1
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
2
|
High Mobility Group A 1 Expression as a Poor Prognostic Marker Associated with Tumor Invasiveness in Gastric Cancer. Life (Basel) 2022; 12:life12050709. [PMID: 35629376 PMCID: PMC9146826 DOI: 10.3390/life12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
The prognosis of advanced gastric cancer remains poor. Overexpression of high mobility group A 1 (HMGA1) in breast cancer and neuroblastoma indicates a poor prognosis. However, the relationship between HMGA1 expression and gastric cancer development remains unclear. Treatment strategies can be developed by identifying potential markers associated with gastric cancer. We used a constructed tissue array and performed hematoxylin and eosin and immunohistochemical staining. We quantified the staining results and performed statistical analysis to evaluate the relationship between HMGA1 expression and prognosis. HMGA1 expression was related to the expression of Ki-67, caspase3, CD31, N-cadherin, fibronectin, pAkt, and pErk. In the Kaplan–Meier graph, higher HMGA1 expression levels were associated with a relatively poor survival rate (p = 0.04). High expression of HMGA1 leads to a low survival rate, which is associated with HMGA1, proliferation, apoptosis, angiogenesis, epithelial-mesenchymal transition, and tyrosine kinase.
Collapse
|
3
|
Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021; 81:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/27/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
The functional and structural versatility of Ribonucleic acids (RNAs) makes them ideal candidates for overcoming the limitations imposed by small molecule-based drugs. Hence, RNA-based biopharmaceuticals such as messenger RNA (mRNA) vaccines, antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNA mimics, anti-miRNA oligonucleotides (AMOs), aptamers, riboswitches, and CRISPR-Cas9 are emerging as vital tools for the treatment and prophylaxis of many infectious diseases. Some of the major challenges to overcome in the area of RNA-based therapeutics have been the instability of single-stranded RNAs, delivery to the diseased cell, and immunogenicity. However, recent advancements in the delivery systems of in vitro transcribed mRNA and chemical modifications for protection against nucleases and reducing the toxicity of RNA have facilitated the entry of several exogenous RNAs into clinical trials. In this review, we provide an overview of RNA-based vaccines and therapeutics, their production, delivery, current advancements, and future translational potential in treating infectious diseases.
Collapse
Affiliation(s)
- Manish Pandey
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Divya Ojha
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Sakshi Bansal
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology, Faridabad, 121001, India.
| | - Geetanjali Chawla
- RNA Biology Laboratory, Regional Centre for Biotechnology, Faridabad, 121001, India.
| |
Collapse
|
4
|
Prinz C, Mese K, Weber D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes (Basel) 2021; 12:genes12040597. [PMID: 33921696 PMCID: PMC8073778 DOI: 10.3390/genes12040597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Despite medical advances, gastric-cancer (GC) mortality remains high in Europe. Bacterial infection with Helicobacter pylori (H. pylori) and viral infection with the Epstein–Barr virus (EBV) are associated with the development of both distal and proximal gastric cancer. Therefore, the detection of these infections and the prediction of further cancer development could be clinically significant. To this end, microRNAs (miRNAs) could serve as promising new tools. MiRNAs are highly conserved noncoding RNAs that play an important role in gene silencing, mainly acting via translational repression and the degradation of mRNA targets. Recent reports demonstrate the downregulation of numerous miRNAs in GC, especially miR-22, miR-145, miR-206, miR-375, and miR-490, and these changes seem to promote cancer-cell invasion and tumor spreading. The dysregulation of miR-106b, miR-146a, miR-155, and the Let-7b/c complex seems to be of particular importance during H. pylori infection or gastric carcinogenesis. In contrast, many reports describe changes in host miRNA expression and outline the effects of bamHI-A region rightward transcript (BART) miRNA in EBV-infected tissue. The differential regulation of these miRNA, acting alone or in close interaction when both infections coexist, may therefore enable us to detect cancer earlier. In this review, we focus on the two different etiologies of gastric cancer and outline the molecular pathways through which H. pylori- or EBV-induced changes might synergistically act via miR-155 dysregulation to potentiate cancer risk. The three markers, namely, H. pylori presence, EBV infection, and miR-155 expression, may be checked in routine biopsies to evaluate the risk of developing gastric cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Correspondence: ; Tel.: +49-202-896-2243; Fax: +49-202-896-2740
| | - Kemal Mese
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
- Institute of Virology, University of Göttingen, 37075 Göttingen, Germany
| | - David Weber
- Medizinische Klinik 2, Helios Universitätsklinikum Wuppertal, 42283 Wuppertal, Germany;
- Lehrstuhl Innere Medizin 1, University of Witten/Herdecke gGmbH, 42283 Wuppertal, Germany;
