1
|
Luo B, Zheng R, Shi C, Chen D, Jin X, Hou J, Xu G, Hu B. DACT2 modulates atrial fibrillation through TGF/β and Wnt signaling pathways. Heliyon 2024; 10:e36050. [PMID: 39224277 PMCID: PMC11367123 DOI: 10.1016/j.heliyon.2024.e36050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that seriously affects the quality of life of patients. Effective treatment and prevention are important to control the morbidity and mortality of AF. It has been found that cardiac fibrosis promotes the onset and progression of AF. It is now known that transforming growth factor β (TGF-β), an important fibrotic cytokine, plays an important role in cardiac fibrosis by inducing myofibroblast activation via the activation of classical (SMAD-based) and non-classical (non-SMAD-based) signaling pathways. In addition, specific activation of the Wnt/β-catenin pathway has been shown to promote the transformation of fibroblasts into myofibroblasts. In recent years, a new family of proteins, namely Disheveled-associated antagonist of beta-catenin (DACT) 2, can affect the Wnt/β-catenin and TGF-β signaling pathways by regulating the phosphorylation levels of these target proteins, which in turn affects the progression of fibrosis. The present study focuses on the effect of DACT2-guided β-catenin on atrial fibrosis. It is expected that the summarized information can be helpful in the treatment of AF.
Collapse
Affiliation(s)
- Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, 314001, ZJ, China
| | - Rui Zheng
- Department of Clinical Pathology, The 3rd Clinical Medical College Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, ZJ, China
| | - Chaoqun Shi
- Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Deqing Chen
- Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Xin Jin
- Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Jian Hou
- Department of Cardiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 510080, GD, China
| | - Guangtao Xu
- Department of Pathology, Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, ZJ, China
| | - Bo Hu
- Department of Clinical Pathology, Jiaxing Hospital of Traditional Chinese Medicine, the 3rd Clinical Medical College Affiliated to Zhejiang Chinese Medical University, Jiaxing, 314001, ZJ, China
| |
Collapse
|
2
|
Huang S, Xie J, Lei S, Fan P, Zhang C, Huang Z. CircDUSP1 regulates tumor growth, metastasis, and paclitaxel sensitivity in triple-negative breast cancer by targeting miR-761/DACT2 signaling axis. Mol Carcinog 2023; 62:450-463. [PMID: 36562476 DOI: 10.1002/mc.23498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer TNBC) is a malignant tumor with high incidence and high mortality that threaten the health of women worldwide. Circular RNAs (circRNAs) are a new class of noncoding RNAs that participate in the biological processes of various tumors, but the regulatory roles of circRNAs in TNBC have not been fully elucidated. In this study, the expression and characterization of circDUSP1 was detected via quantitative real-time PCR, nuclear-cytoplasmic fractionation assay, and fluorescence in situ hybridization. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circDUSP1 in TNBC. The interaction among circDUSP1, miR-761, DACT2 were confirmed by dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments. We identified the circRNA named circDUSP1 that was inversely correlated with tumorigenesis and progression in TNBC. Overexpression of circDUSP1 significantly attenuated cell proliferation, migration, invasion, and epithelial-mesenchymal transition, while increased the sensitivity of TNBC cells to paclitaxel. In-depth mechanism analysis indicated that circDUSP1 acts as an endogenous sponge of miR-761 to reduce its suppression on target gene DACT2 expression in TNBC. Upregulation of miR-761 or downregulation of DACT2 partially reversed the biological process of TNBC and the prognosis of paclitaxel affected by circDUSP1. Taken together, our findings revealed a role for the regulation of the miR-761/DACT2 axis by circDUSP1 in the biological process of TNBC. These results provided new insights into the biological mechanism and targeted therapy of TNBC.
