protein BOK. We found that this interaction can promote sublethal mitochondrial outer membrane permeabilization (MOMP) and consequently generate apoptosis-flatliners, which represent a source of drug-tolerant persister cells (DTPs). The engagement of endothelial-mesenchymal-transition (EMT) further promotes cancer cell invasiveness in such DTPs. Our results reveal that BCL-B fosters cancer cell aggressiveness by counteracting complete MOMP.
Collapse
Affiliation(s)
- Palaniappan Ramesh
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Amal R. Al Kadi
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Gaurav M. Borse
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Maximilian Webendörfer
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Gregor Zaun
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
| | - Fabian Doerr
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Servet Bölükbas
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Balazs Hegedüs
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- Department of Thoracic Surgery, West German Lung Center, University Medicine Essen-Ruhrlandklinik, University Duisburg-Essen, 45239 Essen, Germany
| | - Smiths S. Lueong
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
| | - Joelle Magne
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
- BIGR, Université Paris Cité and Université des Antilles, INSERM, 75015 Paris, France
| | - Beiyun Liu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Greisly Nunez
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- National Center for Tumor Diseases (NCT) West, Campus Essen, 45122 Essen, Germany
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.); (B.L.); (G.N.); (D.R.G.)
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany; (P.R.); (A.R.A.K.); (G.M.B.); (M.W.); (G.Z.); (M.M.); (M.S.)
- Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany; (F.D.); (S.B.); (B.H.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany;
- National Center for Tumor Diseases (NCT) West, Campus Essen, 45122 Essen, Germany
| |
Collapse
|
2
|
Desai SR, Chakraborty S, Shastri A. Mechanisms of resistance to hypomethylating agents and BCL-2 inhibitors. Best Pract Res Clin Haematol 2023; 36:101521. [PMID: 38092478 DOI: 10.1016/j.beha.2023.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Myeloid malignancies such as myelodysplastic syndrome (MDS) & acute myeloid leukemia (AML) are clonal diseases that emerge and progress due to the expansion of disease-initiating aberrant hematopoietic stem cells, that are not eliminated by conventional cytotoxic therapies. Hypomethylating agents(HMA), azacytidine and decitabine are the first line agents for treatment of MDS and a combination with BCL-2 inhibitor, venetoclax, is approved for AML induction in patients above 75 years and is also actively being investigated for use in high risk MDS. Resistance to these drugs has become a significant clinical challenge in treatment of myeloid malignancies. In this review, we discuss molecular mechanisms underlying the development of resistance to HMA and venetoclax. Insights into these mechanisms can help identify potential biomarkers for resistance prediction, aid in the development of combination therapies and strategies to prevent resistance and advance the field of cancer therapeutics.
Collapse
Affiliation(s)
- Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samarpana Chakraborty
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Aditi Shastri
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine & Division of Hemato-Oncology, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
3
|
Pervushin NV, Kopeina GS, Zhivotovsky B. Bcl-B: an "unknown" protein of the Bcl-2 family. Biol Direct 2023; 18:69. [PMID: 37899453 PMCID: PMC10614328 DOI: 10.1186/s13062-023-00431-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Bcl-B is a poorly understood protein of the Bcl-2 family that is highly expressed in many healthy tissues and tumor types. Bcl-B is considered an antiapoptotic protein, but many reports have revealed its contradictory roles in different cancer types. In this mini-review, we elucidate the functions of Bcl-B in normal conditions and various pathologies, its regulation of programmed cell death, its oncogene/oncosuppressor activity in tumorigenesis, its impact on drug-acquired resistance, and possible approaches to inhibit Bcl-B.
Collapse
Affiliation(s)
- N V Pervushin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - G S Kopeina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B Zhivotovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, Stockholm, 17177, Sweden.
| |
Collapse
|
4
|
Yabushita T, Chinen T, Nishiyama A, Asada S, Shimura R, Isobe T, Yamamoto K, Sato N, Enomoto Y, Tanaka Y, Fukuyama T, Satoh H, Kato K, Saitoh K, Ishikawa T, Soga T, Nannya Y, Fukagawa T, Nakanishi M, Kitagawa D, Kitamura T, Goyama S. Mitotic perturbation is a key mechanism of action of decitabine in myeloid tumor treatment. Cell Rep 2023; 42:113098. [PMID: 37714156 DOI: 10.1016/j.celrep.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Ruka Shimura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Isobe
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Hematology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hitoshi Satoh
- Division of Medical Genome Sciences, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Kato
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kaori Saitoh
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Takamasa Ishikawa
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Duong MQ, Gadet R, Treilleux I, Borel S, Nougarède A, Marcillat O, Gonzalo P, Mikaelian I, Popgeorgiev N, Rimokh R, Gillet G. Nrh L11R single nucleotide polymorphism, a new prediction biomarker in breast cancer, impacts endoplasmic reticulum-dependent Ca 2+ traffic and response to neoadjuvant chemotherapy. Cell Death Dis 2023; 14:392. [PMID: 37391438 PMCID: PMC10313725 DOI: 10.1038/s41419-023-05917-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.
Collapse
Affiliation(s)
- Minh Quang Duong
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | | | - Stéphane Borel
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Adrien Nougarède
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Division for Biology and Healthcare Technologies, CEA-LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Olivier Marcillat
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Philippe Gonzalo
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
- Laboratoire de Biochimie, CHU de Saint-Etienne, Université de Lyon, Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.
- Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495, Pierre Bénite, France.
| |
Collapse
|
6
|
Park S, Park SY, Lee JH, Choi EJ, Lee KH, Yoon SS, Hong J, Shin DY, Kim YJ. Five-day versus 7-day treatment regimen with azacitidine in lower risk myelodysplastic syndrome: A phase 2, multicenter, randomized trial. Cancer 2022; 128:4095-4108. [PMID: 36208097 DOI: 10.1002/cncr.34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Low-dose azacitidine (AZA) regimens, primarily 5-day AZA, have been used in lower risk myelodysplastic syndrome (LrMDS) but they have yet to be directly compared to the standard 7-day, uninterrupted dosing schedule. METHOD In this phase 2, multicenter, randomized trial, 55 patients with adult LrMDS (low and intermediate-1 risk by international prognostic scoring system [IPSS]) were randomly assigned and received either 5-day (n = 26) or 7-day (n = 29) AZA between March 2012 and August 2020. The trial was stopped prematurely because of the slow accrual of patients. The primary end point was the overall response rate (ORR) of the 5-day AZA as compared to that of the 7-day regimen. RESULTS Median patient age was 59 years, and IPSS intermediate-1 risk comprised the majority (81.8%). The median number of cycles in both arms was six. In the ITT subset (n = 53), in each of the 5-day and 7-day arms, the ORR of 48.0% and 39.3%, hematologic improvement of 44.0% and 39.3%, and RBC transfusion independence of 35.3% and 40.0% were observed respectively, and none of these findings were significantly different between the two arms. A cytogenetic response rate was significantly higher in the 7-day arm (8.3% and 53.8%, p = .027). Survival and adverse events were similar between the groups, although gastrointestinal toxicities, grade ≥3 thrombocytopenia, and febrile neutropenia were less frequent in the 5-day arm. CONCLUSION The 5-day AZA in LrMDS showed comparable efficacy to a 7-day regimen in terms of similar overall response and other outcomes, despite significantly higher rates of cytogenetic responses in the 7-day regimen. LAY SUMMARY Azacitidine (75 mg/m2 /day for 7 consecutive days per 28-day cycle) has shown survival benefit in patients with higher risk myelodysplastic syndrome (MDS). Although the use of azacitidine is less-well studied for lower risk MDS, it is generally accepted as a feasible option for lower risk MDS (LrMDS).