| |
Collapse
|
5
|
Yang J, Song H, Cao K, Song J, Zhou J. Comprehensive analysis of Helicobacter pylori infection-associated diseases based on miRNA-mRNA interaction network. Brief Bioinform 2020; 20:1492-1501. [PMID: 29579224 PMCID: PMC6781589 DOI: 10.1093/bib/bby018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection remains a cause of significant morbidity and mortality worldwide. Comprehensive understanding of the pathogenic mechanism of H. pylori and its interaction with host will contribute to developing novel prophylactical and therapeutical strategies. Here, we first determined microRNA (miRNA) levels in H. pylori-infected patients with gastritis, duodenal ulcer, gastric cancer or mucosa-associated lymphoid tissue lymphoma using miRNA data sets. Thirty-four differentially expressed miRNAs were identified and functional enrichment analysis of those miRNA target genes revealed that H. pylori infection were strongly associated with pathway in cancer and regulation of mRNA synthesis. Using disease connectivity analysis of 28 hub genes, we found that H. pylori may increase the risk of many extragastric diseases (e.g. cardiovascular disease, hemic and lymphatic diseases and nervous system disease). Altogether, our integrated analysis provided a new method to predict pathogen–human disease connectivity based on miRNA-mRNA interaction network and indicated anti-H. pylori therapy as an effective means of human diseases prevention.
Collapse
Affiliation(s)
- Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang 550004, China
| | - Kun Cao
- Department of general surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jialei Song
- The Laboratory of Cell Biochemistry and Topogenic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, Chongqing 400044, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang 550004, China
| |
Collapse
|
6
|
Prinz C, Weber D. MicroRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: critical importance of miR-155. Oncotarget 2020; 11:894-904. [PMID: 32206186 PMCID: PMC7075464 DOI: 10.18632/oncotarget.27520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/06/2020] [Indexed: 02/03/2023] Open
Abstract
Dysregulation of noncoding microRNA molecules has been associated with immune cell activation in the context of Helicobacter pylori induced gastric inflammation as well as carcinogenesis, but also with downregulation of mismatch repair genes, and may interfere with immune checkpoint proteins that lead to the overexpression of antigens on gastric tumor cells. Numerous miR-molecules have been described as important tools and markers in gastric inflammation and cancer development -including miR-21, miR-143, miR-145, miR-201, and miR-335- all of which are downregulated in gastric tumors, and involved in cell cycle growth or tumor invasion. Among the many microRNAs involved in gastric inflammation, adenocarcinoma development and immune checkpoint regulation, miR-155 is notable in that its upregulation is considered a key marker of chronic gastric inflammation that predisposes a patient to gastric carcinogenesis. Among various other miRs, miR-155 is highly expressed in activated B and T cells and in monocytes/macrophages present in chronic gastric inflammation. Notably, miR-155 was shown to downregulate the expression of certain MMR genes, such as MLH1, MSH2, and MSH6. In tumor-infiltrating miR-155-deficient CD8+ T cells, antibodies against immune checkpoint proteins restored the expression of several derepressed miR-155 targets, suggesting that miR-155 may regulate overlapping pathways to promote antitumor immunity. It may thus be of high clinical impact that gastric pathologies mediated by miR-155 result from its overexpression. This suggests that it may be possible to therapeutically attenuate miR-155 levels for gastric cancer treatment and/or to prevent the progression of chronic gastric inflammation into cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| | - David Weber
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| |
Collapse
|
7
|
The Prominent Role of HMGA Proteins in the Early Management of Gastrointestinal Cancers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2059516. [PMID: 31737655 PMCID: PMC6815579 DOI: 10.1155/2019/2059516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Abstract
GI tumors represent a heterogeneous group of neoplasms concerning their natural history and molecular alterations harbored. Nevertheless, these tumors share very high incidence and mortality rates worldwide and patients' poor prognosis. Therefore, the identification of specific biomarkers could increase the development of personalized medicine, in order to improve GI cancer management. In this sense, HMGA family members (HMGA1 and HMGA2) comprise an important group of genes involved in the genesis and progression of malignant tumors. Additionally, it has also been reported that HMGA1 and HMGA2 display an important role in the detection and progression of GI tumors. In this way, HMGA family members could be used as reliable biomarkers able to efficiently track not only the tumor per se but also the main risk conditions related with their development of GI cancers in the future. Finally, it shall be a promising option to revert the current scenario, once HMGA genes and proteins could represent a convergence point in the complex landscape of GI tumors.
