1
|
Weis P, Helm J, Page L, Lauruschkat CD, Lazariotou M, Einsele H, Loeffler J, Ullmann AJ, Wurster S. Development and evaluation of a whole blood-based approach for flow cytometric quantification of CD154+ mould-reactive T cells. Med Mycol 2020; 58:187-196. [PMID: 31095327 DOI: 10.1093/mmy/myz038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
CD154+ mould-reactive T cells were proposed as a novel biomarker in the diagnosis of invasive mycoses. As PBMC-based protocols for flow cytometric quantification of these cells are logistically challenging and susceptible to preanalytic delays, this study evaluated and optimized a whole blood-based method for the detection of mould-reactive T cells. Blood collection tubes containing costimulatory antibodies and Aspergillus fumigatus mycelial lysates were inoculated with heparinized whole blood from healthy adults, and detection rates of CD154+/CD4+A. fumigatus reactive T cells were compared with PBMC-based detection using samples from the same donors. In contrast to the PBMC-based method, double costimulation with αCD28 and αCD49d was crucial for reliable whole blood stimulation. Optimizing stimulation schemes for both matrixes, significantly higher specific T-cell detection rates were achieved by the whole blood-based method, whereas the unspecific background stimulation remained low. MHC II-dependent CD154+ upregulation was demonstrated for both matrixes. Excellent correlation and reproducible conversion factors between whole blood and PBMC-based results were observed. Using frozen ready-to-use test tubes containing costimulatory antibodies and lysates, detection rates of specific T cells were comparable to freshly prepared blood collection tubes. The optimized whole blood-based protocol was also used to detect Rhizopus arrhizus and Rhizomucor pusillus reactive T cells, resulting in 1.5- to 2.7-fold higher detection rates compared with PBMC-based measurement. In summary, the whole blood protocol is a robust, highly sensitive, and cost-effective method for mould-reactive T-cell quantification, allowing for point-of-care sample stimulation and contributing to better assay standardization in multi-centre evaluation of mould reactive T-cell quantification.
Collapse
Affiliation(s)
- Philipp Weis
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Johanna Helm
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Lukas Page
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Chris D Lauruschkat
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Maria Lazariotou
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Hermann Einsele
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Juergen Loeffler
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Andrew J Ullmann
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Sebastian Wurster
- University Hospital of Wuerzburg, Department of Internal Medicine II, Division of Infectious Diseases, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany.,The University of Texas MD Anderson Cancer Center, Department of Infectious Diseases, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| |
Collapse
|
2
|
Rammensee HG, Löffler MW, Walz JS, Bokemeyer C, Haen SP, Gouttefangeas C. [Tumor vaccines-therapeutic vaccination against cancer]. Internist (Berl) 2020; 61:690-698. [PMID: 32462251 DOI: 10.1007/s00108-020-00814-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumor cells always exhibit differences to normal cells. These differences can be recognized by the immune system, enabling the destruction of tumor cells by T cells, as was impressively demonstrated by the success of immune checkpoint inhibition, e.g., in malignant melanoma. Many cancers, however, do not respond to this kind of therapy. In these cases, vaccination against tumor antigens could be very helpful. Nevertheless, all of the efforts made in this respect during the past 30 years have been virtually futile. With current knowledge and technology there is new hope.
Collapse
Affiliation(s)
- H-G Rammensee
- Interfakultäres Institut für Zellbiologie (IFIZ), Abteilung Immunologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Deutschland. .,Deutsches Konsortium für Translationale Krebsforschung (DKTK) am Deutschen Krebsforschungszentrum (DKFZ), Partnerstandort Tübingen, Tübingen, Deutschland. .,Exzellenzcluster iFIT (EXC2180) "Individualisierung von Tumortherapien durch molekulare Bildgebung und funktionelle Identifizierung therapeutischer Zielstrukturen", Tübingen, Deutschland.
