1
|
Behera BP, Mishra SR, Patra S, Mahapatra KK, Bhol CS, Panigrahi DP, Praharaj PP, Klionsky DJ, Bhutia SK. Molecular regulation of mitophagy signaling in tumor microenvironment and its targeting for cancer therapy. Cytokine Growth Factor Rev 2025:S1359-6101(25)00004-8. [PMID: 39880721 DOI: 10.1016/j.cytogfr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Aberrations emerging in mitochondrial homeostasis are restrained by mitophagy to control mitochondrial integrity, bioenergetics signaling, metabolism, oxidative stress, and apoptosis. The mitophagy-accompanied mitochondrial processes that occur in a dysregulated condition act as drivers for cancer occurrence. In addition, the enigmatic nature of mitophagy in cancer cells modulates the cellular proteome, creating challenges for therapeutic interventions. Several reports found the role of cellular signaling pathways in cancer to modulate mitophagy to mitigate stress, immune checkpoints, energy demand, and cell death. Thus, targeting mitophagy to hinder oncogenic intracellular signaling by promoting apoptosis, in hindsight, might have an edge against cancer. This review highlights the receptors and adaptors, and the involvement of many proteins in mitophagy and their role in oncogenesis. It also provides insight into using mitophagy as a potential target for therapeutic intervention in various cancer types.
Collapse
Affiliation(s)
- Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
2
|
Rocca C, Soda T, De Francesco EM, Fiorillo M, Moccia F, Viglietto G, Angelone T, Amodio N. Mitochondrial dysfunction at the crossroad of cardiovascular diseases and cancer. J Transl Med 2023; 21:635. [PMID: 37726810 PMCID: PMC10507834 DOI: 10.1186/s12967-023-04498-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E and E.S. (DiBEST), University of Calabria, Arcavacata di Rende, 87036, Cosenza, Italy.
- National Institute of Cardiovascular Research (I.N.R.C.), 40126, Bologna, Italy.
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
3
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Kedika SR, Shukla SP, Udugamasooriya DG. Design of a dual ERK5 kinase activation and autophosphorylation inhibitor to block cancer stem cell activity. Bioorg Med Chem Lett 2020; 30:127552. [DOI: 10.1016/j.bmcl.2020.127552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
5
|
Hoang VT, Matossian MD, Ucar DA, Elliott S, La J, Wright MK, Burks HE, Perles A, Hossain F, King CT, Browning VE, Bursavich J, Fang F, Del Valle L, Bhatt AB, Cavanaugh JE, Flaherty PT, Anbalagan M, Rowan BG, Bratton MR, Nephew KP, Miele L, Collins-Burow BM, Martin EC, Burow ME. ERK5 Is Required for Tumor Growth and Maintenance Through Regulation of the Extracellular Matrix in Triple Negative Breast Cancer. Front Oncol 2020; 10:1164. [PMID: 32850332 PMCID: PMC7416559 DOI: 10.3389/fonc.2020.01164] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members regulate diverse cellular processes involved in tumor initiation and progression, yet the role of ERK5 in cancer biology is not fully understood. Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. ERK5 signaling contributes to drug resistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT). More recently a role for ERK5 in regulation of the extracellular matrix (ECM) has been proposed, and here we investigated the necessity of ERK5 in TNBC tumor formation. Depletion of ERK5 expression using the CRISPR/Cas9 system in MDA-MB-231 and Hs-578T cells resulted in loss of mesenchymal features, as observed through gene expression profile and cell morphology, and suppressed TNBC cell migration. In vivo xenograft experiments revealed ERK5 knockout disrupted tumor growth kinetics, which was restored using high concentration Matrigel™ and ERK5-ko reduced expression of the angiogenesis marker CD31. These findings implicated a role for ERK5 in the extracellular matrix (ECM) and matrix integrity. RNA-sequencing analyses demonstrated downregulation of matrix-associated genes, integrins, and pro-angiogenic factors in ERK5-ko cells. Tissue decellularization combined with cryo-SEM and interrogation of biomechanical properties revealed that ERK5-ko resulted in loss of key ECM fiber alignment and mechanosensing capabilities in breast cancer xenografts compared to parental wild-type cells. In this study, we identified a novel role for ERK5 in tumor growth kinetics through modulation of the ECM and angiogenesis axis in breast cancer.