Collapse
|
8
|
Gong Y, Niu Y, Zhang W, Li X. A network embedding-based multiple information integration method for the MiRNA-disease association prediction. BMC Bioinformatics 2019; 20:468. [PMID: 31510919 PMCID: PMC6740005 DOI: 10.1186/s12859-019-3063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MiRNAs play significant roles in many fundamental and important biological processes, and predicting potential miRNA-disease associations makes contributions to understanding the molecular mechanism of human diseases. Existing state-of-the-art methods make use of miRNA-target associations, miRNA-family associations, miRNA functional similarity, disease semantic similarity and known miRNA-disease associations, but the known miRNA-disease associations are not well exploited. RESULTS In this paper, a network embedding-based multiple information integration method (NEMII) is proposed for the miRNA-disease association prediction. First, known miRNA-disease associations are formulated as a bipartite network, and the network embedding method Structural Deep Network Embedding (SDNE) is adopted to learn embeddings of nodes in the bipartite network. Second, the embedding representations of miRNAs and diseases are combined with biological features about miRNAs and diseases (miRNA-family associations and disease semantic similarities) to represent miRNA-disease pairs. Third, the prediction models are constructed based on the miRNA-disease pairs by using the random forest. In computational experiments, NEMII achieves high-accuracy performances and outperforms other state-of-the-art methods: GRNMF, NTSMDA and PBMDA. The usefulness of NEMII is further validated by case studies. The studies demonstrate the great potential of network embedding method for the miRNA-disease association prediction, and SDNE outperforms other popular network embedding methods: DeepWalk, High-Order Proximity preserved Embedding (HOPE) and Laplacian Eigenmaps (LE). CONCLUSION We propose a new method, named NEMII, for predicting miRNA-disease associations, which has great potential to benefit the field of miRNA-disease association prediction.
