1
|
Giska F, Mariappan M, Bhattacharyya M, Gupta K. Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry. Biophys J 2022; 121:1289-1298. [PMID: 35189106 PMCID: PMC9034188 DOI: 10.1016/j.bpj.2022.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Get3/4/5 chaperone complex is responsible for targeting C-terminal tail-anchored membrane proteins to the endoplasmic reticulum. Despite the availability of several crystal structures of independent proteins and partial structures of subcomplexes, different models of oligomeric states and structural organization have been proposed for the protein complexes involved. Here, using native mass spectrometry (Native-MS), coupled with intact dissociation, we show that Get4/5 exclusively forms a tetramer using both Get5/5 and a novel Get4/4 dimerization interface. Addition of Get3 to this leads to a hexameric (Get3)2-(Get4)2-(Get5)2 complex with closed-ring cyclic architecture. We further validate our claims through molecular modeling and mutational abrogation of the proposed interfaces. Native-MS has become a principal tool to determine the state of oligomeric organization of proteins. The work demonstrates that for multiprotein complexes, native-MS, coupled with molecular modeling and mutational perturbation, can provide an alternative route to render a detailed view of both the oligomeric states as well as the molecular interfaces involved. This is especially useful for large multiprotein complexes with large unstructured domains that make it recalcitrant to conventional structure determination approaches.
Collapse
Affiliation(s)
- Fabian Giska
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut
| | | | - Kallol Gupta
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Nanobiology Institute, Yale University, West Haven, Connecticut.
| |
Collapse
|
2
|
Huang B, Sun M, Hoxie R, Kotler JLM, Friedman LJ, Gelles J, Street TO. The endoplasmic reticulum chaperone BiP is a closure-accelerating cochaperone of Grp94. Proc Natl Acad Sci U S A 2022; 119:e2118793119. [PMID: 35078937 PMCID: PMC8812556 DOI: 10.1073/pnas.2118793119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Hsp70 and Hsp90 chaperones provide protein quality control to the cytoplasm, endoplasmic reticulum (ER), and mitochondria. Hsp90 activity is often enhanced by cochaperones that drive conformational changes needed for ATP-dependent closure and capture of client proteins. Hsp90 activity is also enhanced when working with Hsp70, but, in this case, the underlying mechanistic explanation is poorly understood. Here we examine the ER-specific Hsp70/Hsp90 paralogs (BiP/Grp94) and discover that BiP itself acts as a cochaperone that accelerates Grp94 closure. The BiP nucleotide binding domain, which interacts with the Grp94 middle domain, is responsible for Grp94 closure acceleration. A client protein initiates a coordinated progression of steps for the BiP/Grp94 system, in which client binding to BiP causes a conformational change that enables BiP to bind to Grp94 and accelerate its ATP-dependent closure. Single-molecule fluorescence resonance energy transfer measurements show that BiP accelerates Grp94 closure by stabilizing a high-energy conformational intermediate that otherwise acts as an energetic barrier to closure. These findings provide an explanation for enhanced activity of BiP and Grp94 when working as a pair, and demonstrate the importance of a high-energy conformational state in controlling the timing of the Grp94 conformational cycle. Given the high conservation of the Hsp70/Hsp90 system, other Hsp70s may also serve dual roles as both chaperones and closure-accelerating cochaperones to their Hsp90 counterparts.
Collapse
Affiliation(s)
- Bin Huang
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Ming Sun
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Reyal Hoxie
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Larry J Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| |
Collapse
|
3
|
Arlt C, Nutschan K, Haase A, Ihling C, Tänzler D, Sinz A, Sawers RG. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN) 2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Sci Rep 2021; 11:24362. [PMID: 34934150 PMCID: PMC8692609 DOI: 10.1038/s41598-021-03900-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.