Collapse
Affiliation(s)
- Shulin Huang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Jing Xie
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shanshan Lei
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Zhongcheng Huang
- Department of General Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| |
Collapse
|
3
|
Zeng Y, Zhang J, Yue J, Han G, Liu W, Liu L, Lin X, Zha Y, Liu J, Tan Y. The Role of DACT Family Members in Tumorigenesis and Tumor Progression. Int J Biol Sci 2022; 18:4532-4544. [PMID: 35864965 PMCID: PMC9295065 DOI: 10.7150/ijbs.70784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Disheveled-associated antagonist of β-catenin (DACT), which ubiquitously expressed in human tissue, is critical for regulating cell proliferation and several developmental processes in different cellular contexts. In addition, DACT is essential for some other cellular processes, such as cell apoptosis, migration and differentiation. Given the importance of DACT in these cellular processes, many scientists are gradually interested in studying the role of DACT in tumorigenesis and cancer progression. This review article focuses on the latest research regarding the essential functions and potential DACT mechanisms in the occurrence and progression of tumors. Our study indicates that DACT may act as a tumor biomarker for cancer diagnosis and prognosis, as well as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weijia Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
4
|
Pu Y, Jin P, Liu L, Pu Q, Wu F. Dysosma versipellis Extract Inhibits Esophageal Cancer Progression through the Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1221899. [PMID: 34729077 PMCID: PMC8557981 DOI: 10.1155/2021/1221899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In this study, we aim to investigate the effect of Dysosma versipellis extract on biological behavior of esophageal cancer cells and its underlying mechanisms. METHODS A total of 30 BALB/C nude mice (class SPF) were equally and randomly divided into the control group, model group, and Dysosma versipellis group. CP-C cell of esophageal cancer was subcutaneously injected into the model group as well as the Dysosma versipellis group, and the same amount of normal saline into the control group, in order to compare the tumorigenesis of nude mice of three groups. Wnt, β-catenin, and p-GSK3β/GSK3β expression in tumor tissues was detected using Western blot. CP-C cells in logarithmic growth were selected and divided into 4 groups, including the control group, podophyllotoxin group, Wnt activator group, and combined group (mixture of podophyllotoxin and Wnt activator). The cell viability, apoptosis, and invasion ability, Wnt, β-catenin, and p-GSK3β/GSK3β expression level of CP-C cells in each group were detected via MTT assay, flow cytometry, transwell, and Western blot, respectively. RESULTS The tumorigenesis rates of the control group, model group, and Dysosma versipellis group were 0%, 90% (1 tumor-free mouse), and 80% (2 tumor-free mice), respectively. The tumor mass in the Dysosma versipellis group was significant less than that in the model group. Based on the results of Western blot, Wnt, ß-catenin, and p-GSK3β/GSK3β expression of the Dysosma versipellis group was lower than that of the control group. The in vitro viability test indicated that there was a significant difference in cell viability exhibited among four groups. Cell viability level in the 3 groups, including the combined group, blank group, and Wnt activator group, was higher than the podophyllotoxin group at each time point. In vitro apoptosis assay revealed that significant differences in cell apoptosis exhibited among four groups. Cell apoptosis rate was higher in the podophyllotoxin group compared to the remaining three groups. The Wnt activator group showed the lowest cell apoptosis rate. The in vitro invasion assay demonstrated that numbers of transmembrane cell in the 3 groups, involving the combined group, blank group, and Wnt activator group, showed a higher level than the podophyllotoxin group. The results of Western blot manifested that the podophyllotoxin group showed lower level of Wnt, ß-catenin, and p-GSK3β/GSK3β expression compared to the other 3 groups. CONCLUSION Podophyllotoxin in Dysosma versipellis has an excellent antiesophageal cancer effect and is able to inhibit cell viability as well as invasion ability and promote apoptosis of esophageal cancer cells by inhibiting the Wnt signaling pathway, which could be potentially used in future clinical treatment of esophageal cancer.