Collapse
Affiliation(s)
- Yuchong Gong
- School of Computer Science, Wuhan University, Wuhan, 430072 China
| | - Yanqing Niu
- School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074 China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohong Li
- School of Computer Science, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
9
|
Zhao M, Liu Q, Liu W, Zhou H, Zang X, Lu J. MicroRNA‑140 suppresses Helicobacter pylori‑positive gastric cancer growth by enhancing the antitumor immune response. Mol Med Rep 2019; 20:2484-2492. [PMID: 31322226 DOI: 10.3892/mmr.2019.10475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/14/2018] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint blockade is a promising therapeutic strategy against various human malignancies. MicroRNAs (miRNAs/miRs) regulate gene expression, by repressing mRNA translation or promoting its degradation. The aim of the current study was to investigate the role and molecular mechanisms of miR‑140 in Helicobacter pylori (Hp)‑associated gastric cancer, and to examine its relationship with immune function in gastric cancer. Gastritis tissue samples from gastritis patients, and gastric cancer tissue samples from gastric cancer patients were collected for miR‑140 expression detection. miR‑140 expression was detected using reverse transcription‑quantitative polymerase chain reaction, and protein expression was measured by western blotting. TargetScan and dual luciferase reporter assays were used to reveal the association between miR‑140 and programmed cell death‑ligand 1 (PD‑L1). BGC823 cell proliferation was detected by MTT assays. Ex vivo immune analysis by flow cytometry and ELISA were used to analyze immune function. It was demonstrated that miR‑140 expression was significantly reduced in Hp‑positive gastric cancer. PD‑L1 was confirmed as a direct target of miR‑140 in gastric cancer cells. In addition, PD‑L1 expression was significantly increased in Hp‑positive gastric cancer. Overexpression of miR‑140 significantly suppressed gastric cancer cell proliferation through regulating PD‑L1 expression. In vivo experiments also revealed that miR‑140 markedly repressed tumor growth in the C57BL/6 mice. Furthermore, it was determined that the tumor‑suppressive role of miR‑140 in gastric cancer was associated with increased cytotoxic CD8+ T cell and reduced myeloid‑derived suppressive and regulatory T cell infiltration. miR‑140 significantly prevented mammalian target of rapamycin signaling in gastric cancer cells. Notably, these miR‑140 overexpression‑induced alterations were inhibited by PD‑L1 plasmid. These findings indicated that miR‑140 exerted an anti‑gastric cancer effect by targeting immune checkpoint molecule PD‑L1. Thus, miR‑140 may be a promising and novel immunotherapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| | - Qian Liu
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| | - Wenxiang Liu
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| | - He Zhou
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| | - Xuan Zang
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| | - Jiangyang Lu
- Department of Pathology, The First Affiliated Hospital of General Hospital of People's Liberation Army, Beijing 100048, P.R. China
| |
Collapse
|
10
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
11
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
12
|
Chmiela M, Walczak N, Rudnicka K. Helicobacter pylori outer membrane vesicles involvement in the infection development and Helicobacter pylori-related diseases. J Biomed Sci 2018; 25:78. [PMID: 30409143 PMCID: PMC6225681 DOI: 10.1186/s12929-018-0480-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori - (H. pylori) play a role in the pathogenesis of gastritis, gastric and duodenal ulcers as well as gastric cancer. A possible involvement of outer membrane vesicles (OMVs) produced by H. pylori in the distribution of bacterial antigens through the gastric epithelial barrier and their role in the development of local and systemic host inflammatory and immune responses has been suggested. OMVs contain various biologically active compounds, which internalize into host cells affecting signaling pathways and promoting apoptosis of gastric epithelial and immunocompetent cells. OMVs-associated H. pylori virulence factors may strengthen or downregulate the immune responses leading to disease development. This review describes the biological importance of H. pylori OMVs and their role in the course of H. pylori infections, as well as H. pylori related local and systemic effects.
Collapse
Affiliation(s)
- Magdalena Chmiela
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Natalia Walczak
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Karolina Rudnicka
- Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
13
|
Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem 2018; 119:7226-7234. [PMID: 29856087 DOI: 10.1002/jcb.26901] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Abstract
