1
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
2
|
Kenworthy AK. The building blocks of caveolae revealed: caveolins finally take center stage. Biochem Soc Trans 2023; 51:855-869. [PMID: 37082988 PMCID: PMC10212548 DOI: 10.1042/bst20221298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
The ability of cells to divide, migrate, relay signals, sense mechanical stimuli, and respond to stress all rely on nanoscale invaginations of the plasma membrane known as caveolae. The caveolins, a family of monotopic membrane proteins, form the inner layer of the caveolar coat. Caveolins have long been implicated in the generation of membrane curvature, in addition to serving as scaffolds for signaling proteins. Until recently, however, the molecular architecture of caveolins was unknown, making it impossible to understand how they operate at a mechanistic level. Over the past year, two independent lines of evidence - experimental and computational - have now converged to provide the first-ever glimpse into the structure of the oligomeric caveolin complexes that function as the building blocks of caveolae. Here, we summarize how these discoveries are transforming our understanding of this long-enigmatic protein family and their role in caveolae assembly and function. We present new models inspired by the structure for how caveolins oligomerize, remodel membranes, interact with their binding partners, and reorganize when mutated. Finally, we discuss emerging insights into structural differences among caveolin family members that enable them to support the proper functions of diverse tissues and organisms.
Collapse
Affiliation(s)
- Anne K. Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, U.S.A
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, U.S.A
| |
Collapse
|
3
|
Han B, Gulsevin A, Connolly S, Wang T, Meyer B, Porta J, Tiwari A, Deng A, Chang L, Peskova Y, Mchaourab HS, Karakas E, Ohi MD, Meiler J, Kenworthy AK. Structural analysis of the P132L disease mutation in caveolin-1 reveals its role in the assembly of oligomeric complexes. J Biol Chem 2023; 299:104574. [PMID: 36870682 PMCID: PMC10124911 DOI: 10.1016/j.jbc.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.
Collapse
Affiliation(s)
- Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sarah Connolly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ting Wang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brigitte Meyer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason Porta
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ajit Tiwari
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Angie Deng
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Erkan Karakas
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Leiser D, Samanta S, Eley J, Strauss J, Creed M, Kingsbury T, Staats PN, Bhandary B, Chen M, Dukic T, Roy S, Mahmood J, Vujaskovic Z, Shukla HD. Role of caveolin-1 as a biomarker for radiation resistance and tumor aggression in lung cancer. PLoS One 2021; 16:e0258951. [PMID: 34762666 PMCID: PMC8584669 DOI: 10.1371/journal.pone.0258951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/14/2023] Open
Abstract
Radiation therapy plays a major role in the treatment of lung cancer patients. However, cancer cells develop resistance to radiation. Tumor radioresistance is a complex multifactorial mechanism which may be dependent on DNA damage and repair, hypoxic conditions inside tumor microenvironment, and the clonal selection of radioresistant cells from the heterogeneous tumor site, and it is a major cause of treatment failure in non-small cell lung cancer (NSCLC). In the present investigation caveolin-1 (CAV-1) has been observed to be highly expressed in radiation resistant A549 lung cancer cells. CRISPR-Cas9 knockout of CAV-1 reverted the cells to a radio sensitive phenotype. In addition, CAV-1 overexpression in parental A549 cells, led to radiation resistance. Further, gene expression analysis of A549 parental, radiation resistant, and caveolin-1 overexpressed cells, exhibited overexpression of DNA repair genes RAD51B, RAD18, SOX2 cancer stem cell marker, MMPs, mucins and cytoskeleton proteins in resistant and caveolin-1 over expressed A549 cells, as compared to parental A549 cells. Bioinformatic analysis shows upregulation of BRCA1, Nuclear Excision DNA repair, TGFB and JAK/STAT signaling pathways in radioresistant and caveolin-1 overexpressed cells, which may functionally mediate radiation resistance. Immunohistochemistry data demonstrated heterogeneous expression of CAV-1 gene in human lung cancer tissues, which was analogous to its enhanced expression in human lung cancer cell line model and mouse orthotopic xenograft lung cancer model. Also, TCGA PanCancer clinical studies have demonstrated amplification, deletions and missense mutation in CAV-1 gene in lung cancer patients, and that CAV-1 alteration has been linked to poor prognosis, and poor survival in lung cancer patients. Interestingly, we have also optimized ELISA assay to measure caveolin-1 protein in the blood of A549 radiation resistant human xenograft preclinical mouse model and discovered higher level of caveolin-1 (950 pg/ml) in tumor bearing animals treated with radiation, as compared to xenograft with radiosensitive lung cancer cells (450 pg/ml). Thus, we conclude that caveolin-1 is involved in radio-resistance and contributes to tumor aggression, and it has potential to be used as prognostic biomarker for radiation treatment response, and tumor progression for precision medicine in lung cancer patients.