Collapse
Affiliation(s)
- Van T. Hoang
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Margarite D. Matossian
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Steven Elliott
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jacqueline La
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Maryl K. Wright
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hope E. Burks
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Aaron Perles
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Fokhrul Hossain
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Connor T. King
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Valentino E. Browning
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Jacob Bursavich
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Fang Fang
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Luis Del Valle
- Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Akshita B. Bhatt
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Jane E. Cavanaugh
- Department of Pharmacology, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Patrick T. Flaherty
- Department of Medicinal Chemistry, School of Pharmacy, Duquesne University, Pittsburgh, PA, United States
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Melyssa R. Bratton
- Cellular and Molecular Biology Core, Xavier University, New Orleans, LA, United States
| | - Kenneth P. Nephew
- Medical Sciences, School of Medicine, Indiana University Bloomington, Bloomington, IN, United States
| | - Lucio Miele
- Department of Genetics, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Bridgette M. Collins-Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Cancer Center, New Orleans, LA, United States
| | - Elizabeth C. Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Matthew E. Burow
- Section of Hematology & Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
6
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
7
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
8
|
MEK5/ERK5 activation regulates colon cancer stem-like cell properties. Cell Death Discov 2019; 5:68. [PMID: 30774996 PMCID: PMC6370793 DOI: 10.1038/s41420-019-0150-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer has been proposed to be sustained by a small subpopulation of stem-like cells with unique properties allowing them to survive conventional therapies and drive tumor recurrence. Identification of targetable signaling pathways contributing to malignant stem-like cell maintenance may therefore translate into new therapeutic strategies to overcome drug resistance. Here we demonstrated that MEK5/ERK5 signaling activation is associated with stem-like malignant phenotypes. Conversely, using a panel of cell line-derived three-dimensional models, we showed that ERK5 inhibition markedly suppresses the molecular and functional features of colon cancer stem-like cells. Particularly, pharmacological inhibition of ERK5 using XMD8-92 reduced the rate of primary and secondary sphere formation, the expression of pluripotency transcription factors SOX2, NANOG, and OCT4, and the proportion of tumor cells with increased ALDH activity. Notably, this was further associated with increased sensitivity to 5-fluorouracil-based chemotherapy. Mechanistically, ERK5 inhibition resulted in decreased IL-8 expression and NF-κB transcriptional activity, suggesting a possible ERK5/NF-κB/IL-8 signaling axis regulating stem-like cell malignancy. Taken together, our results provide proof of principle that ERK5-targeted inhibition may be a promising therapeutic approach to eliminate drug-resistant cancer stem-like cells and improve colon cancer treatment.
Collapse
|
9
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
10
|
Targeting BMK1 Impairs the Drug Resistance to Combined Inhibition of BRAF and MEK1/2 in Melanoma. Sci Rep 2017; 7:46244. [PMID: 28387310 PMCID: PMC5384194 DOI: 10.1038/srep46244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/14/2017] [Indexed: 01/20/2023] Open
Abstract
Combined inhibition of BRAF and MEK1/2 (CIBM) improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to CIBM is inevitable and the drug resistance mechanisms still remain to be elucidated. Here, we show that BMK1 pathway contributes to the drug resistance to CIBM. Considering that ERK1/2 pathway regulates cellular processes by phosphorylating, we first performed a SILAC phosphoproteomic profiling of CIBM. Phosphorylation of 239 proteins was identified to be downregulated, while phosphorylation of 47 proteins was upregulated. Following siRNA screening of 47 upregulated proteins indicated that the knockdown of BMK1 showed the most significant ability to inhibit the proliferation of CIBM resistant cells. It was found that phosphorylation of BMK1 was enhanced in resistant cells, which suggested an association of BMK1 with drug resistance. Further study indicated that phospho-activation of BMK1 by MEK5D enhanced the resistance to CIBM. Conversely, inhibition of BMK1 by shRNAi or BMK1 inhibitor (XMD8-92) impaired not only the acquirement of resistance to CIBM, but also the proliferation of CIBM resistant cells. Further kinome-scale siRNA screening demonstrated that SRC\MEK5 cascade promotes the phospho-activation of BMK1 in response to CIBM. Our study not only provides a global phosphoproteomic view of CIBM in melanoma, but also demonstrates that inhibition of BMK1 has therapeutic potential for the treatment of melanoma.