Drug resistance is a big obstacle for clinical anti-tumor treatment outcome. However, the role of HOTAIR in drug resistance in gastric cancer (GC) remains unknown. In this study, we showed that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells. Furthermore, the expression of HOTAIR was upregulated in GC tissues and higher expression of HOTAIR was associated with late stage. In addition, we showed that miR-217 expression was lower in GC tissues compared with the paired non-tumour tissues and downregulated expression of miR-217 was correlated with late stage. Interestingly, the expression of miR-217 was negatively correlated with HOTAIR expression in GC tissues. Ectopic expression of HOTAIR increased GC cell proliferation, cell cycle, and migration. Elevated expression of HOTAIR suppressed miR-217 expression and enhanced GPC5 and PTPN14 expression. Furthermore, we demonstrated that overexpression of miR-217 suppressed paclitaxel and doxorubicin resistance in GC cells. Ectopic expression of HOTAIR promoted drug resistance and increased GC cell proliferation, cell cycle, and migration by targeting miR-217. These data suggested that overexpression of HOTAIR enhanced paclitaxel and doxorubicin resistance in GC cells through inhibiting miR-217 expression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Aoran Guan
- Department of General Surgery, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying Yao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongping Jia
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Weikang Huang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianpeng Gao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
14
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
15
|
Zhang J, Ren J, Hao S, Ma F, Xin Y, Jia W, Sun Y, Liu Z, Yu H, Jia J, Li W. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer. Am J Transl Res 2018; 10:525-534. [PMID: 29511447 PMCID: PMC5835818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Our previous work discovered that the histone demethylase JMJD2B (KDM4B) plays oncogenic roles in gastric carcinogenesis, but the regulatory mechanism of JMJD2B in gastric cancer has not been well defined. It has been revealed that microRNAs function as gene regulators by binding to the 3'UTR of mRNAs to inhibit gene expression. In this study, we found that miR-491-5p suppressed cell proliferation, invasion and migration by directly targeting the JMJD2B 3'UTR in gastric cancer. Moreover, miR-491-5p was decreased in GC tissues compared with adjacent normal tissues, and JMJD2B had the inverse expression pattern. In contrast to healthy individuals, GC patients had lower miR-491-5p expression in serum (P<0.0001). Our data indicate that miR-491-5p serves as a tumor suppressor in GC and might be a novel potential biomarker for the detection of gastric cancer.
Collapse
Affiliation(s)
- Jinjin Zhang
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Juchao Ren
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
- Department of Urology, Qilu Hospital, Shandong UniversityJinan, PR China
| | - Shengjie Hao
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Fang Ma
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Yan Xin
- Department of Clinical Laboratory, Feicheng Hospital of Traditional Chinese MedicineFeicheng, PR China
| | - Wenxiao Jia
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Han Yu
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Jihui Jia
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| | - Wenjuan Li
- Key Laboratory for Experimental Teratology of Chinese Ministry of Education, The Shandong Provincial Key Laboratory of Infection and Immunology, Department of Microbiology, School of Basic Medical Sciences, Shandong UniversityJinan, PR China
| |
Collapse
|
16
|
Xie Y, Zhang H, Guo XJ, Feng YC, He RZ, Li X, Yu S, Zhao Y, Shen M, Zhu F, Wang X, Wang M, Balakrishnan A, Ott M, Peng F, Qin RY. Let-7c inhibits cholangiocarcinoma growth but promotes tumor cell invasion and growth at extrahepatic sites. Cell Death Dis 2018; 9:249. [PMID: 29445149 PMCID: PMC5833708 DOI: 10.1038/s41419-018-0286-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a cancer type with high postoperative relapse rates and poor long-term survival largely due to tumor invasion, distant metastasis, and multidrug resistance. Deregulated microRNAs (miRNAs) are implicated in several cancer types including CCA. The specific roles of the miRNA let-7c in cholangiocarcinoma are not known and need to be further elucidated. In our translational study we show that microRNA let-7c expression was significantly downregulated in human cholangiocarcinoma tissues when compared to adjacent tissues of the same patient. Let-7c inhibited the tumorigenic properties of cholangiocarcinoma cells including their self-renewal capacity and sphere formation in vitro and subcutaneous cancer cell growth in vivo. Ectopic let-7c overexpression suppressed migration and invasion capacities of cholangiocarcinoma cell lines in vitro, however, promoted distant invasiveness in vivo. Furthermore, we found that let-7c regulated the aforementioned malignant biological properties, at least in part, through regulation of EZH2 protein expression and through the DVL3/β-catenin axis. The miRNA let-7c thus plays an important dual role in regulating tumorigenic and metastatic abilities of human cholangiocarcinoma through mechanisms involving EZH2 protein and the DVL3/β-catenin axis.