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - So Yeon Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ji Choi
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea.,Leukemia Research Institute, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Del Bufalo D, Di Martile M, Valentini E, Manni I, Masi I, D'Amore A, Filippini A, Nicoletti C, Zaccarini M, Cota C, Castro MV, Quezada MJ, Rosanò L, Lopez-Bergami P, D'Aguanno S. Bcl-2-like protein-10 increases aggressive features of melanoma cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:11-26. [PMID: 36046354 PMCID: PMC9400776 DOI: 10.37349/etat.2022.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied
member of Bcl-2 family proteins, with the controversial role in different
cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor
specimens and its role in melanoma response to therapy have been
demonstrated. Here, the involvement of Bcl2L10 on the in
vitro and in vivo properties associated with
melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting
analysis in a panel of patient-derived and commercially available human
melanoma cells. In vitro assays to evaluate clonogenicity,
cell proliferation, cell migration, cell invasion, and in
vitro capillary-like structure formation [vasculogenic
mimicry (VM)] have been performed by using human melanoma cells
stably overexpressing Bcl2L10 or transiently transfected for loss/gain
function of Bcl2L10, grown under two- or three-dimensional (3D) conditions
Xenograft melanoma model was employed to evaluate in vivo
tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in
vitro cell migration, invasion, and VM, while in
vitro cell proliferation, in vivo tumor
growth, as well as colony formation properties were not affected. Dissecting
different signaling pathways, it was found that Bcl2L10 positively affects
the phosphorylation of extracellular-signal-regulated kinase (ERK) and the
expression of markers of cell invasion, such as urokinase plasminogen
activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note,
Bcl2L10-dependent in vitro migration, invasion, and VM are
linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium
level. Finally, reduced invasion capability in 3D spheroid invasion assay of
melanoma cells transiently overexpressing Bcl2L10 was observed after
treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive
role of Bcl2L10 in melanoma aggressive features.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Antonella D'Amore
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Antonio Filippini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Maria Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
8
|
Šimoničová K, Janotka Ľ, Kavcová H, Sulová Z, Breier A, Messingerova L. Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resist Updat 2022; 61:100805. [DOI: 10.1016/j.drup.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
|
9
|
Straube J, Lane SW, Vu T. Optimizing DNA hypomethylating therapy in acute myeloid leukemia and myelodysplastic syndromes. Bioessays 2021; 43:e2100125. [PMID: 34463368 DOI: 10.1002/bies.202100125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
The DNA hypomethylating agents (HMA) azacitidine (AZA) and decitabine (DAC) improve survival and transfusion independence in myelodysplastic syndrome (MDS) and enable a low intensity cytotoxic treatment for aged AML patients unsuitable for intensive chemotherapy, particularly in combination with novel agents. The proposed mechanism of AZA and DAC relies on active DNA replication and therefore patient responses are only observed after multiple cycles of treatment. Although extended dosing may provide the optimal scheduling, the reliance of injectable formulation of the drug limits it to intermittent treatment. Recently, an oral formulation of AZA demonstrated significantly improved patient relapse free survival (RFS) and overall survival (OS) when used as maintenance after chemotherapy for AML. In addition, both DAC and AZA were found to be highly effective to improve survival in elderly patients with AML through combination with other drugs. These recent exciting results have changed the therapeutic paradigm for elderly patients with AML. In light of this, we review current knowledge on HMA mechanism of action, clinical trials exploring dosing and scheduling, and recent HMA combination therapies to enhance efficacy.
Collapse
Affiliation(s)
- Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,The University of Queensland, Brisbane, Queensland, Australia.,Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Therese Vu
- Department of Pediatrics, Section Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Bouchla A, Thomopoulos TP, Papageorgiou SG, Apostolopoulou C, Loucari C, Mpazani E, Pappa V. Predicting outcome in higher-risk myelodysplastic syndrome patients treated with azacitidine. Epigenomics 2021; 13:1129-1143. [PMID: 34291653 DOI: 10.2217/epi-2021-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
5-Azacitidine (5-AZA) is widely used for the treatment of higher-risk myelodysplastic syndromes. However, response and survival rates vary considerably, while indicated treatment duration remains undefined. For these reasons, factors determining response and survival are of major importance. Clinical, morphological, flow cytometry, cytogenetic and molecular factors are discussed in this review. Biomarkers predictive of response and prognosis, as well as their link to the mode of action of 5-AZA are also addressed, shifting the focus from clinical practice to investigational research. Their use could further improve prognostic classification of 5-AZA treated higher-risk myelodysplastic syndromes in the near future.
Collapse
Affiliation(s)
- Anthi Bouchla
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Thomas P Thomopoulos
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Christina Apostolopoulou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Constantinos Loucari
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Efthimia Mpazani
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| |
Collapse
|
11
|
Sorrentino VG, Thota S, Gonzalez EA, Rameshwar P, Chang VT, Etchegaray JP. Hypomethylating Chemotherapeutic Agents as Therapy for Myelodysplastic Syndromes and Prevention of Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2021; 14:641. [PMID: 34358067 PMCID: PMC8308509 DOI: 10.3390/ph14070641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic Syndromes (MDSs) affect the elderly and can progress to Acute Myeloid Leukemia (AML). Epigenetic alterations including DNA methylation and chromatin modification may contribute to the initiation and progression of these malignancies. DNA hypomethylating agents such as decitabine and azacitidine are used as therapeutic treatments and have shown to promote expression of genes involved in tumor suppression, apoptosis, and immune response. Another anti-cancer drug, the proteasome inhibitor bortezomib, is used as a chemotherapeutic treatment for multiple myeloma (MM). Phase III clinical trials of decitabine and azacitidine used alone and in combination with other chemotherapeutics demonstrated their capacity to treat hematological malignancies and prolong the survival of MDS and AML patients. Although phase III clinical trials examining bortezomib's role in MDS and AML patients are limited, its underlying mechanisms in MM highlight its potential as a chemotherapeutic for such malignancies. Further research is needed to better understand how the epigenetic mechanisms mediated by these chemotherapeutic agents and their targeted gene networks are associated with the development and progression of MDS into AML. This review discusses the mechanisms by which decitabine, azacitidine, and bortezomib alter epigenetic programs and their results from phase III clinical trials.
Collapse
Affiliation(s)
- Vincent G. Sorrentino
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Srijan Thota
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
| | - Victor T. Chang
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA;
- Veteran Affairs New Jersey Health Care System, East Orange, NJ 07018, USA;
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University—Newark, Newark, NJ 07102, USA; (V.G.S.); (S.T.); (E.A.G.)