Collapse
Affiliation(s)
- Yanchun Pu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Ping Jin
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Qinlin Pu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| | - Fangping Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine, No. 492, Jinxi South Road, Huaihua, Hunan Province 418099, China
| |
Collapse
|
5
|
Soares-Lima SC, Mehanna H, Camuzi D, de Souza-Santos PT, Simão TDA, Nicolau-Neto P, Almeida Lopes MDS, Cuenin C, Talukdar FR, Batis N, Costa I, Dias F, Degli Esposti D, Boroni M, Herceg Z, Ribeiro Pinto LF. Upper Aerodigestive Tract Squamous Cell Carcinomas Show Distinct Overall DNA Methylation Profiles and Different Molecular Mechanisms behind WNT Signaling Disruption. Cancers (Basel) 2021; 13:3014. [PMID: 34208581 PMCID: PMC8234055 DOI: 10.3390/cancers13123014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Upper aerodigestive tract (UADT) tumors present different biological behavior and prognosis, suggesting specific molecular mechanisms underlying their development. However, they are rarely considered as single entities (particularly head and neck subsites) and share the most common genetic alterations. Therefore, there is a need for a better understanding of the global DNA methylation differences among UADT tumors. We performed a genome-wide DNA methylation analysis of esophageal (ESCC), laryngeal (LSCC), oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas, and their non-tumor counterparts. The unsupervised analysis showed that non-tumor tissues present markedly distinct DNA methylation profiles, while tumors are highly heterogeneous. Hypomethylation was more frequent in LSCC and OPSCC, while ESCC and OSCC presented mostly hypermethylation, with the latter showing a CpG island overrepresentation. Differentially methylated regions affected genes in 127 signaling pathways, with only 3.1% of these being common among different tumor subsites, but with different genes affected. The WNT signaling pathway, known to be dysregulated in different epithelial tumors, is a frequent hit for DNA methylation and gene expression alterations in ESCC and OPSCC, but mostly for genetic alterations in LSCC and OSCC. UADT tumor subsites present differences in genome-wide methylation regarding their profile, intensity, genomic regions and signaling pathways affected.
Collapse
Affiliation(s)
- Sheila Coelho Soares-Lima
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Hisham Mehanna
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Diego Camuzi
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | | | - Tatiana de Almeida Simão
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| | - Pedro Nicolau-Neto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Monique de Souza Almeida Lopes
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Fazlur Rahman Talukdar
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Nikolaos Batis
- Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.M.); (N.B.)
| | - Izabella Costa
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Fernando Dias
- Seção de Cirurgia de Cabeça e Pescoço, Instituto Nacional de Câncer—INCA, Praça da Cruz Vermelha, Rio de Janeiro 20230-130, Brazil; (I.C.); (F.D.)
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–1° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil;
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France; (C.C.); (F.R.T.); (D.D.E.); (Z.H.)
| | - Luis Felipe Ribeiro Pinto
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rua André Cavalcanti, 37–6° Andar, Bairro de Fátima, Rio de Janeiro 20231-050, Brazil; (S.C.S.-L.); (D.C.); (P.N.-N.); (M.d.S.A.L.)
- Departamento de Bioquímica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87 fundos, Vila Isabel, Rio de Janeiro 20551-013, Brazil;
| |
Collapse
|
6
|
Cai S, Weng Y, Miao F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res 2021; 384:353-366. [PMID: 33591442 DOI: 10.1007/s00441-021-03412-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Esophageal cancer (EC) is a leading cause of cancer-related deaths worldwide. Recent studies highlight roles for microRNAs (miRNAs) in EC. Microarray analysis identified miR-194 as downregulated in EC. However, little is known about the role of miR-194 in regulating self-renewal or other biological properties of EC stem cells. RT-qPCR and Western blot confirmed the downregulation of miR-194 in EC stem cells and revealed the upregulation of protein regulator of cytokinesis 1 (PRC1) in EC. Dual-luciferase reporter assay confirmed miR-194 targeting of PRC1 resulting in its downregulation. MiR-194 overexpression or PRC1 silencing reduced PRC1 expression, preventing the activation of the Wnt/β-catenin signaling pathway. Inhibition of the Wnt/β-catenin signaling pathway prevented the proliferation, invasion, and self-renewal of EC stem cells while promoting apoptosis. Furthermore, overexpressing miR-194 or silencing PRC1 in nude mice decreased the tumor formation ability of EC stem cells in vivo. Taken together, miR-194 prevents the progression of EC by downregulating PRC1 and inactivating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuang Cai
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Yang Weng
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Feng Miao
- Department of Digestive Endoscopy, The Fourth Affiliated Hospital of China Medical University, No. 4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning Province, People's Republic of China.