Collapse
Affiliation(s)
- Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.,Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), TWINCORE, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xing-Jun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ye-Chen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Rui-Zhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Shuo Yu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), TWINCORE, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), TWINCORE, Center for Experimental and Clinical Infection Research, Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Ren-Yi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
17
|
Rugge M, Genta RM, Di Mario F, El-Omar EM, El-Serag HB, Fassan M, Hunt RH, Kuipers EJ, Malfertheiner P, Sugano K, Graham DY. Gastric Cancer as Preventable Disease. Clin Gastroenterol Hepatol 2017; 15:1833-1843. [PMID: 28532700 DOI: 10.1016/j.cgh.2017.05.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
Gastric cancer, 1 of the 5 most common causes of cancer death, is associated with a 5-year overall survival rate less than 30%. A minority of cancers occurs as part of syndromic diseases; more than 90% of adenocarcinomas are considered as the ultimate consequence of a longstanding mucosal inflammation. Helicobacter pylori infection is the leading etiology of non-self-limiting gastritis, which may result in atrophy of the gastric mucosa and impaired acid secretion. Gastric atrophy establishes a field of cancerization prone to further molecular and phenotypic changes, possibly resulting in cancer growth. This well-understood natural history provides the clinicopathologic rationale for primary and secondary cancer prevention strategies. A large body of evidence demonstrates that combined primary (H pylori eradication) and secondary (mainly endoscopy) prevention efforts may prevent or limit the progression of gastric oncogenesis. This approach, which is tailored to different country-specific gastric cancer incidence, socioeconomic, and cultural factors, requires that the complementary competences of gastroenterologists, oncologists, and pathologists be amalgamated into a common strategy of health policy.
Collapse
Affiliation(s)
- Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, Italy; Veneto Tumor Registry, Veneto Region, Padua, Italy.
| | - Robert M Genta
- Miraca Life Sciences Research Institute, Irving, and Departments of Pathology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Francesco Di Mario
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Emad M El-Omar
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Hashem B El-Serag
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Richard H Hunt
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Kentaro Sugano
- Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - David Y Graham
- Department of Medicine, Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
18
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Shen S, Jiang J, Yuan Y. Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 2017; 17:57. [PMID: 28546787 PMCID: PMC5442862 DOI: 10.1186/s12935-017-0426-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
Pepsinogen C (PGC) belongs to the aspartic protease family and is secreted by gastric chief cells. PGC could be activated to pepsin C and digests polypeptides and amino acids, but as a zymogen PGC’s functions is unclear. In normal physiological conditions, PGC is initially detected in the late embryonic stage and is mainly expressed in gastric mucosa. The in situ expression of PGC in gastric mucosa is decreased considerably in the process of superficial gastritis → atrophic gastritis → gastric cancer (GC), proving that PGC is a comparatively ideal negative marker of GC. Serum PGC, and PGA levels and the PGA/PGC ratio have satisfactory sensitivity, specificity and price–quality ratio for predicting high GC risk. Ectopic PGC expression is significantly increased in prostate cancer, breast cancer, ovary cancer and endometrial cancer. In those sex-related cancers high level PGC expression indicates better prognosis and longer survival. The regulation of PGC expression involves genetic and epigenetic alteration of the encoding PGC gene, hormones modulation and interactions between PGC with other transcription factors and protein kinases. More and more research evidence hinted that PGC has strong correlation with cancer. In the systematic review, we respectively elaborate the structure, potential physiological functions, expression characteristics and regulation of PGC, and especially focus on the relationship between PGC expression and cancer to highlight the role of PGC in the tumorigenesis and its application value in clinical practice.
Collapse
Affiliation(s)
- Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| | - Jingyi Jiang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| |
Collapse
|
20
|
Singh S, Jha HC. Status of Epstein-Barr Virus Coinfection with Helicobacter pylori in Gastric Cancer. JOURNAL OF ONCOLOGY 2017; 2017:3456264. [PMID: 28421114 PMCID: PMC5379099 DOI: 10.1155/2017/3456264] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus whose primary infection causes mononucleosis, Burkett's lymphoma, nasopharyngeal carcinoma, autoimmune diseases, and gastric cancer (GC). The persistent infection causes malignancies in lymph and epithelial cells. Helicobacter pylori causes gastritis in human with chronic inflammation. This chronic inflammation is thought to be the cause of genomic instability. About 45%-word population have a probability of having both pathogens, namely, H. pylori and EBV. Approximately 180 per hundred thousand population is developing GC along with many gastric abnormalities. This makes GC the third leading cause of cancer-related death worldwide. Although lots of research are carried out individually for EBV and H. pylori, still there are very few reports available on coinfection of both pathogens. Recent studies suggested that EBV and H. pylori coinfection increases the occurrence of GC as well as the early age of GC detection comparing to individual infection. The aim of this review is to present status on coinfection of both pathogens and their association with GC.