Collapse
Affiliation(s)
- Christian Arlt
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Kerstin Nutschan
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Alexander Haase
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Dirk Tänzler
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Criado-Marrero M, Gebru NT, Blazier DM, Gould LA, Baker JD, Beaulieu-Abdelahad D, Blair LJ. Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Acta Neuropathol Commun 2021; 9:65. [PMID: 33832539 PMCID: PMC8033733 DOI: 10.1186/s40478-021-01159-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The microtubule associated protein tau is an intrinsically disordered phosphoprotein that accumulates under pathological conditions leading to formation of neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). The mechanisms that initiate the accumulation of phospho-tau aggregates and filamentous deposits are largely unknown. In the past, our work and others' have shown that molecular chaperones play a crucial role in maintaining protein homeostasis and that imbalance in their levels or activity can drive tau pathogenesis. We have found two co-chaperones of the 90 kDa heat shock protein (Hsp90), FK506-binding protein 52 (FKBP52) and the activator of Hsp90 ATPase homolog 1 (Aha1), promote tau aggregation in vitro and in the brains of tau transgenic mice. Based on this, we hypothesized that increased levels of these chaperones could promote tau misfolding and accumulation in the brains of aged wild-type mice. We tested this hypothesis by overexpressing Aha1, FKBP52, or mCherry (control) proteins in the hippocampus of 9-month-old wild-type mice. After 7 months of expression, mice were evaluated for cognitive and pathological changes. Our results show that FKBP52 overexpression impaired spatial reversal learning, while Aha1 overexpression impaired associative learning in aged wild-type mice. FKBP52 and Aha1 overexpression promoted phosphorylation of distinct AD-relevant tau species. Furthermore, FKBP52 activated gliosis and promoted neuronal loss leading to a reduction in hippocampal volume. Glial activation and phospho-tau accumulation were also detected in areas adjacent to the hippocampus, including the entorhinal cortex, suggesting that after initiation these pathologies can propagate through other brain regions. Overall, our findings suggest a role for chaperone imbalance in the initiation of tau accumulation in the aging brain.
Collapse
Affiliation(s)
- Marangelie Criado-Marrero
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Niat T Gebru
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Danielle M Blazier
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Lauren A Gould
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Jeremy D Baker
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - David Beaulieu-Abdelahad
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Laura J Blair
- USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA.
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Research Service, James A Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
5
|
Gaber A, Gunčar G, Pavšič M. Proper evaluation of chemical cross-linking-based spatial restraints improves the precision of modeling homo-oligomeric protein complexes. BMC Bioinformatics 2019; 20:464. [PMID: 31500562 PMCID: PMC6734309 DOI: 10.1186/s12859-019-3032-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022] Open
Abstract
Background The function of oligomeric proteins is inherently linked to their quaternary structure. In the absence of high-resolution data, low-resolution information in the form of spatial restraints can significantly contribute to the precision and accuracy of structural models obtained using computational approaches. To obtain such restraints, chemical cross-linking coupled with mass spectrometry (XL-MS) is commonly used. However, the use of XL-MS in the modeling of protein complexes comprised of identical subunits (homo-oligomers) is often hindered by the inherent ambiguity of intra- and inter-subunit connection assignment. Results We present a comprehensive evaluation of (1) different methods for inter-residue distance calculations, and (2) different approaches for the scoring of spatial restraints. Our results show that using Solvent Accessible Surface distances (SASDs) instead of Euclidean distances (EUCs) greatly reduces the assignation ambiguity and delivers better modeling precision. Furthermore, ambiguous connections should be considered as inter-subunit only when the intra-subunit alternative exceeds the distance threshold. Modeling performance can also be improved if symmetry, characteristic for most homo-oligomers, is explicitly defined in the scoring function. Conclusions Our findings provide guidelines for proper evaluation of chemical cross-linking-based spatial restraints in modeling homo-oligomeric protein complexes, which could facilitate structural characterization of this important group of proteins. Electronic supplementary material The online version of this article (10.1186/s12859-019-3032-x) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Wittig S, Haupt C, Hoffmann W, Kostmann S, Pagel K, Schmidt C. Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:149-160. [PMID: 29949059 PMCID: PMC6318248 DOI: 10.1007/s13361-018-2000-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Synaptobrevin-2 is a key player in signal transmission in neurons. It forms, together with SNAP25 and Syntaxin-1A, the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and mediates exocytosis of synaptic vesicles with the pre-synaptic membrane. While Synaptobrevin-2 is part of a four-helix bundle in this SNARE complex, it is natively unstructured in the absence of lipids or other SNARE proteins. Partially folded segments, presumably SNARE complex formation intermediates, as well as formation of Synaptobrevin-2 dimers and oligomers, were identified in previous studies. Here, we employ three Synaptobrevin-2 variants-the full-length protein Syb(1-116), the soluble, cytosolic variant Syb(1-96) as well as a shorter version Syb(49-96) containing structured segments but omitting a trigger site for SNARE complex formation-to study oligomerisation in the absence of interaction partners or when incorporated into the lipid bilayer of liposomes. Combining native mass spectrometry with chemical cross-linking, we find that the truncated versions show increased oligomerisation. Our findings from both techniques agree well and confirm the presence of oligomers in solution while membrane-bound Synaptobrevin-2 is mostly monomeric. Using ion mobility mass spectrometry, we could further show that lower charge states of Syb(49-96) oligomers, which most likely represent solution structures, follow an isotropic growth curve suggesting that they are intrinsically disordered. From a technical point of view, we show that the combination of native ion mobility mass spectrometry with chemical cross-linking is well-suited for the analysis of protein homo-oligomers. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sabine Wittig
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Caroline Haupt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Waldemar Hoffmann
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradaystr. 4-6, 14195, Berlin, Germany
| | - Susann Kostmann
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Mohammadi-Ostad-Kalayeh S, Hrupins V, Helmsen S, Ahlbrecht C, Stahl F, Scheper T, Preller M, Surup F, Stadler M, Kirschning A, Zeilinger C. Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors. Bioorg Med Chem 2017; 25:6345-6352. [DOI: 10.1016/j.bmc.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
|
8
|
Haupt C, Hofmann T, Wittig S, Kostmann S, Politis A, Schmidt C. Combining Chemical Cross-linking and Mass Spectrometry of Intact Protein Complexes to Study the Architecture of Multi-subunit Protein Assemblies. J Vis Exp 2017. [PMID: 29286378 PMCID: PMC5755487 DOI: 10.3791/56747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Proteins interact with their ligands to form active and dynamic assemblies which carry out various cellular functions. Elucidating these interactions is therefore fundamental for the understanding of cellular processes. However, many protein complexes are dynamic assemblies and are not accessible by conventional structural techniques. Mass spectrometry contributes to the structural investigation of these assemblies, and particularly the combination of various mass spectrometric techniques delivers valuable insights into their structural arrangement. In this article, we describe the application and combination of two complementary mass spectrometric techniques, namely chemical cross-linking coupled with mass spectrometry and native mass spectrometry. Chemical cross-linking involves the covalent linkage of amino acids in close proximity by using chemical reagents. After digestion with proteases, cross-linked di-peptides are identified by mass spectrometry and protein interactions sites are uncovered. Native mass spectrometry on the other hand is the analysis of intact protein assemblies in the gas phase of a mass spectrometer. It reveals protein stoichiometries as well as protein and ligand interactions. Both techniques therefore deliver complementary information on the structure of protein-ligand assemblies and their combination proved powerful in previous studies.
Collapse
Affiliation(s)
- Caroline Haupt
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Tommy Hofmann
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Sabine Wittig
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | - Susann Kostmann
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg
| | | | - Carla Schmidt
- Interdisciplinary research center HALOmem, Martin Luther University Halle-Wittenberg;
| |
Collapse
|