| |
Collapse
|
12
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Charles Rotondo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
13
|
Lee SY, Kwon J, Lee KA. Bcl2l10 induces metabolic alterations in ovarian cancer cells by regulating the TCA cycle enzymes SDHD and IDH1. Oncol Rep 2021; 45:47. [PMID: 33649794 PMCID: PMC7934226 DOI: 10.3892/or.2021.7998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Bcl2‑like‑10 (Bcl2l10) has both oncogenic and tumor suppressor functions depending on the type of cancer. It has been previously demonstrated that the suppression of Bcl2l10 in ovarian cancer SKOV3 and A2780 cells causes cell cycle arrest and enhances cell proliferation, indicating that Bcl2l10 is a tumor suppressor gene in ovarian cancer cells. The aim of the present study was to identify possible downstream target genes and investigate the underlying mechanisms of action of Bcl2l10 in ovarian cancer cells. RNA sequencing (RNA‑Seq) was performed to obtain a list of differentially expressed genes (DEGs) in Bcl2l10‑suppressed SKOV3 and A2780 cells. The RNA‑Seq data were validated by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, and the levels of metabolites after Bcl2l10‑knockdown were measured using colorimetric assay kits. Pathway enrichment analysis revealed that the commonly downregulated genes in SKOV3 and A2780 cells after Bcl2l10‑knockdown were significantly enriched in metabolic pathways. The analysis of the DEGs identified from RNA‑Seq and validated by RT‑qPCR revealed that succinate dehydrogenase complex subunit D (SDHD) and isocitrate dehydrogenase 1 (IDH1), which are key enzymes of the TCA cycle that regulate oncometabolite production, may be potential downstream targets of Bcl2l10. Furthermore, Bcl2l10‑knockdown induced the accumulation of succinate and isocitrate through the downregulation of SDHD and IDH1. The present study was the first to elucidate the metabolic regulatory functions of Bcl2l10 in ovarian cancer cells, and the results indicated that Bcl2l10 may serve as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jinie Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea,Correspondence to: Professor Kyung-Ah Lee, Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang, Seongnam, Gyeonggi 13488, Republic of Korea, E-mail:
| |
Collapse
|
14
|
Janotka Ľ, Messingerová L, Šimoničová K, Kavcová H, Elefantová K, Sulová Z, Breier A. Changes in Apoptotic Pathways in MOLM-13 Cell Lines after Induction of Resistance to Hypomethylating Agents. Int J Mol Sci 2021; 22:ijms22042076. [PMID: 33669837 PMCID: PMC7923013 DOI: 10.3390/ijms22042076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
We established the following two variants of the MOLM-13 human acute myeloid leukemia (AML) cell line: (i) MOLM-13/DAC cells are resistant to 5-aza-2′-deoxycytidine (DAC), and (ii) MOLM-13/AZA are resistant to 5-azacytidine (AZA). Both cell variants were obtained through a six-month selection/adaptation procedure with a stepwise increase in the concentration of either DAC or AZA. MOLM-13/DAC cells are resistant to DAC, and MOLM-13/AZA cells are resistant to AZA (approximately 50-fold and 20-fold, respectively), but cross-resistance of MOLM-13/DAC to AZA and of MOLM-13/AZA to DAC was not detected. By measuring the cell retention of fluorescein-linked annexin V and propidium iodide, we showed an apoptotic mode of death for MOLM-13 cells after treatment with either DAC or AZA, for MOLM-13/DAC cells after treatment with AZA, and for MOLM-13/AZA cells after treatment with DAC. When cells progressed to apoptosis, via JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide) assay, we detected a reduction in the mitochondrial membrane potential. Furthermore, we characterized promoter methylation levels for some genes encoding proteins regulating apoptosis and the relation of this methylation to the expression of the respective genes. In addition, we focused on determining the expression levels and activity of intrinsic and extrinsic apoptosis pathway proteins.
Collapse
Affiliation(s)
- Ľuboš Janotka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Lucia Messingerová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Kristína Šimoničová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Helena Kavcová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
| | - Katarína Elefantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (Ľ.J.); (K.Š.); (H.K.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
- Correspondence: (L.M.); (Z.S.); (A.B.); Tel.: +421-2-593-25-514 (L.M.); +421-2-3229-5510 (Z.S.); +421-918-674-514 (A.B.)
| |
Collapse
|
15
|
BCL2L10 Is Overexpressed in Melanoma Downstream of STAT3 and Promotes Cisplatin and ABT-737 Resistance. Cancers (Basel) 2020; 13:cancers13010078. [PMID: 33396645 PMCID: PMC7795116 DOI: 10.3390/cancers13010078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary BCL2L10 is the sixth and less studied protein from the group of Bcl-2 anti-apoptotic proteins. These proteins are important therapeutic targets since they convey resistance to anticancer regimens. We describe here for the first time the role of BCL2L10 in melanoma. We found that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. This increased expression is due to the activity of the transcription factor STAT3 that positively regulate BCL2L10 transcription. We describe that Bcl2l10 is a pro-survival factor in melanoma, being able to protect cells from the cytotoxic effect of different drugs, including cisplatin, dacarbazine, and ABT-737. BCL2L10 also inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma. Abstract The anti-apoptotic proteins from the Bcl-2 family are important therapeutic targets since they convey resistance to anticancer regimens. Despite the suspected functional redundancy among the six proteins of this subfamily, both basic studies and therapeutic approaches have focused mainly on BCL2, Bcl-xL, and MCL1. The role of BCL2L10, another member of this group, has been poorly studied in cancer and never has been in melanoma. We describe here that BCL2L10 is abundantly and frequently expressed both in melanoma cell lines and tumor samples. We established that BCL2L10 expression is driven by STAT3-mediated transcription, and by using reporter assays, site-directed mutagenesis, and ChIP analysis, we identified the functional STAT3 responsive elements in the BCL2L10 promoter. BCL2L10 is a pro-survival factor in melanoma since its expression reduced the cytotoxic effects of cisplatin, dacarbazine, and ABT-737 (a BCL2, Bcl-xL, and Bcl-w inhibitor). Meanwhile, both genetic and pharmacological inhibition of BCL2L10 sensitized melanoma cells to cisplatin and ABT-737. Finally, BCL2L10 inhibited the cell death upon combination treatments of PLX-4032, a BRAF inhibitor, with ABT-737 or cisplatin. In summary, we determined that BCL2L10 is expressed in melanoma and contributes to cell survival. Hence, targeting BCL2L10 may enhance the clinical efficacy of other therapies for malignant melanoma.
Collapse
|
16
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
17
|
Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes. Sci Rep 2020; 10:19555. [PMID: 33177628 PMCID: PMC7658235 DOI: 10.1038/s41598-020-76510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic stem cell transplantation is currently the only curative treatment option for myelodysplastic syndromes (MDS). Pre-transplant debulking treatment have been employed for advanced MDS and we previously reported that marrow response (blast ≤ 5%) following the bridging therapy with hypomethylating agent was an independent favorable factor for survival; however, it is still not clear which patients will respond to hypomethylating agent and which genomic features can predict the response. In this study, we performed RNAseq for 23 MDS patients among which 14 (61%) and 9 (39%) patients showed marrow complete remission and primary resistance to azacitidine, respectively. Differential expression-based analyses of treatment-naive, baseline gene expression profiles revealed that molecular functions representing mitochondria and apoptosis were up-regulated in responders. In contrast, we identified genes involved in the Wnt pathway were relatively up-regulated in non-responders. In independent validation cohorts of MDS patients, the expression of gene sets specific to non-responders and responders distinguished the patients with favorable prognosis and those responded to azacitidine highlighting the prognostic and predictive implication. In addition, a systems biology approach identified genes involved in ubiquitination, such as UBC and PFDN2, which may be key players in the regulation of differential gene expression in treatment responders and non-responders. Taken together, identifying the gene expression signature may advance our understanding of the molecular mechanisms of azacitidine and may also serve to predict patient responses to drug treatment.
Collapse
|
18
|
Integrated transcriptomic and genomic analysis improves prediction of complete remission and survival in elderly patients with acute myeloid leukemia. Blood Cancer J 2020; 10:67. [PMID: 32527994 PMCID: PMC7289793 DOI: 10.1038/s41408-020-0332-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
Relevant molecular tools for treatment stratification of patients ≥65 years with acute myeloid leukemia (AML) are lacking. We combined clinical data with targeted DNA- and full RNA-sequencing of 182 intensively and palliatively treated patients to predict complete remission (CR) and survival in AML patients ≥65 years. Intensively treated patients with NPM1 and IDH2R172 mutations had longer overall survival (OS), whereas mutated TP53 conferred lower CR rates and shorter OS. FLT3-ITD and TP53 mutations predicted worse OS in palliatively treated patients. Gene expression levels most predictive of CR were combined with somatic mutations for an integrated risk stratification that we externally validated using the beatAML cohort. We defined a high-risk group with a CR rate of 20% in patients with mutated TP53, compared to 97% CR in low-risk patients defined by high expression of ZBTB7A and EEPD1 without TP53 mutations. Patients without these criteria had a CR rate of 54% (intermediate risk). The difference in CR rates translated into significant OS differences that outperformed ELN stratification for OS prediction. The results suggest that an integrated molecular risk stratification can improve prediction of CR and OS and could be used to guide treatment in elderly AML patients.