Collapse
Affiliation(s)
- Dominic Leiser
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Santanu Samanta
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John Eley
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Josh Strauss
- Department of Radiation Oncology, School of Medicine, Vanderbilt University, Nashville, TN, United States of America
| | - Michael Creed
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tami Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Paul N. Staats
- Department of Pathology, University of Maryland, School of Medicine, Baltimore, MD, United States of America
| | - Binny Bhandary
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Minjie Chen
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tijana Dukic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Sanjit Roy
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Javed Mahmood
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hem D. Shukla
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Karimpour M, Ravanbakhsh R, Maydanchi M, Rajabi A, Azizi F, Saber A. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: A review of the literature. Biomed Pharmacother 2021; 143:112190. [PMID: 34560543 DOI: 10.1016/j.biopha.2021.112190] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Brain metastasis (BM) is the most common event in patients with lung cancer. Despite multimodal treatments and advances in systemic therapies, development of BM remains one of the main factors associated with poor prognosis and mortality in patients with lung cancer. Therefore, better understanding of mechanisms involved in lung cancer brain metastasis (LCBM) is of great importance to suppress cancer cells and to improve the overall survival of patients. Several cancer-related genes such as EGFR and KRAS have been proposed as potential predictors of LCBM. In addition, there is ample evidence supporting crucial roles of non-coding RNAs (ncRNAs) in mediating LCBM. In this review, we provide comprehensive information on risk assessment, predictive, and prognostic panels for early detection of BM in patients with lung cancer. Moreover, we present an overview of LCBM molecular mechanisms, cancer driver genes, and ncRNAs which may predict the risk of BM in lung cancer patients. Recent clinical studies have focused on determining mechanisms involved in LCBM and their association with diagnosis, prognosis, and treatment outcomes. These studies have shown that alterations in EGFR, KRAS, BRAF, and ALK, as the most frequent coding gene alterations, and dysregulation of ncRNAs such as miR-423, miR-330-3p, miR-145, piR-651, and MALAT1 can be considered as potential biomarkers of LCBM.
Collapse
Affiliation(s)
- Mina Karimpour
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Melika Maydanchi
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran
| | - Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Faezeh Azizi
- Genetics Office, Non-Communicable Disease Control Department, Public Health Department, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Saber
- Zimagene Medical Genetics Laboratory, Avicenna St., Hamedan, Iran.