Collapse
Affiliation(s)
- Shyam Singh
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
21
|
Potential Benefits of Jujube ( Zizyphus Lotus L.) Bioactive Compounds for Nutrition and Health. J Nutr Metab 2016; 2016:2867470. [PMID: 28053781 PMCID: PMC5174181 DOI: 10.1155/2016/2867470] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/23/2016] [Indexed: 12/11/2022] Open
Abstract
Zizyphus lotus, belonging to the Rhamnaceae family, is a deciduous shrub which generally grows in arid and semiarid regions of the globe. In traditional medicine, Z. lotus is used as antidiabetes, sedative, bronchitis, and antidiarrhea by local populations. Recently, several scientific reports for health benefit and nutritional potential of bioactive compounds from this jujube have been reported. This plant is rich in polyphenols, cyclopeptide alkaloids, dammarane saponins, vitamins, minerals, amino acids, and polyunsaturated fatty acids. These identified compounds were supposed to be responsible for most of Z. lotus biologically relevant activities including antimicrobial, anti-inflammatory, hypoglycemic, antioxidant, and immunomodulatory effects. The aim of the present review was to give particular emphasis on the most recent findings on biological effects of the major groups of Zizyphus lotus components and their medical interest, notably for human nutrition, health benefit, and therapeutic impacts.
Collapse
|
22
|
Abstract
Helicobacter pylori is estimated to infect more than half of the worlds human population and represents a major risk factor for chronic gastritis, peptic ulcer disease, MALT lymphoma, and gastric adenocarcinoma. H. pylori infection and clinical consequences are controlled by highly complex interactions between the host, colonizing bacteria, and environmental parameters. Important bacterial determinants linked with gastric disease development include the cag pathogenicity island encoding a type IV secretion system (T4SS), the translocated effector protein CagA, vacuolating cytotoxin VacA, adhesin BabA, urease, serine protease HtrA, secreted outer membrane vesicles, and many others. The high quantity of these factors and allelic changes in the corresponding genes reveals a sophisticated picture and problems in evaluating the impact of each distinct component. Extensive work has been performed to pinpoint molecular processes related to H. pylori-triggered pathogenesis using Mongolian gerbils, mice, primary tissues, as well as novel in vitro model systems such as gastroids. The manipulation of host signaling cascades by the bacterium appears to be crucial for inducing pathogenic downstream activities and gastric disease progression. Here, we review the most recent advances in this important research area.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Neddermann
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
23
|
Zhang M, Du X. Noncoding RNAs in gastric cancer: Research progress and prospects. World J Gastroenterol 2016; 22:6610-6618. [PMID: 27547004 PMCID: PMC4970485 DOI: 10.3748/wjg.v22.i29.6610] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs (ncRNAs) have attracted much attention in cancer research field. They are involved in cellular development, proliferation, differentiation and apoptosis. The dysregulation of ncRNAs has been reported in tumor initiation, progression, invasion and metastasis in various cancers, including gastric cancer (GC). In the past few years, an accumulating body of evidence has deepened our understanding of ncRNAs, and several emerging ncRNAs have been identified, such as PIWI-interacting RNAs (piRNAs) and circular RNAs (circRNAs). The competing endogenous RNA (ceRNA) networks include mRNAs, microRNAs, long ncRNAs (lncRNAs) and circRNAs, which play critical roles in the tumorigenesis of GC. This review summarizes the recent hotspots of ncRNAs involved in GC pathobiology and their potential applications in GC. Finally, we briefly discuss the advances in the ceRNA network in GC.
Collapse
|