Collapse
|
19
|
Feld J, Belasen A, Navada SC. Myelodysplastic syndromes: a review of therapeutic progress over the past 10 years. Expert Rev Anticancer Ther 2020; 20:465-482. [PMID: 32479130 DOI: 10.1080/14737140.2020.1770088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) represent a range of bone marrow disorders, with patients affected by cytopenias and risk of progression to AML. There are limited therapeutic options available for patients, including hypomethylating agents (azacitidine/decitabine), growth factor support, lenalidomide, and allogeneic stem cell transplant. AREAS COVERED This review provides an overview of the progress made over the past decade for emerging therapies for lower- and higher-risk MDS (MDS-HR). We also cover advances in prognostication, supportive care, and use of allogeneic SCT in MDS. EXPERT OPINION While there have been no FDA-approved therapies for MDS in the past decade, we anticipate the approval of luspatercept based on results from the MEDALIST trial for patients with lower-risk MDS (MDS-LR) and ringed sideroblasts who have failed or are ineligible for erythropoiesis stimulating agents (ESAs). With growing knowledge of the biologic and molecular mechanisms underlying MDS, it is anticipated that new therapies will be approved in the coming years.
Collapse
Affiliation(s)
- Jonathan Feld
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| | - Abigail Belasen
- Department of Medicine, Icahn School of Medicine , New York, USA
| | - Shyamala C Navada
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine , New York, USA
| |
Collapse
|
20
|
Lachowiez C, DiNardo CD, Konopleva M. Venetoclax in acute myeloid leukemia - current and future directions. Leuk Lymphoma 2020; 61:1313-1322. [PMID: 32031033 DOI: 10.1080/10428194.2020.1719098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B-cell leukemia/lymphoma-2 (BCL-2) inhibition with the targeted oral agent venetoclax (ABT-199) has reshaped the treatment landscape for multiple hematological malignancies. Venetoclax in combination with hypomethylating agents (HMAs) or low-dose cytarabine (LDAC) has led to improved outcomes in acute myeloid leukemia (AML) and represents a new standard of care for frontline AML treatment in older patients or those unfit for intensive chemotherapy. Combinations of venetoclax with standard induction therapy or targeted agents such as FLT-3 inhibitors and IDH inhibitors are leading to improved clinical outcomes, representing major advancements in a field that has been without significant changes in treatments for the last 30 years. This review provides biological and clinical rationale for current venetoclax based treatments in AML, addresses common adverse events encountered with venetoclax based therapy, and explores emerging clinical data regarding combinations of novel targeted therapeutics used in conjunction with venetoclax for the treatment of AML.
Collapse
Affiliation(s)
- Curtis Lachowiez
- Division of Cancer Medicine, M. D. Anderson Cancer Center, Houston, TX, USA
| | | | - Marina Konopleva
- Department of Leukemia, M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Acadesine Circumvents Azacitidine Resistance in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2019; 21:ijms21010164. [PMID: 31881723 PMCID: PMC6981810 DOI: 10.3390/ijms21010164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.
Collapse
|
22
|
Lee SY, Kwon J, Woo JH, Kim KH, Lee KA. Bcl2l10 mediates the proliferation, invasion and migration of ovarian cancer cells. Int J Oncol 2019; 56:618-629. [PMID: 31894274 DOI: 10.3892/ijo.2019.4949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/02/2019] [Indexed: 11/05/2022] Open
Abstract
Bcl2l10, also known as Diva, Bcl‑b and Boo, is a member of the Bcl2 family of proteins, which are involved in signaling pathways that regulate cell apoptosis and autophagy. Previously, it was demonstrated that Bcl2l10 plays a crucial role in the completion of oocyte meiosis and is a key regulator of Aurora kinase A (Aurka) expression and activity in oocytes. Aurka is overexpressed in several types of solid tumors and has been considered a target of cancer therapy. Based on these previous results, in the present study, the authors aimed to investigate the regulatory role of Bcl2l10 in A2780 and SKOV3 human ovarian cancer cells. The protein expression of Bcl2l10 was examined in human cancer tissues and cell lines, including the ovaries, using a tissue microarray and various human ovarian cancer cell lines. It was found that Bcl2l10 regulated the protein stability and activities of Aurka in ovarian cancer cells. Although apoptosis was not affected, the cell cycle was arrested at the G0/G1 phase by Bcl2l10 knockdown. Of note, cell viability and motility were markedly increased by Bcl2l10 knockdown. On the whole, the findings of this study suggest that Bcl2l10 functions as tumor suppressor gene in ovarian cancer.
Collapse
Affiliation(s)
- Su-Yeon Lee
- Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| | - Jinie Kwon
- Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| | - Ji Hye Woo
- Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| | - Kyeoung-Hwa Kim
- Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Sciences, College of Life Sciences, CHA University, Seongnam‑si, Gyeonggi‑do 13488, Republic of Korea
| |
Collapse
|
23
|
Robert G, Jacquel A, Auberger P. Chaperone-Mediated Autophagy and Its Emerging Role in Hematological Malignancies. Cells 2019; 8:E1260. [PMID: 31623164 PMCID: PMC6830112 DOI: 10.3390/cells8101260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) ensures the selective degradation of cellular proteins endowed with a KFERQ-like motif by lysosomes. It is estimated that 30% of all cellular proteins can be directed to the lysosome for CMA degradation, but only a few substrates have been formally identified so far. Mechanistically, the KFERQ-like motifs present in substrate proteins are recognized by the molecular chaperone Hsc70c (Heat shock cognate 71 kDa protein cytosolic), also known as HSPA8, and directed to LAMP2A, which acts as the CMA receptor at the lysosomal surface. Following linearization, the protein substrate is next transported to the lumen of the lysosomes, where it is degraded by resident proteases, mainly cathepsins and eventually recycled to sustain cellular homeostasis. CMA is induced by different stress conditions, including energy deprivation that also activates macro-autophagy (MA), that may make it difficult to decipher the relative impact of both pathways on cellular homeostasis. Besides common inducing triggers, CMA and MA might be induced as compensatory mechanisms when either mechanism is altered, as it is the often the case in different pathological settings. Therefore, CMA activation can compensate for alterations of MA and vice versa. In this context, these compensatory mechanisms, when occurring, may be targeted for therapeutic purposes. Both processes have received particular attention from scientists and clinicians, since modulation of MA and CMA may have a profound impact on cellular proteostasis, metabolism, death, differentiation, and survival and, as such, could be targeted for therapeutic intervention in degenerative and immune diseases, as well as in cancer, including hematopoietic malignancies. The role of MA in cancer initiation and progression is now well established, but whether and how CMA is involved in tumorigenesis has been only sparsely explored. In the present review, we encompass the description of the mechanisms involved in CMA, its function in the physiology and pathogenesis of hematopoietic cells, its emerging role in cancer initiation and development, and, finally, the potential therapeutic opportunity to target CMA or CMA-mediated compensatory mechanisms in hematological malignancies.