| | - M W Löffler
- Interfakultäres Institut für Zellbiologie (IFIZ), Abteilung Immunologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Deutschland.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) am Deutschen Krebsforschungszentrum (DKFZ), Partnerstandort Tübingen, Tübingen, Deutschland.,Exzellenzcluster iFIT (EXC2180) "Individualisierung von Tumortherapien durch molekulare Bildgebung und funktionelle Identifizierung therapeutischer Zielstrukturen", Tübingen, Deutschland.,Abteilung für Allgemeine, Viszeral- und Transplantationschirurgie, Universitätsklinikum Tübingen, Tübingen, Deutschland.,Abteilung Klinische Pharmakologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - J S Walz
- Interfakultäres Institut für Zellbiologie (IFIZ), Abteilung Immunologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Deutschland.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) am Deutschen Krebsforschungszentrum (DKFZ), Partnerstandort Tübingen, Tübingen, Deutschland.,Exzellenzcluster iFIT (EXC2180) "Individualisierung von Tumortherapien durch molekulare Bildgebung und funktionelle Identifizierung therapeutischer Zielstrukturen", Tübingen, Deutschland.,Medizinische Klinik II für Hämatologie, Onkologie, Immunologie und Rheumatologie, Universitätsklinikum Tübingen, Tübingen, Deutschland.,Klinische Kooperationseinheit (KKE) für Translationale Immunologie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - C Bokemeyer
- Zentrum für Onkologie, II. Medizinische Klinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - S P Haen
- Interfakultäres Institut für Zellbiologie (IFIZ), Abteilung Immunologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Deutschland.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) am Deutschen Krebsforschungszentrum (DKFZ), Partnerstandort Tübingen, Tübingen, Deutschland.,Zentrum für Onkologie, II. Medizinische Klinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - C Gouttefangeas
- Interfakultäres Institut für Zellbiologie (IFIZ), Abteilung Immunologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Deutschland.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) am Deutschen Krebsforschungszentrum (DKFZ), Partnerstandort Tübingen, Tübingen, Deutschland.,Exzellenzcluster iFIT (EXC2180) "Individualisierung von Tumortherapien durch molekulare Bildgebung und funktionelle Identifizierung therapeutischer Zielstrukturen", Tübingen, Deutschland
| |
Collapse
|
3
|
Generation of TCR-engineered reference cell samples to control T-cell assay performance. Methods Enzymol 2020. [PMID: 31948547 DOI: 10.1016/bs.mie.2019.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vitro cellular assays analyzing antigen-specific T cells are characterized by their high complexity and require controlled conditions to lower experimental variations. Without standard cellular reagents, it is difficult to compare results over time and across institutions. To overcome this problem, a simple and robust technology was developed to generate TCR-engineered reference samples (TERS) containing defined numbers of antigen-specific T cells. Utilization of TERS enables performance control of three main T-cell assays: MHC-peptide multimer staining, IFN-γ ELISpot and cytokine flow cytometry. TERS continuously deliver stable results and can be stored for longer periods of time. Here, an optimized manufacturing protocol, based on the electroporation of stable T-cell receptor in vitro-transcribed mRNA, is provided for versatile in-house production of TERS. Included are a guideline to optimize the electroporation settings on locally available electroporation devices and a step-by-step protocol for the production process.
Collapse
|
4
|
Bioinformatic methods for cancer neoantigen prediction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:25-60. [PMID: 31383407 DOI: 10.1016/bs.pmbts.2019.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor cells accumulate aberrations not present in normal cells, leading to presentation of neoantigens on MHC molecules on their surface. These non-self neoantigens distinguish tumor cells from normal cells to the immune system and are thus targets for cancer immunotherapy. The rapid development of molecular profiling platforms, such as next-generation sequencing, has enabled the generation of large datasets characterizing tumor cells. The simultaneous development of algorithms has enabled rapid and accurate processing of these data. Bioinformatic software tools encoding the algorithms can be strung together in a workflow to identify neoantigens. Here, with a focus on high-throughput sequencing, we review state-of-the art bioinformatic tools along with the steps and challenges involved in neoantigen identification and recognition.
Collapse
|
5
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|