| |
Collapse
|
6
|
Codenotti S, Marampon F, Triggiani L, Bonù ML, Magrini SM, Ceccaroli P, Guescini M, Gastaldello S, Tombolini V, Poliani PL, Asperti M, Poli M, Monti E, Fanzani A. Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett 2021; 505:1-12. [PMID: 33610729 DOI: 10.1016/j.canlet.2021.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The aim of this work was to investigate whether Caveolin-1 (Cav-1), a membrane scaffolding protein widely implicated in cancer, may play a role in radiation response in rhabdomyosarcoma (RMS), a pediatric soft tissue tumor. For this purpose, we employed human RD cells in which Cav-1 expression was stably increased via gene transfection. After radiation treatment, we observed that Cav-1 limited cell cycle arrest in the G2/M phase and enhanced resistance to cell senescence and apoptosis via reduction of p21Cip1/Waf1, p16INK4a and Caspase-3 cleavage. After radiotherapy, Cav-1-mediated cell radioresistance was characterized by low accumulation of H2AX foci, as confirmed by Comet assay, marked neutralization of reactive oxygen species (ROS) and enhanced DNA repair via activation of ATM, Ku70/80 complex and DNA-PK. We found that Cav-1-overexpressing RD cells, already under basal conditions, had higher glutathione (GSH) content and greater catalase expression, which conferred protection against acute treatment with hydrogen peroxide. Furthermore, pre-treatment of Cav-1-overexpressing cells with PP2 or LY294002 compounds restored the sensitivity to radiation treatment, indicating a role for Src-kinases and Akt pathways in Cav-1-mediated radioresistance. These findings were confirmed using radioresistant RD and RH30 lines generated by hypofractionated radiotherapy protocol, which showed marked increase of Cav-1, catalase and Akt, and sensitivity to PP2 and LY294002 treatment. In conclusion, these data suggest that concerted activity of Cav-1 and catalase, in cooperation with activation of Src-kinase and Akt pathways, may represent a network of vital mechanisms that allow irradiated RMS cells to evade cell death induced by oxidative stress and DNA damage.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Marampon
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Luca Triggiani
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Marco Lorenzo Bonù
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Precision Medicine Research Center, School of Pharmacy, Binzhou Medical University, Laishan District, Guanhai Road 346, Yantai, Shandong Province, 264003 China
| | - Vincenzo Tombolini
- Department of Pediatrics, "Sapienza" University of Rome, Rome, Italy; Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Chen X, Yan YL, Zeng SS, Gong ZC, Xu ZJ. Caveolin-1 promotes radioresistance via IRGM-regulated autophagy in lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:47. [PMID: 33553340 PMCID: PMC7859752 DOI: 10.21037/atm-20-3293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Radiotherapy is the standard therapeutic approach for non-small cell lung cancers (NSCLCs). However, radiotherapy resistance accounts for major treatment failures in NSCLC patients. Recently, targeting autophagy-related signaling has shown potential to improve radiotherapy. Furthermore, some studies have reported that caveolin-1 (Cav1), a primary scaffolding protein of caveolae, is positively associated with NSCLC progression and cell autophagy. However, the function of Cav1-mediated autophagy in NSCLC radioresistance remains largely unknown. Methods The NSCLC irradiation (IR)-resistant cell lines H358-IRR and A549-IRR were used for in vitro analysis. Real-time quantitative PCR (qPCR), western blot, cell counting kit-8 (CCK-8), colony formation and transmission electron microscopy analyses were performed to explore the relationship between Cav1 and immunity-related GTPase family M protein (IRGM)-regulated autophagy in the radiation resistance of lung cancers. Results Cav1 was significantly overexpressed in H358-IRR and A549-IRR cells compared to their parental counterparts. Knockdown of Cav1 significantly decreased the proliferation of IR-resistant NSCLC cells. Combinational treatment of IR and siRNA of Cav1 showed enhanced inhibition of the cell viability and colony formation of IR-resistant NSCLC cells. In addition, Cav1 overexpression could upregulate the autophagic proteins microtubule associated protein 1 light chain 3 II (LC3 II), Beclin-1 and Sequestosome 1 (SQSTM1/p62) in parental NSCLC cells, while Cav1 downregulation by siRNA