Collapse
Affiliation(s)
- Guillaume Robert
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| | - Arnaud Jacquel
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France
| | - Patrick Auberger
- Mediterranean Center for Molecular Medicine ,Université Nice Côte d'Azur, C3M/Inserm1065, 06100 Nice, France.
| |
Collapse
|
24
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
25
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
26
|
Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia 2019; 33:2022-2033. [PMID: 30992504 DOI: 10.1038/s41375-019-0469-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Monitoring tumour burden and therapeutic response through analyses of circulating cell-free tumour DNA (ctDNA) and extracellular RNA (exRNA) in multiple myeloma (MM) patients were performed in a Phase Ib trial of 24 relapsed/refractory patients receiving oral azacitidine in combination with lenalidomide and dexamethasone. Mutational characterisation of paired BM and PL samples at study entry identified that patients with a higher number of mutations or a higher mutational fractional abundance in PL had significantly shorter overall survival (OS) (p = 0.005 and p = 0.018, respectively). A decrease in ctDNA levels at day 5 of cycle 1 of treatment (C1D5) correlated with superior progression-free survival (PFS) (p = 0.017). Evaluation of exRNA transcripts of candidate biomarkers indicated that high CRBN levels coupled with low levels of SPARC at baseline were associated with shorter OS (p = 0.000003). IKZF1 fold-change <0.05 at C1D5 was associated with shorter PFS (p = 0.0051) and OS (p = 0.0001). Furthermore, patients with high baseline CRBN coupled with low fold-change at C1D5 were at the highest risk of progression (p = 0.0001). In conclusion, this exploratory analysis has provided the first demonstration in MM of ctDNA for predicting disease outcome and of the utility of exRNA as a biomarker of therapeutic response.
Collapse
|
27
|
Ueno Y, Mori M, Kamiyama Y, Saito R, Kaneko N, Isshiki E, Kuromitsu S, Takeuchi M. Evaluation of gilteritinib in combination with chemotherapy in preclinical models of FLT3-ITD+ acute myeloid leukemia. Oncotarget 2019; 10:2530-2545. [PMID: 31069015 PMCID: PMC6493465 DOI: 10.18632/oncotarget.26811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Activating internal tandem duplication (ITD) and tyrosine kinase domain (TKD) point mutations in Fms-like tyrosine kinase 3 (FLT3) occur in approximately 30% of patients with acute myeloid leukemia (AML), and confer a poor prognosis with standard cytarabine/anthracycline or azacitidine-based chemotherapy regimens. Gilteritinib is a highly-specific, potent FLT3/AXL inhibitor with demonstrated activity against FLT3-ITD and FLT3-TKD mutations. Compared with salvage chemotherapy, treatment with once-daily oral gilteritinib demonstrated a clinical benefit in patients with FLT3-mutated relapsed/refractory AML, which led to its recent approval in Japan and the United States. We investigated the effects of gilteritinib combined with cytarabine plus daunorubicin/idarubicin, or combined with azacitidine in human FLT3-ITD–positive (FLT3-ITD+) AML cell lines and xenografted mouse models. Gilteritinib induced G1 arrest and apoptosis in a dose-dependent manner. The addition of cytarabine, daunorubicin, idarubicin, or azacitidine potentiated apoptosis. Gilteritinib alone or combined with cytarabine, daunorubicin, idarubicin, or azacitidine, inhibited anti-apoptotic protein expression in MV4-11 cells. In xenografted mice, administration of cytarabine, idarubicin, or azacitidine in combination with gilteritinib had little impact on plasma or intratumor PK profiles of gilteritinib, cytarabine, idarubicin, or azacitidine. Gilteritinib combined with chemotherapy reduced tumor volume to a greater extent than either gilteritinib or chemotherapy alone. Of note, the addition of cytarabine plus daunorubicin/idarubicin led to tumor regression in mice, with complete regression observed in six out of eight mice in both triple combination groups. These findings support the investigation of gilteritinib combined with chemotherapy in patients with FLT3-ITD+ AML, including those who are ineligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Yoko Ueno
- Drug Discovery Research, Astellas Pharma, Inc., Ibaraki, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma, Inc., Ibaraki, Japan
| | | | - Rika Saito
- Drug Discovery Research, Astellas Pharma, Inc., Ibaraki, Japan
| | - Naoki Kaneko
- Drug Discovery Research, Astellas Pharma, Inc., Ibaraki, Japan
| | - Eriko Isshiki
- Biological Research Division, Astellas Research Technologies Co., Ltd., Ibaraki, Japan
| | - Sadao Kuromitsu
- Drug Discovery Research, Astellas Pharma, Inc., Ibaraki, Japan
| | | |
Collapse
|
28
|
LAMP2 expression dictates azacytidine response and prognosis in MDS/AML. Leukemia 2019; 33:1501-1513. [PMID: 30607021 DOI: 10.1038/s41375-018-0336-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022]
Abstract
Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy. During CMA, the HSC70 chaperone carries target proteins endowed with a KFERQ-like motif to the lysosomal receptor LAMP2A, which then translocate them into lysosomes for degradation. In the present study, we scrutinized the mechanisms underlying the response and resistance to Azacytidine (Aza) in MDS/AML cell lines and bone marrow CD34+ blasts from MDS/AML patients. In engineered Aza-resistant MDS cell lines and some AML cell lines, we identified a profound defect in CMA linked to the absence of LAMP2A. LAMP2 deficiency was responsible for Aza resistance and hypersensitivity to lysosome and autophagy inhibitors. Accordingly, gain of function of LAMP2 in deficient cells or loss of function in LAMP2-expressing cells rendered them sensitive or resistant to Aza, respectively. A strict correlation was observed between the absence of LAMP2, resistance to Aza and sensitivity to lysosome inhibitors. Low levels of LAMP2 expression in CD34+ blasts from MDS/AML patients correlated with lack of sensitivity to Aza and were predictive of poor overall survival. We propose that CD34+/LAMP2Low patients at diagnosis or who become CD34+/LAMP2Low during the course of treatment with Aza might benefit from a lysosome inhibitor already used in the clinic.
Collapse
|
29
|
Marchal C, de Dieuleveult M, Saint-Ruf C, Guinot N, Ferry L, Olalla Saad ST, Lazarini M, Defossez PA, Miotto B. Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis 2018; 7:82. [PMID: 30310057 PMCID: PMC6182000 DOI: 10.1038/s41389-018-0092-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.
Collapse
Affiliation(s)
- Claire Marchal
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Maud de Dieuleveult
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude Saint-Ruf
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadège Guinot
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laure Ferry
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Sara T Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Mariana Lazarini
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Pierre-Antoine Defossez
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
30
|
Implication and Regulation of AMPK during Physiological and Pathological Myeloid Differentiation. Int J Mol Sci 2018; 19:ijms19102991. [PMID: 30274374 PMCID: PMC6213055 DOI: 10.3390/ijms19102991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine kinase consisting of the arrangement of various α β, and γ isoforms that are expressed differently depending on the tissue or the cell lineage. AMPK is one of the major sensors of energy status in mammalian cells and as such plays essential roles in the regulation of cellular homeostasis, metabolism, cell growth, differentiation, apoptosis, and autophagy. AMPK is activated by two upstream kinases, the tumor suppressor liver kinase B1 (LKB1) and the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) through phosphorylation of the kinase on Thr172, leading to its activation. In addition, AMPK inhibits the mTOR pathway through phosphorylation and activation of tuberous sclerosis protein 2 (TSC2) and causes direct activation of unc-51-like autophagy activating kinase 1 (ULK1) via phosphorylation of Ser555, thus promoting initiation of autophagy. Although it is well established that AMPK can control the differentiation of different cell lineages, including hematopoietic stem cells (HSCs), progenitors, and mature hematopoietic cells, the role of AMPK regarding myeloid cell differentiation is less documented. The differentiation of monocytes into macrophages triggered by colony stimulating factor 1 (CSF-1), a process during which both caspase activation (independently of apoptosis induction) and AMPK-dependent stimulation of autophagy are necessary, is one noticeable example of the involvement of AMPK in the physiological differentiation of myeloid cells. The present review focuses on the role of AMPK in the regulation of the physiological and pathological differentiation of myeloid cells. The mechanisms of autophagy induction by AMPK will also be addressed, as autophagy has been shown to be important for differentiation of hematopoietic cells. In addition, myeloid malignancies (myeloid leukemia or dysplasia) are characterized by profound defects in the establishment of proper differentiation programs. Reinduction of a normal differentiation process in myeloid malignancies has thus emerged as a valuable and promising therapeutic strategy. As AMPK seems to exert a key role in the differentiation of myeloid cells, notably through induction of autophagy, we will also discuss the potential to target this pathway as a pro-differentiating and anti-leukemic strategy in myeloid malignancies.