| |
Collapse
|
7
|
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8:44. [PMID: 32974031 PMCID: PMC7493427 DOI: 10.1186/s40364-020-00224-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors, or combination of multiple components of the same pathway may have great potential synthetic lethality efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
8
|
Hu Y, Guo M. Synthetic lethality strategies: Beyond BRCA1/2 mutations in pancreatic cancer. Cancer Sci 2020; 111:3111-3121. [PMID: 32639661 PMCID: PMC7469842 DOI: 10.1111/cas.14565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells are often characterized by abnormalities in DNA damage response including defects in cell cycle checkpoints and/or DNA repair. Synthetic lethality between DNA damage repair (DDR) pathways has provided a paradigm for cancer therapy by targeting DDR. The successful example is that cancer cells with BRCA1/2 mutations are sensitized to poly(adenosine diphosphate [ADP]-ribose)polymerase (PARP) inhibitors. Beyond the narrow scope of defects in the BRCA pathway, "BRCAness" provides more opportunities for synthetic lethality strategy. In human pancreatic cancer, frequent mutations were found in cell cycle and DDR genes, including P16, P73, APC, MLH1, ATM, PALB2, and MGMT. Combined DDR inhibitors and chemotherapeutic agents are under preclinical or clinical trials. Promoter region methylation was found frequently in cell cycle and DDR genes. Epigenetics joins the Knudson's "hit" theory and "BRCAness." Aberrant epigenetic changes in cell cycle or DDR regulators may serve as a new avenue for synthetic lethality strategy in pancreatic cancer.
Collapse
Affiliation(s)
- Yunlong Hu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Kim DH, Kim EJ, Kim DH, Park SW. Dact2 is involved in the regulation of epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020; 524:190-197. [PMID: 31983425 DOI: 10.1016/j.bbrc.2019.12.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/28/2022]
Abstract
Dishevelled-associated antagonist of beta-catenin 2 (Dact2) is involved in the regulation of intracellular signaling pathways during development. It negatively regulates the Nodal signaling pathway, possibly by promoting lysosomal degradation of Nodal receptors such as TGFBR1, and plays an inhibitory role during the re-epithelialization of skin wounds by attenuating transforming growth factor-β signaling. Dact2 is known to act as a functional tumor suppressor in colon cancer; reduced Dact2 can promote liver cancer progression and suppress gastric cancer proliferation, invasion, and metastasis by inhibiting Wnt signaling. Zebrafish is used as a model of cancer biology because it shows similar tumorigenesis and morphogenesis as in humans and gene manipulation in this organism is possible. This study was performed to explore phenotypic changes in Dact2 knockout zebrafish and investigate the function of Dact2. A 10-base pair deletion Dact2 knockout zebrafish was prepared using the CRISPR-Cas9 genome editing system. Dact2 knockout enhanced the expression of the MMP2 and MMP9 genes, which are related to tumor invasion and migration, and the Snail, VEGF, and ZEB genes, which are related to epithelial-mesenchymal transition (EMT). The absence of Dact2 also resulted in hyperplasia of the gastrointestinal epithelium, fibrosis in the pancreas and liver, increased proliferation of the pancreatic and hepatic bile ducts, and invasive proliferation into the pancreas. A wound healing assay confirmed that the absence of Dact2 enhanced EMT, thus accelerating wound healing. This study suggests that a loss of function of Dact2 impacts EMT-related gene regulation and tumor generation in a zebrafish knockout model, which is a useful model for exploring the mechanisms of these processes.
Collapse
Affiliation(s)
- Dong Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Ji Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Do Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Graduate Program of Nanoscience and Technology, Yonsei University College of Medicine, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Sun R, Xiang T, Tang J, Peng W, Luo J, Li L, Qiu Z, Tan Y, Ye L, Zhang M, Ren G, Tao Q. 19q13 KRAB zinc-finger protein ZNF471 activates MAPK10/JNK3 signaling but is frequently silenced by promoter CpG methylation in esophageal cancer. Theranostics 2020; 10:2243-2259. [PMID: 32089740 PMCID: PMC7019175 DOI: 10.7150/thno.35861] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Zinc-finger proteins (ZFPs) are the largest transcription factor family in mammals, involved in the regulation of multiple physiologic processes including cell differentiation, proliferation, apoptosis and neoplastic transformation. Approximately one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs. Methods: ZNF471 expression and methylation were detected by reverse-transcription PCR and methylation-specific PCR. The impact and mechanism of ectopic ZNF471 expression in esophageal squamous cell carcinoma (ESCC) cells was evaluated in vitro and in vivo. Results: We identified a 19q13 KRAB-ZFP, ZNF471, as a methylated target in ESCC. We further found that ZNF471 is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues, due to its aberrant promoter CpG methylation, and further confirmed by methylation analysis and treatment with demethylation agent. Restoration of ZNF471 expression in silenced ESCC cells significantly altered cell morphology, induced apoptosis and G0/G1 arrest, and inhibited tumor cell colony formation, viability, migration and invasion. Importantly, ZNF471 was found to activate the expression of MAPK10/JNK3 and PCDH family genes, and further enhance MAPK10 signaling and downstream gene expression through binding to the MAPK10/JNK3 promoter. Conclusion: Our results demonstrate that ZNF471 is an important tumor suppressor and loss of ZNF471 functions hampers MAPK10/JNK3 signaling during esophageal carcinogenesis.