inhibited the expression of LC3 II, Beclin-1 and p62 and the formation of autophagosomes in IR-resistant NSCLC cells. Furthermore, we observed that IRGM was downregulated after knockdown of Cav1 in IR-resistant NSCLC cells. Thus, Cav1 was observed to promote autophagy and increase IR-resistant cell survival by targeting IRGM. Conclusions The results of our study showed that Cav1 is involved in the development of IR resistance in NSCLC through IRGM-regulated autophagy and can be considered as a potential therapeutic target for improving the radiosensitivity of NSCLC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan-Liang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang-Shuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Jie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV, Zubareva EY. MODERN CONCEPTS ON THE ROLE OF HYPOXIA IN THE DEVELOPMENT OF TUMOR RADIORESISTANCE. SIBERIAN JOURNAL OF ONCOLOGY 2020; 19:141-147. [DOI: 10.21294/1814-4861-2020-19-6-141-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of the study was to systematize and summarize modern ideas about the role of hypoxia in the development of tumor radioresistance.Material and Methods. PubMed, eLibrary and Springer databases were used to identify reviews published from 1953 to 2020, of which 57 were selected to write our review.Results. Radiation therapy is one of the most important components in cancer treatment. The major drawback of radiation therapy is the development radiation resistance in cancerous cells and secondary malignancies. The mechanisms of cancer radioresistance are very complicated and affected by many factors, of which hypoxia is the most important. Hypoxia is able to activate the mechanisms of angiogenesis, epithelial-mesenchymal transformation and contribute to the formation of the pool of cancer stem cell, which are characterized by chemo- and radioresistance. In turn, the severity of hypoxia largely dependent on tumor blood flow. Moreover, not only the quantitative but also the qualitative characteristics of blood vessels can affect the development of tissue hypoxia in the tumor.Conclusion. A comprehensive assessment of the severity of hypoxia, as well as characteristics of angiogenesis and EMT can contribute to a better understanding of the mechanisms of development of cancer radioresistance.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | - E. V. Makarova
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| | | | | | - E. Y. Zubareva
- Orenburg State Medical University;
Orenburg Regional Oncology Clinic
| |
Collapse
|
9
|
Shi YB, Li J, Lai XN, Jiang R, Zhao RC, Xiong LX. Multifaceted Roles of Caveolin-1 in Lung Cancer: A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers (Basel) 2020; 12:cancers12020291. [PMID: 31991790 PMCID: PMC7073165 DOI: 10.3390/cancers12020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is one of the most common and malignant cancers with extremely high morbidity and mortality in both males and females. Although traditional lung cancer treatments are fast progressing, there are still limitations. Caveolin-1 (Cav-1), a main component of caveolae, participates in multiple cellular events such as immune responses, endocytosis, membrane trafficking, cellular signaling and cancer progression. It has been found tightly associated with lung cancer cell proliferation, migration, apoptosis resistance and drug resistance. In addition to this, multiple bioactive molecules have been confirmed to target Cav-1 to carry on their anti-tumor functions in lung cancers. Cav-1 can also be a predictor for lung cancer patients’ prognosis. In this review, we have summarized the valuable research on Cav-1 and lung cancer in recent years and discussed the multifaceted roles of Cav-1 on lung cancer occurrence, development and therapy, hoping to provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Jun Li
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xing-Ning Lai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Jiang
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
10
|
Caveolin-1 enhances brain metastasis of non-small cell lung cancer, potentially in association with the epithelial-mesenchymal transition marker SNAIL. Cancer Cell Int 2019; 19:171. [PMID: 31297035 PMCID: PMC6599320 DOI: 10.1186/s12935-019-0892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