Collapse
|
31
|
Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol 2018; 97:2025-2038. [DOI: 10.1007/s00277-018-3464-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
|
32
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Vidal V, Robert G, Goursaud L, Durand L, Ginet C, Karsenti JM, Luciano F, Gastaud L, Garnier G, Braun T, Hirsch P, Raffoux E, Nloga AM, Padua RA, Dombret H, Rohrlich P, Ades L, Chomienne C, Auberger P, Fenaux P, Cluzeau T. BCL2L10 positive cells in bone marrow are an independent prognostic factor of azacitidine outcome in myelodysplastic syndrome and acute myeloid leukemia. Oncotarget 2018; 8:47103-47109. [PMID: 28514758 PMCID: PMC5564547 DOI: 10.18632/oncotarget.17482] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
Azacitidine (AZA), the reference treatment for most higher-risk myelodysplastic (MDS) patients can also improve overall survival (OS) in elderly acute myeloid leukemia (AML) patients ineligible for intensive chemotherapy, but reliable biological markers predicting response and OS in patients treated with AZA are lacking. In a preliminary study, we found that an increase of the percentage of BCL2L10, an anti-apoptotic member of the bcl-2 family, was correlated with AZA resistance. In this study, we assessed prospectively by flow cytometry the prognostic value of BCL2L10 positive bone marrow mononuclear cells in 70 patients (42 MDS and 28 AML), prior to AZA treatment. In patients with baseline marrow blasts below 30%, the baseline percentage of bone marrow BCL2L10 positive cells inversely correlated with response to AZA and OS independently of the International Prognostic Scoring System (IPSS) and IPSS-revised (IPSS-R). Specifically, OS was significantly lower in patients with more than 10% BCL2L10 positive cells (median 8.3 vs 22.9 months in patients with less than 10% positivity, p = 0,001). In summary, marrow BCL2L10 positive cells may be a biomarker for azacitidine response and OS, with a potential impact in clinical practice.
Collapse
Affiliation(s)
- Valérie Vidal
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Guillaume Robert
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Laure Goursaud
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Laetitia Durand
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Clemence Ginet
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Jean Michel Karsenti
- Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Frederic Luciano
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Lauris Gastaud
- Centre Antoine Lacassagne, Service d'oncologie, Nice, France
| | - Georges Garnier
- CH Princesse Grace, Service de Médecine Interne, Monaco, Monaco
| | - Thorsten Braun
- Hôpital Avicenne, Paris 13 University, APHP, Bobigny, France
| | - Pierre Hirsch
- Hôpital Saint Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris, France.,Sorbonne Universités, UPMC Univ Paris 6, UMRS 938, CDR Saint-Antoine, Paris, France
| | - Emmanuel Raffoux
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Adulte, APHP, Paris, France
| | - Anne Marie Nloga
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | - Rose Ann Padua
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France
| | - Hervé Dombret
- Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Adulte, APHP, Paris, France
| | - Pierre Rohrlich
- Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Lionel Ades
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | | | - Patrick Auberger
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| | - Pierre Fenaux
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,Hôpital Saint Louis, Paris 7 University, Service d'Hématologie Sénior, APHP, Paris, France
| | - Thomas Cluzeau
- INSERM U1131, Institut Universitaire d'hématologie, Paris, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France.,Cote d'azur University, Nice Sophia Antipolis University, CHU of Nice, Nice, France
| |
Collapse
|
34
|
Bohl SR, Bullinger L, Rücker FG. Epigenetic therapy: azacytidine and decitabine in acute myeloid leukemia. Expert Rev Hematol 2018. [PMID: 29543073 DOI: 10.1080/17474086.2018.1453802] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The majority of patients with acute myeloid leukemia (AML) are older and exhibit a poor prognosis even after intensive therapy. Inducing differentiation and apoptosis of leukemic blasts by DNA-hypomethylating agents, like e.g. azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative treatment approaches. Both agents show convincing response as single agents in AML. However, there is a lack of knowledge regarding molecular mechanisms and predictive biomarkers for these agents. Areas covered: This review will (i) provide an overview of the current knowledge of molecular mechanisms underlying the action of these drugs, (ii) report promising predictive biomarkers, (iii) elude on new combined treatment options, and (iv) discuss novel approaches to improve outcomes. A literature search was performed using PubMed to find recent major publications, which provide biological and clinical research about epigenetic therapy in AML patients. Expert commentary: Numerous studies have demonstrated that HMA therapy with AZA or DAC may lead to significant response rates, even in pre-treated patients. Nevertheless, there is still an unmet need to further improve outcome in elderly AML patients. Therefore, novel treatment combinations are needed and some of them, such as AZA plus venetoclax, already show promising results.
Collapse
Affiliation(s)
- Stephan R Bohl
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany.,b Department of Hematology, Oncology and Tumorimmunology , Charité University Medicine Berlin , Berlin , Germany
| | - Frank G Rücker
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| |
Collapse
|
35
|
Masetti R, Castelli I, Astolfi A, Bertuccio SN, Indio V, Togni M, Belotti T, Serravalle S, Tarantino G, Zecca M, Pigazzi M, Basso G, Pession A, Locatelli F. Genomic complexity and dynamics of clonal evolution in childhood acute myeloid leukemia studied with whole-exome sequencing. Oncotarget 2018; 7:56746-56757. [PMID: 27462774 PMCID: PMC5302950 DOI: 10.18632/oncotarget.10778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
Despite significant improvement in treatment of childhood acute myeloid leukemia (AML), 30% of patients experience disease recurrence, which is still the major cause of treatment failure and death in these patients. To investigate molecular mechanisms underlying relapse, we performed whole-exome sequencing of diagnosis-relapse pairs and matched remission samples from 4 pediatric AML patients without recurrent cytogenetic alterations. Candidate driver mutations were selected for targeted deep sequencing at high coverage, suitable to detect small subclones (0.12%). BiCEBPα mutation was found to be stable and highly penetrant, representing a separate biological and clinical entity, unlike WT1 mutations, which were extremely unstable. Among the mutational patterns underlying relapse, we detected the acquisition of proliferative advantage by signaling activation (PTPN11 and FLT3-TKD mutations) and the increased resistance to apoptosis (hyperactivation of TYK2). We also found a previously undescribed feature of AML, consisting of a hypermutator phenotype caused by SETD2 inactivation. The consequent accumulation of new mutations promotes the adaptability of the leukemia, contributing to clonal selection. We report a novel ASXL3 mutation characterizing a very small subclone (<1%) present at diagnosis and undergoing expansion (60%) at relapse. Taken together, these findings provide molecular clues for designing optimal therapeutic strategies, in terms of target selection, adequate schedule design and reliable response-monitoring techniques.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Ilaria Castelli
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Interdepartmental Centre of Cancer Research "G. Prodi", University of Bologna, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Valentina Indio
- Interdepartmental Centre of Cancer Research "G. Prodi", University of Bologna, Bologna, Italy
| | - Marco Togni
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy.,Current address: Stem Cell Group, University College London Cancer Institute, University College London, London, United Kingdom
| | - Tamara Belotti
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- Interdepartmental Centre of Cancer Research "G. Prodi", University of Bologna, Bologna, Italy
| | - Marco Zecca
- Department of Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martina Pigazzi
- Department of Woman and Child Health, Laboratory of Hematology-Oncology, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, Laboratory of Hematology-Oncology, University of Padova, Padova, Italy
| | - Andrea Pession
- Department of Pediatrics "Lalla Seràgnoli", Hematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy.,University of Pavia, Pavia, Italy
| |
Collapse
|
36
|
Nougarede A, Popgeorgiev N, Kassem L, Omarjee S, Borel S, Mikaelian I, Lopez J, Gadet R, Marcillat O, Treilleux I, Villoutreix BO, Rimokh R, Gillet G. Breast Cancer Targeting through Inhibition of the Endoplasmic Reticulum-Based Apoptosis Regulator Nrh/BCL2L10. Cancer Res 2018; 78:1404-1417. [PMID: 29330143 DOI: 10.1158/0008-5472.can-17-0846] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.