Collapse
|
11
|
Wang X, Wang X. Long non-coding RNA colon cancer-associated transcript 2 may promote esophageal cancer growth and metastasis by regulating the Wnt signaling pathway. Oncol Lett 2019; 18:1745-1754. [PMID: 31423241 PMCID: PMC6607085 DOI: 10.3892/ol.2019.10488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to investigate how long non-coding (lnc)RNA colon cancer-associated transcript 2 (CCAT2) regulates the proliferation, invasion and metastasis of esophageal cancer cells via the Wnt signaling pathway. The expression of lncRNA CCAT2 was quantified by reverse transcription-quantitative PCR in four esophageal cancer cell lines (Eca-109, EC9706, KYSE150 and TE-1) and normal human esophageal epithelial cells (HEECs). The effect of silencing CCAT2 (si-CCAT2) and inhibiting Wnt signaling (using the inhibitor FH535) on the proliferation, migration and invasion of Eca-109 cells was measured by MTT, wound-healing and Transwell invasion assays. Flow cytometry was used to evaluate apoptosis in si-CCAT2 Eca-109 cells. The expression of β-catenin and proliferating cell nuclear antigen (PCNA) proteins was detected by immunohistochemistry. The pro-apoptotic protein Bax, cyclin D1 and Wnt target proteins, including c-Myc and adenomatous polyposis coli (APC), were detected by western blotting. LncRNA CCAT2 was highly expressed in the four esophageal cancer cell lines compared with the HEEC cells. The expression of CCAT2 was significantly decreased in si-CCAT2 Eca-109 cells. Treatment with si-CCAT2 and FH535 alone or in combination significantly inhibited the proliferation, migration and invasion of Eca-109 cells. The treatments also promoted apoptosis, upregulated the expression of Bax and APC proteins, and downregulated β-catenin, PCNA, cyclin D1 and c-Myc proteins. In summary, lncRNA CCAT2 is upregulated in esophageal cancer cells and the knockdown of lncRNA CCAT2 inhibits their proliferation, migration and invasion via the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xiuchun Wang
- Department of Vascular Intervention, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuemei Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Li S, Yin L, Huang K, Zhao Y, Zhang H, Cai C, Xu Y, Huang L, Wang X, Lan T, Li H, Ma P. Downregulation of DACT-2 by Promoter Methylation and its Clinicopathological Significance in Prostate Cancer. J Cancer 2019; 10:1755-1763. [PMID: 31205531 PMCID: PMC6548005 DOI: 10.7150/jca.28577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
Backgrounds: Dapper homolog (DACT) 2, a member of DACT gene family, is frequently down-regulated in various malignancies and linked to tumor progression. However, the regulatory mechanism of DACT-2 expression and its biological role in human prostate cancer (PCa) remains elusive. Here, we investigated the expression and an epigenetic change of DACT-2 in prostate cancer, and determined if these findings were correlated with clinicopathologic characteristics of PCa. Methods: The expression profile of DACT-2 of was detected by qRT-PCR, Western blotting, and immunohistochemistry in four prostate cell lines (RWPE-1, LNCaP, PC-3 and DU145), 56 cases of frozen prostate tissues (forty-seven primary prostate carcinomas, nine paired noncancerous and cancerous prostate tissues) and a tissue microarray sets including 100 paraffin-embedded prostate samples (3 normal tissues, 2 cases of adjacent tissues and 95 cases of cancer). Subsequently, the regulatory mechanism of DACT-2 down-regulation was investigated through methylation-specific PCR (MSP) and bisulfite sequencing (BSP). The role of DACT-2 in prostate cancer cell migration and invasion was respectively examined by wound healing and transwell assay. After 5-aza-2'-deoxycytidine treatment of prostate cancer cells, qRT-PCR was used to detect whether the expression of DACT-2 gene mRNA in the cells recovered. Results: Immunohistochemical results shown that the DACT-2 protein was strongly (3+) expressed in the cytoplasm of all 5 noncancerous tissues and 12.7% (12/95) prostate cancer (PCa) tissues. Whereas 68.4% (65/95) PCa samples and 18.9% (18/95) PCa tissues respectively displayed