Background Caveolin-1 (Cav-1) plays an important role in the development of various human cancers. We investigated the relationship between Cav-1 expression and non-small cell lung cancer (NSCLC) progression in the context of brain metastasis (BM). Methods Cav-1 expression was investigated in a series of 102 BM samples and 49 paired primary NSCLC samples, as well as 162 unpaired primary NSCLC samples with (63 cases) or without (99 cases) metastasis to distant organs. Human lung cancer cell lines were used for in vitro functional analysis. Results High Cav-1 expression in tumor cells was observed in 52% (38/73) of squamous cell carcinomas (SQCs) and 33% (45/138) of non-SQCs. In SQC, high Cav-1 expression was increased after BM in both paired and unpaired samples of lung primary tumors and BM (53% vs. 84% in paired samples, P = 0.034; 52% vs. 78% in unpaired samples, P = 0.020). Although the difference in median overall survival in patients NSCLC was not statistically significant, high Cav-1 expression in tumor cells (P = 0.005, hazard ratio 1.715, 95% confidence index 1.175–2.502) was independent prognostic factors of overall survival on multivariate Cox regression analyses, in addition to the presence of BM and non-SQC type. In vitro assays revealed that Cav-1 knockdown inhibited the invasion and migration of lung cancer cells. Genetic modulation of Cav-1 was consistently associated with SNAIL up- and down-regulation. These findings were supported by increased SNAIL and Cav-1 expression in BM samples of SQC. Conclusions Cav-1 plays an important role in the BM of NSCLC, especially in SQC. The mechanism may be linked to SNAIL regulation. Electronic supplementary material The online version of this article (10.1186/s12935-019-0892-0) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
12
|
Abstract
Resistance of solid tumors to chemo- and radiotherapy remains a major obstacle in anti-cancer treatment. Herein, the membrane protein caveolin-1 (CAV1) came into focus as it is highly expressed in many tumors and high CAV1 levels were correlated with tumor progression, invasion and metastasis, and thus a worse clinical outcome. Increasing evidence further indicates that the heterogeneous tumor microenvironment, also known as the tumor stroma, contributes to therapy resistance resulting in poor clinical outcome. Again, CAV1 seems to play an important role in modulating tumor host interactions by promoting tumor growth, metastasis, therapy resistance and cell survival. However, the mechanisms driving stroma-mediated tumor growth and radiation resistance remain to be clarified. Understanding these interactions and thus, targeting CAV1 may offer a novel strategy for preventing cancer therapy resistance and improving clinical outcomes. In this review, we will summarize the resistance-promoting effects of CAV1 in tumors, and emphasize its role in the tumor-stroma communication as well as the resulting malignant phenotype of epithelial tumors.
Collapse
Affiliation(s)
- Julia Ketteler
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Zhang X, Rong X, Chen Y, Su L. Methylation-mediated loss of SFRP2 enhances invasiveness of non-small cell lung cancer cells. Hum Exp Toxicol 2017; 37:155-162. [PMID: 29320940 DOI: 10.1177/0960327117693071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The malignancy of non-small cell lung cancer (NSCLC) largely results from its invasive manner. Secreted frizzled-related proteins (SFRPs) have been recently found to suppress the invasiveness of some cancers. On the other hand, the methylation of SFRPs increases protein degradation to reduce the activity of SFRPs, resulting in increased tumor cell invasion and cancer metastasis. However, the role of SFRPs in the invasion of NSCLC has not been reported. Here we analyzed the regulation of SFRPs in NSCLC cells and its effects on cell invasion. We found that SFRP2 mRNA was significantly decreased and methylation of SFRP2 gene was significantly increased in NSCLC tissue, compared to the paired adjacent nontumor tissue. Moreover, SFRP2 expression was significantly decreased in NSCLC cell lines. In NSCLC cell lines, the SFRP2 expression would be restored by the demethylation of SFRP2 gene with 5'-aza-deoxycytidine in NSCLC cell lines, at the levels of both mRNA and protein. Thus, the cell invasion would be suppressed. Furthermore, the demethylation of SFRP2 gene appeared to inhibit Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and matrix metallopeptidase 9 (MMP9), two key factors that enhance NSCLC cell invasion. Thus, SFRP2 may inhibit NSCLC invasion by suppressing ZEB1 and MMP9, while its methylation promotes NSCLC invasion.