Collapse
Affiliation(s)
- Adrien Nougarede
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Nikolay Popgeorgiev
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Loay Kassem
- Department of Clinical Oncology, Cairo University Hospitals, Al-Saray Street, Al-Maniel, Cairo, Egypt
| | - Soleilmane Omarjee
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Stephane Borel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Ivan Mikaelian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jonathan Lopez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.,Hospices civils de Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| | - Rudy Gadet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Olivier Marcillat
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | | | - Ruth Rimokh
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France.
| | - Germain Gillet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France. .,Hospices civils de Lyon, Laboratoire d'anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, Pierre Bénite, France
| |
Collapse
|
37
|
Hur EH, Jung SH, Goo BK, Moon J, Choi Y, Choi DR, Chung YJ, Lee JH. Establishment and characterization of hypomethylating agent-resistant cell lines, MOLM/AZA-1 and MOLM/DEC-5. Oncotarget 2017; 8:11748-11762. [PMID: 28052028 PMCID: PMC5355301 DOI: 10.18632/oncotarget.14342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Two hypomethylating agents (HMAs), azacitidine and decitabine, have demonstrated clinical activities in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML); however, potential problems include development of acquired resistance. HMA-resistant patients have very poor prognosis and this cohort of patients constitutes an important area of research. To understand the mechanisms underlying HMA-resistance and to overcome it, we established an azacitidine-resistant cell line, MOLM/AZA-1 and a decitabine-resistant cell line, MOLM/DEC-5 using MOLM-13. For cytogenetic characterization, we performed microarray-based comparative genomic hybridization (array-CGH), which identified a total of 15 copy number alterations (CNAs). Among these CNAs, eight regions in HMA-resistant cell lines showed CNA patterns distinct from the parental MOLM-13 genome. Single nucleotide polymorphism (SNP) microarray was also performed to obtain a more reliable interpretation of the identified CNAs, and all HMA-resistance-specific CNAs except one detected by array-CGH were successfully validated. In addition to CNAs, copy neutral loss of heterozygosity and mosaic loss events were identified in HMA-resistant cell lines. In our resistant cell lines, MDR-1 was not overexpressed, while DNMT3b was upregulated. Azacitidine and decitabine did not inhibit DNMT1, DNMT3a, or DNMT3b in both HMA-resistant cell lines, while they inhibited the enzymes in parental MOLM-13. We also developed mouse xenograft models using MOLM/AZA-1 and MOLM/DEC-5. Our in vitro and in vivo models of HMA-resistant cell lines will provide clues for the elucidation of molecular mechanisms related to the development of resistance to HMA and tools for the application of novel therapeutics for AML and MDS.
Collapse
Affiliation(s)
- Eun-Hye Hur
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Hyun Jung
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea
| | - Bon-Kwan Goo
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Juhyun Moon
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yunsuk Choi
- Division of Hematology and Hematological Malignancies, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Dae Ro Choi
- Division of Hemato-Oncology, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea.,Department of Microbiology, College of Medicine, The Catholic University of Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Hematopoietic Cell Transplantation in Myelodysplastic Syndromes after Treatment with Hypomethylating Agents. Biol Blood Marrow Transplant 2017; 23:1509-1514. [PMID: 28600031 DOI: 10.1016/j.bbmt.2017.05.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023]
Abstract
The prognosis of patients with myelodysplastic syndromes (MDS) after failure of hypomethylating agent (HMA) therapy is poor. Allogeneic hematopoietic cell transplantation (HCT) can be effective in curing patients who have failed therapy with HMA. However, published results have not addressed the outcomes with HCT in this setting. We identified 125 MDS patients who had been treated with HMA and underwent subsequent HCT. Among these, 68 were considered HMA failures and 57 responders. Failure was defined as progression to higher grade MDS or acute myeloid leukemia, lack of hematologic improvement after at least 4 HMA cycles, or loss of response after initial improvement. Response was defined as showing at least hematologic improvement. Outcomes were compared using Cox regression. Overall, 73 of 125 HMA-treated patients (58%) had died by the time of last contact. Median follow-up of survivors, measured from HCT, was 41.9 months (range, 2.7 to 98.5). The estimated probability of relapse at 3 years was 56.6% and 34.2% among failing and responding patients, respectively (hazard ratio [HR], 2.1; 95% confidence interval [CI], 1.2 to 3.66; P < .01). The estimated probability of relapse-free survival at 3 years was 23.8% and 42% in failing and responding patients, respectively (HR for relapse/death, 1.88; 95% CI, 1.19 to 2.95; P < .01). The risk of nonrelapse mortality was similar for both groups (HR, 1.12; 95% CI, .52 to 2.39; P = .77). Failure of treatment with HMA was associated with higher risk of post-HCT relapse than observed in patients responding to HMA. Prospective trials are needed to evaluate the efficacy of novel conditioning regimens and post-HCT maintenance strategies in patients who have failed HMA pre-HCT.
Collapse
|
39
|
Amdouni H, Robert G, Driowya M, Furstoss N, Métier C, Dubois A, Dufies M, Zerhouni M, Orange F, Lacas-Gervais S, Bougrin K, Martin AR, Auberger P, Benhida R. In Vitro and in Vivo Evaluation of Fully Substituted (5-(3-Ethoxy-3-oxopropynyl)-4-(ethoxycarbonyl)-1,2,3-triazolyl-glycosides as Original Nucleoside Analogues to Circumvent Resistance in Myeloid Malignancies. J Med Chem 2017; 60:1523-1533. [DOI: 10.1021/acs.jmedchem.6b01803] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hella Amdouni
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Guillaume Robert
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Mohsine Driowya
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
- Laboratoire
de Chimie des Plantes et de Synthèse Organique et Bioorganique,
URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014, Rabat, Morocco
| | - Nathan Furstoss
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Camille Métier
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Alix Dubois
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Maeva Dufies
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Marwa Zerhouni
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | | | | | - Khalid Bougrin
- Laboratoire
de Chimie des Plantes et de Synthèse Organique et Bioorganique,
URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014, Rabat, Morocco
| | - Anthony R. Martin
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| | - Patrick Auberger
- Centre
Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, UMR INSERM U1065, 06204 Nice, France
| | - Rachid Benhida
- Institut
de Chimie de Nice UMR7272, Université Côte d’Azur, CNRS, 06108 Nice, France
| |
Collapse
|
40
|
Carraway HE. Treatment options for patients with myelodysplastic syndromes after hypomethylating agent failure. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:470-477. [PMID: 27913518 PMCID: PMC6142467 DOI: 10.1182/asheducation-2016.1.470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The treatment of patients with myelodysplastic syndromes (MDSs) has hinged primarily on supportive care (ie, blood transfusions, colony stimulating agents, iron chelation, etc.) and the US Food and Drug Administration-approved agents, including 5-azacytidine, deoxyazacytidine, and lenalidomide. For patients no longer benefitting from these agents, there is a paucity of effective therapies. The challenges at this time include our limited understanding of the mechanisms of resistance to these therapies and the variables employed to select next best therapies for patients based on: (1) their performance status and medical comorbidities; (2) the molecular feature(s) of their MDS; (3) the prior treatments they have received; and (4) the long-term goal(s)/possibilities for their future treatment (ie, transplant vs no transplant).