Collapse
|
11
|
ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc Natl Acad Sci U S A 2016; 113:11865-11870. [PMID: 27679845 DOI: 10.1073/pnas.1609019113] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Unlike other members of the MAPK family, ERK5 contains a large C-terminal domain with transcriptional activation capability in addition to an N-terminal canonical kinase domain. Genetic deletion of ERK5 is embryonic lethal, and tissue-restricted deletions have profound effects on erythroid development, cardiac function, and neurogenesis. In addition, depletion of ERK5 is antiinflammatory and antitumorigenic. Small molecule inhibition of ERK5 has been shown to have promising activity in cell and animal models of inflammation and oncology. Here we report the synthesis and biological characterization of potent, selective ERK5 inhibitors. In contrast to both genetic depletion/deletion of ERK5 and inhibition with previously reported compounds, inhibition of the kinase with the most selective of the new inhibitors had no antiinflammatory or antiproliferative activity. The source of efficacy in previously reported ERK5 inhibitors is shown to be off-target activity on bromodomains, conserved protein modules involved in recognition of acetyl-lysine residues during transcriptional processes. It is likely that phenotypes reported from genetic deletion or depletion of ERK5 arise from removal of a noncatalytic function of ERK5. The newly reported inhibitors should be useful in determining which of the many reported phenotypes are due to kinase activity and delineate which can be pharmacologically targeted.
Collapse
|
12
|
IDH1/2 Mutants Inhibit TET-Promoted Oxidation of RNA 5mC to 5hmC. PLoS One 2016; 11:e0161261. [PMID: 27548812 PMCID: PMC4993491 DOI: 10.1371/journal.pone.0161261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/05/2022] Open
Abstract
TETs (TET1/2/3) play critical roles in multi cellular processes through DNA demethylation driven by oxidation of DNA 5mdC to 5hmdC. Interestingly, recent studies indicated that TETs also oxidate RNA 5mC to 5hmC. However, little is known about the distribution of RNA 5hmC and the regulatory mechanism of RNA 5hmC in human. Here, we show that 5hmC is enriched in mRNA, and IDH1/2 mutants inhibit TET-promoted oxidation of RNA 5mC to 5hmC. Since IDH1/2 mutations have been described to block the DNA oxidative activity of TETs, we hypothesized that IDH1/2 mutations might also inhibit the RNA oxidative activity of TETs. To evaluate the role of IDH1/2 mutations in RNA 5hmC, TETs with/without IDH1/2 mutants were overexpressed in human HEK293 cells. Resultant DNA and RNA were digested and analyzed by triple-quadrupole LC mass spectrometer. DNA 5hmdC and RNA 5hmC modifications were quantified with external calibration curves of appropriate standards. It was found that compared with total RNA (5hmC/C: less than 2 X 10−7), mRNA showed much higher 5hmC level (5hmC/C: ∼7 X 10−6). Further study indicated that IDH1/2 mutants showed significant ability to inhibit TET-promoted RNA5hmC. Consistent with this result, overexpression of IDH1/2 mutants also inhibited TET catalytic domain-promoted oxidation of RNA. In this study, we show not only the enrichment of 5hmC in mRNA, but also a regulatory mechanism of RNA 5hmC—IDH1/2 mutations inhibit TET-promoted RNA 5hmC, which suggests an involvement of IDH1/2 mutations in tumorigenesis through the deregulation of RNA biology.
Collapse
|