Collapse
Affiliation(s)
- X Zhang
- 1 Department of Respiratory, Shandong Provincial Chest Hospital, Ji'nan, China
| | - X Rong
- 1 Department of Respiratory, Shandong Provincial Chest Hospital, Ji'nan, China
| | - Y Chen
- 2 Department of Internal medicine, The Fourth People's Hospital of Ji'nan, Ji'nan Clinical School of Taishan Medical College, Ji'nan, China
| | - L Su
- 3 Department of Respiratory, The Fourth People's Hospital of Ji'nan, Ji'nan Clinical School of Taishan Medical College, Ji'nan, China
| |
Collapse
|
14
|
Duregon E, Senetta R, Bertero L, Bussolati B, Annaratone L, Pittaro A, Papotti M, Marchiò C, Cassoni P. Caveolin 1 expression favors tumor growth and is associated with poor survival in primary lung adenocarcinomas. Tumour Biol 2017; 39:1010428317694311. [DOI: 10.1177/1010428317694311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the consolidated clinico-pathological correlates of Caveolin 1 expression in non–small cell lung cancer, the available data on the role of Caveolin 1 in relation to proliferation, migration, and metastasis in lung adenocarcinoma cells is still scant. Here, we aimed to confirm whether Caveolin 1 may act as a promoter of cell growth in human lung adenocarcinoma using in vitro and in vivo models, supported by a survival analysis of Caveolin 1 expression in a series of 116 primary lung adenocarcinomas. The silencing of endogenous Caveolin 1 expression in H522 lung adenocarcinoma cells through stable shRNA transfection significantly inhibited cellular proliferation in vitro and in vivo, in a lung adenocarcinoma xenograft mouse model. The bioluminescence imaging analysis revealed that tumors derived from Caveolin 1 shRNA-transfected cells grew slower than control xenografts. However, this difference progressively diminished over time and was definitively lost after 21 days. This was consistent with a progressive Caveolin 1 re-expression, which started at day 7. The association between the restored expression of Caveolin 1 and the restart of tumor growth in vivo supports the booster role of Caveolin 1 in lung adenocarcinoma progression. To further confirm this role, Caveolin 1 expression was assessed by immunohistochemistry in a series of 116 human lung adenocarcinomas. Positive Caveolin 1 tumors accounted for 20% of cases and were associated with a significantly worse overall survival compared to Caveolin 1-negative cancers. Taken together, these data highlight that Caveolin 1 expression confers a proliferative advantage in lung adenocarcinoma cells, thus fostering increased tumor aggressiveness.
Collapse
Affiliation(s)
| | - Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mauro Papotti
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Mahmood J, Zaveri SR, Murti SC, Alexander AA, Connors CQ, Shukla HD, Vujaskovic Z. Caveolin-1: a novel prognostic biomarker of radioresistance in cancer. Int J Radiat Biol 2016; 92:747-753. [PMID: 27623870 DOI: 10.1080/09553002.2016.1222096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Caveolin-1 is a membrane protein highly expressed in many tumors and plays an important role in tumor progression and metastasis. This review describes the structure of the Caveolin-1 protein and its pre-clinical and clinical significance, demonstrating that Caveolin-1 is a novel biomarker for radioresistance which has the promising potential to improve the clinical outcome of cancer patients undergoing radiation treatment. SUMMARY Targeted radiation therapy has shown immense benefits for cancer treatment. However, one of the major challenges for effective clinical outcome of radiation therapy for cancer patients is the development of radioresistance during radiation treatment. As a consequence, radiation therapy becomes a less effective modality for successful clinical outcome. Furthermore, a radioresistant tumor has the ability to repair its genome, and therefore becomes more aggressive and metastasizes. The plausible mechanisms for tumor radioresistance include the rapid DNA repair, somatic mutations in tumor oncogenes, aberrant activation of kinase pathways, and changes in the tumor microenvironment including tumor hypoxia, tumor vasculature, and cancer stem cells. Caveolin-1 is significantly upregulated in certain cancer cells and aberrantly mediates downstream signaling mechanisms. Notably, numerous recent research reports have shown the role of Caveolin-1 in tumor radioresistance and poor treatment outcome. Thus, Caveolin-1 could be a novel prognostic biomarker to monitor tumor radioresistance in cancer patients undergoing radiation therapy. CONCLUSIONS Caveolin-1 has the promising potential to become a novel prognostic biomarker to monitor tumor radioresistance and radiation response specifically in the prostate, pancreas, and lung cancer.
Collapse
Affiliation(s)
- Javed Mahmood
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Sarthak R Zaveri
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Stephanie C Murti
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Allen A Alexander
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Caroline Q Connors
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| | - Hem D Shukla
- b Department of Pharmaceutical Sciences , School of Pharmacy, University of Maryland , Baltimore , MD , USA
| | - Zeljko Vujaskovic
- a Division of Translational Radiation Sciences, Department of Radiation Oncology , School of Medicine, University of Maryland , Baltimore , MD , USA
| |
Collapse
|