weakly (1+) expressed and moderately (2+) expressed. In addition, DACT-2 expression was negatively associated with Gleason score in tumor specimens (p=0.029). What's more, down-regulation and promoter methylation of DACT-2 were observed in 68.1% (32/47) frozen PCa tissues and all three prostate cancer cell lines. And, the expression of DACT-2 mRNA was restored by the treatment of demethylated drug 5-aza-2'-deoxycytidine in all prostate cancer lines. Prostate cancer cells invasion and migration were significantly suppressed by ectopic expression of DACT-2 in vitro. Conclusions: Our study provides evidence that DACT-2 may be a useful biomarker for distinguishing prostate tumor tissues from non-cancerous samples and a potential target for epigenetic silencing in primary prostate Cancer.
Collapse
Affiliation(s)
- Shibao Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lingyu Yin
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kai Huang
- Department of Urology, Northern Jiangsu People's hospital, Yangzhou 225001 China
| | - Yao Zhao
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haoliang Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Chenchen Cai
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yinhai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Lingyan Huang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaozhou Wang
- The center of functional experiment, Xuzhou Medical University, Xuzhou Jiangsu 221004, China
| | - Ting Lan
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongchun Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Ping Ma
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
13
|
Lin K, Jiang H, Zhuang SS, Qin YS, Qiu GD, She YQ, Zheng JT, Chen C, Fang L, Zhang SY. Long noncoding RNA LINC00261 induces chemosensitization to 5-fluorouracil by mediating methylation-dependent repression of DPYD in human esophageal cancer. FASEB J 2019; 33:1972-1988. [PMID: 30226808 DOI: 10.1096/fj.201800759r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Approximately 85% of a single administered dose of 5-fluorouracil (5-FU) will be degraded by dihydropyrimidine dehydrogenase (DYPD). Studies have highlighted a link between the complete or partial loss of DYPD function and clinical responses to 5-FU; however, the underlying molecular basis of DPD deficiency remains poorly understood. Hence, the aim of the present study was to evaluate the prevailing hypothesis which suggests that overexpression of LINC00261 possesses the ability to modulate the methylation-dependent repression of DPYD, ultimately resulting in an elevation of the sensitivity of human esophageal cancer cells to 5-FU. LINC00261 levels were initially quantified, followed by analysis of DYPD methylation within the cancerous tissues collected from 75 patients diagnosed with esophageal cancer undergoing 5-FU-based adjuvant chemotherapy. In an attempt to determine the levels of LINC00261 related to the esophageal cancer cell resistance to 5-FU and to identify the interaction between the levels of LINC00261 and methylation of the DYPD promoter, esophageal cancer cells TE-1 and -5 were prepared, in which LINC00261 and the 5-FU-resistant TE-1 and -5 cells were overexpressed. The levels of LINC00261 were reduced among the cancerous tissues obtained from patients exhibiting resistance to 5-FU. Overexpression of LINC00261 was determined to dramatically inhibit proliferation and resistance to apoptosis among 5-FU-resistant TE-1 and -5 cells, whereas silencing of LINC00261 was determined to enhance proliferation and resistance to apoptosis among the TE-1 and -5 cells. DPYD, a confirmed target of LINC00261, displayed a greater incidence of DNA methylation among patient's sensitive to 5-FU. A key finding revealed that overexpressed LINC00261 could increase the methylation of the DPYD promoter through the recruitment of DNA methyltransferase (DNMT), which, in turn, acts to decrease DPYD activity in 5-FU-resistant TE-1 cells, whereas a reversible change was recorded once the demethylation reagent 5-aza-2'-deoxyctidine was employed to treat the 5-FU-resistant TE-1 cells. Taken together, the results of the study provided evidence emphasizing the distinct antitumor ability of LINC00261 in cases of esophageal cancer, which was manifested by overexpression of LINC00261 detected to increase the sensitivity of human esophageal cancer cells to 5-FU by mediating methylation-dependent repression of DPYD. Our study highlighted the potential of LINC00261 as a novel target capable of improving the chemotherapeutic response and survival of patients with esophageal cancer.