Collapse
|
41
|
Solly F, Koering C, Mohamed AM, Maucort-Boulch D, Robert G, Auberger P, Flandrin-Gresta P, Adès L, Fenaux P, Kosmider O, Tavernier-Tardy E, Cornillon J, Guyotat D, Campos L, Mortreux F, Wattel E. An miRNA–DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia. Clin Cancer Res 2016; 23:3025-3034. [DOI: 10.1158/1078-0432.ccr-16-2304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
|
42
|
Hamouda MA, Jacquel A, Robert G, Puissant A, Richez V, Cassel R, Fenouille N, Roulland S, Gilleron J, Griessinger E, Dubois A, Bailly-Maitre B, Goncalves D, Mallavialle A, Colosetti P, Marchetti S, Amiot M, Gomez-Bougie P, Rochet N, Deckert M, Avet-Loiseau H, Hofman P, Karsenti JM, Jeandel PY, Blin-Wakkach C, Nadel B, Cluzeau T, Anderson KC, Fuzibet JG, Auberger P, Luciano F. BCL-B (BCL2L10) is overexpressed in patients suffering from multiple myeloma (MM) and drives an MM-like disease in transgenic mice. J Exp Med 2016; 213:1705-22. [PMID: 27455953 PMCID: PMC4995074 DOI: 10.1084/jem.20150983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Luciano et al. generate transgenic mice expressing the Bcl-B gene under the control of the VH promoter and Eµ enhancer and show that these mice recapitulate the characteristic features of human MM. Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.
Collapse
Affiliation(s)
- Mohamed-Amine Hamouda
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Arnaud Jacquel
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Guillaume Robert
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Alexandre Puissant
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Valentine Richez
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Romeo Cassel
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Nina Fenouille
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, INSERM U1104, Centre National de la Recherche Scientifique (CNRS) UMR 7280, 13288 Marseille, France
| | - Jerome Gilleron
- Team 7, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Emmanuel Griessinger
- Team 4, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Alix Dubois
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Beatrice Bailly-Maitre
- Team 8, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Diogo Goncalves
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Aude Mallavialle
- Team 11, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Pascal Colosetti
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Sandrine Marchetti
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | | | | | - Nathalie Rochet
- Université de Nice Sophia-Antipolis, 06000 Nice, France UMR 7277, 06108 Nice, France
| | - Marcel Deckert
- Team 11, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France
| | - Herve Avet-Loiseau
- Cancer Research Center of Toulouse, UMR 1037, INSERM-Université Toulouse III Paul Sabatier (UPS)-CNRS, 31037 Toulouse, France
| | - Paul Hofman
- Service d'Anatomopathologie, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Jean-Michel Karsenti
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Pierre-Yves Jeandel
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Claudine Blin-Wakkach
- Université de Nice Sophia-Antipolis, 06000 Nice, France CNRS UMR 7370, 06108 Nice, France
| | - Bertrand Nadel
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, INSERM U1104, Centre National de la Recherche Scientifique (CNRS) UMR 7280, 13288 Marseille, France
| | - Thomas Cluzeau
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jean-Gabriel Fuzibet
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, 06003 Nice, France
| | - Patrick Auberger
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Frederic Luciano
- Team 2, Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), 06204 Nice, France Université de Nice Sophia-Antipolis, 06000 Nice, France Equipe Labellisée par la Ligue Nationale Contre le Cancer, 75013 Paris, France
| |
Collapse
|
43
|
Monika Belickova M, Merkerova MD, Votavova H, Valka J, Vesela J, Pejsova B, Hajkova H, Klema J, Cermak J, Jonasova A. Up-regulation of ribosomal genes is associated with a poor response to azacitidine in myelodysplasia and related neoplasms. Int J Hematol 2016; 104:566-573. [DOI: 10.1007/s12185-016-2058-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
44
|
Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Götze KS. A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics 2016; 8:71. [PMID: 27330573 PMCID: PMC4915187 DOI: 10.1186/s13148-016-0237-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation, azanucleosides are further considered to be among the first true “epigenetic drugs” that have reached clinical application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the molecular determinants of drug response holds great potential to overcome resistance.
Collapse
Affiliation(s)
- Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Anabel Zwick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany
| | - Anne-Kathrin Garz
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany ; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Palau
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Campus Can Ruti, Badalona, Spain
| | - Katharina S Götze
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, Germany ; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Scott LJ. Azacitidine: A Review in Myelodysplastic Syndromes and Acute Myeloid Leukaemia. Drugs 2016; 76:889-900. [DOI: 10.1007/s40265-016-0585-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Gill H, Leung AYH, Kwong YL. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. Int J Mol Sci 2016; 17:440. [PMID: 27023522 PMCID: PMC4848896 DOI: 10.3390/ijms17040440] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS.
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| | | | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
47
|
Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. J Control Release 2016; 224:8-21. [DOI: 10.1016/j.jconrel.2015.12.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
|
48
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
49
|
Loiseau C, Ali A, Itzykson R. New therapeutic approaches in myelodysplastic syndromes: Hypomethylating agents and lenalidomide. Exp Hematol 2015; 43:661-72. [PMID: 26123365 DOI: 10.1016/j.exphem.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/17/2023]
Abstract
Recent advances in the treatment of myelodysplastic syndromes have come from the use of the hypomethylating agents decitabine and azacitidine as well as the immunomodulatory drug lenalidomide. Their clinical benefit has been demonstrated by randomized phase III clinical trials, mostly in high-risk and del(5q) myelodysplastic syndromes, respectively. Neither drug, however, appears to eradicate myelodysplastic stem cells, and thus they currently do not represent curative options. Here, we review data from both clinical and translational research on those drugs to identify their molecular and cellular mechanisms of action and to delineate paths for improved treatment allocation and further therapeutic advances in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Clémence Loiseau
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France
| | - Raphael Itzykson
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France; Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France.
| |
Collapse
|
50
|
Moreno-Martínez D, Nomdedeu M, Lara-Castillo MC, Etxabe A, Pratcorona M, Tesi N, Díaz-Beyá M, Rozman M, Montserrat E, Urbano-Ispizua A, Esteve J, Risueño RM. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells. Oncotarget 2015; 5:4337-46. [PMID: 24952669 PMCID: PMC4147327 DOI: 10.18632/oncotarget.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a neoplasia characterized by the rapid expansion of immature myeloid blasts in the bone marrow, and marked by poor prognosis and frequent relapse. As such, new therapeutic approaches are required for remission induction and prevention of relapse. Due to the higher chemotherapy sensitivity and limited life span of more differentiated AML blasts, differentiation-based therapies are a promising therapeutic approach. Based on public available gene expression profiles, a myeloid-specific differentiation-associated gene expression pattern was defined as the therapeutic target. A XIAP inhibitor (Dequalinium chloride, DQA) was identified in an in silico screening searching for small molecules that induce similar gene expression regulation. Treatment with DQA, similarly to Embelin (another XIAP inhibitor), induced cytotoxicity and differentiation in AML. XIAP inhibition differentially impaired cell viability of the most primitive AML blasts and reduced clonogenic capacity of AML cells, sparing healthy mature blood and hematopoietic stem cells. Taken together, these results suggest that XIAP constitutes a potential target for AML treatment and support the evaluation of XIAP inhibitors in clinical trials.
Collapse
|