-Lin, K., Jiang, H., Zhuang, S.-S., Qin, Y.-S., Qiu, G.-D., She, Y.-Q., Zheng, J.-T., Chen, C., Fang, L., Zhang, S.-Y. Long noncoding RNA LINC00261 induces chemosensitization to 5-fluorouracil by mediating methylation-dependent repression of DPYD in human esophageal cancer.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- DNA Methylation/drug effects
- DNA Methylation/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Dihydrouracil Dehydrogenase (NADP)/genetics
- Dihydrouracil Dehydrogenase (NADP)/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Female
- Fluorouracil/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kai Lin
- Family Medicine Centre, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Hong Jiang
- Department of Radiology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Shan-Shan Zhuang
- Clinical Laboratory, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Yun-Sheng Qin
- Chest Surgery, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Guo-Dong Qiu
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Yu-Qi She
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Jie-Ting Zheng
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Chen Chen
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Ling Fang
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Shu-Yao Zhang
- Department of Pharmacy, Cancer Hospital, Shantou University Medical College, Shantou, China
- Clinical Pharmacy Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Xu H, Jiang J, Zhang J, Cheng L, Pan S, Li Y. MicroRNA-375 inhibits esophageal squamous cell carcinoma proliferation through direct targeting of SP1. Exp Ther Med 2018; 17:1509-1516. [PMID: 30867685 PMCID: PMC6396021 DOI: 10.3892/etm.2018.7106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Several studies have shown that microRNA-375 (miR-375) is frequently downregulated in several types of human cancer including gastric cancer, colorectal cancer and oral squamous cell carcinoma. However, the role of miR-375 in human esophageal cancer remains unknown. In the current study, the expression level of miR-375 was analyzed in 43 esophageal squamous cell carcinoma (ESCC) tissue and matched adjacent normal tissue samples from patients with ESCC by reverse transcription-quantitative polymerase chain reaction. In addition, the expression level of miR-375 was analyzed in ESCC cell lines (KYSE450 and KYSE150) and the human esophageal epithelial cell line Het-1A by the same method. The expression level of miR-375 was significantly downregulated in ESCC tissue samples and cell lines compared with adjacent normal tissue samples and the human esophageal epithelial cell line, respectively. The effect of miR-375 on ESCC cell proliferation was detected by cell counting kit-8 (CCK-8) and colony formation assays. miR-375 overexpression significantly decreased ESCC cell proliferation and colony formation. Bioinformatics analysis was used to predict specificity protein 1 (SP1) as a target gene of miR-375 in ESCC, and this was verified by dual-luciferase assay. The present study demonstrated that SP1 regulates ESCC cell proliferation and colony formation through direct interaction with miR-375. In addition, the overall survival of patients with ESCC was analyzed using the Kaplan-Meier method and log-rank test. The results indicated that patients with ESCC with high miR-375 expression had a better survival rate compared with patients with ESCC with low miR-375 expression. Taken together, these results suggest that downregulated miR-375 promotes ESCC cell proliferation and colony formation via direct targeting of SP1, and this association may contribute to ESCC progression.
Collapse
Affiliation(s)
- Hui Xu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Jialong Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingjun Zhang
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Song Pan
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, Anhui 233000, P.R. China
| | - Yuanhai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
15
|
Zhao L, Fan W, Fan Y, Gao S. MicroRNA-214 promotes the proliferation, migration and invasion of gastric cancer MKN28 cells by suppressing the expression of Dact2. Exp Ther Med 2018; 16:4909-4917. [PMID: 30542447 DOI: 10.3892/etm.2018.6771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
The present study examined the expression of Dapper, antagonist of β-catenin 2 (Dact2) and microRNA (miR)-214 in gastric cancer at tissue and cellular levels, and to understand their biological roles. A total of 42 gastric cancer patients were enrolled in the present study. Bioinformatics tool was used to predict the miR molecule that potentially regulates Dact2 expression. To measure the expression of miR-214 and Dact2, reverse transcription-quantitative polymerase chain reaction was employed. Mixed gastric adenocarcinoma type MKN28 cells were transfected with negative control (NC), miR-214 mimics or inhibitor. The CCK-8 assay was used to investigate the proliferation of mixed gastric adenocarcinoma type MKN28 cells. To study migration and invasion abilities of mixed gastric adenocarcinoma type MKN28 cells, the Transwell assay was performed. To determine the expression of Dact2 protein, western blotting was conducted and the rescue assay was utilized to study the biological roles of miR-214 and Dact2 in mixed gastric adenocarcinoma type MKN28 cells. To test whether Dact2 is a direct target of miR-214, the dual luciferase reporter assay was performed. Results indicated that the expression of miR-214 was elevated, but expression of Dact2 mRNA was decreased in gastric cancer tissues, which was closely correlated with the invasion, metastasis, occurrence and development of gastric cancer. Notably, miR-214 promoted the proliferation of mixed gastric adenocarcinoma type MKN28 cells in vitro, whereas but Dact2 inhibited the proliferation of these cells. Downregulation of miR-214 expression or upregulation of Dact2 expression inhibited the migration and invasion of mixed gastric adenocarcinoma type MKN28 cells. Furthermore, miR-214 regulated the expression of Dact2 protein and its downstream β-catenin protein in mixed gastric adenocarcinoma type MKN28 cells. Dact2 reversed the effect of miR-214 on the proliferation, migration and invasion of mixed gastric adenocarcinoma type MKN28 cells. In addition, miR-214 directly targeted the 3'-UTR seeding region of Dact2 mRNA to regulate its expression. The present study demonstrated that expression of miR-214 was upregulated in gastric cancer tissues, and positively correlated with lymphatic metastasis and clinical staging. In addition, expression of Dact2 was downregulated in gastric cancer tissues and negatively correlated with lymphatic metastasis and clinical staging. Notably, the present findings suggest that miR-214 promoted the proliferation, migration and invasion of mixed gastric adenocarcinoma type MKN28 cells by suppressing the expression of Dact2.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiwei Fan
- Department of Infectious Internal Medicine, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yujing Fan
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shanling Gao
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
16
|
Chen F, Feng Z, Zhu J, Liu P, Yang C, Huang R, Deng Z. Emerging roles of circRNA_NEK6 targeting miR-370-3p in the proliferation and invasion of thyroid cancer via Wnt signaling pathway. Cancer Biol Ther 2018; 19:1139-1152. [PMID: 30207869 DOI: 10.1080/15384047.2018.1480888] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE To identify the significantly altered circRNAs and mRNAs in thyroid cancer, investigate their target miRNAs and determine their biological functions. METHODS The differentially expressed circRNAs, mRNAs and pathways in thyroid cancer were identified by microarray analysis and gene set enrichment analysis (GSEA). The correlative circRNAs and mRNAs were found out through Pearson correlative analysis. The common target miRNAs of circNEK6 and FZD8 related to thyroid cancer was screened out through Targetscan, miRanda and HMDD analysis. The mRNA and protein expressions in thyroid cancer tissues and cells were detected by qRT-PCR and western blot. CircRNA was confirmed by the RNase R digestion and nucleic acid electrophoresis. The target relationships were verified by the dual luciferase reporter assay. Cell viability, invasion and apoptosis were determined by MTT assay, Transwell assay and flow cytometry, respectively. RESULTS CircNEK6 and FZD8 were significantly up-regulated in thyroid cancer, with strong correlations. The Wnt signaling pathway was activated in thyroid cancer. MiR-370-3p was the common target miRNA of circNEK6 and FZD8, and it was down-regulated in thyroid cancer. Overexpression of circNEK6 and FZD8 could promote the growth and invasion of thyroid cancer cells, while up-regulation of miR-370-3p could suppress thyroid cancer progression and inhibit the Wnt signaling pathway. MiR-370-3p's effect on thyroid cancer cells could be rescued by circNEK6 or FZD8. CONCLUSION CircNEK6 promoted the progression of thyroid cancer through up-regulating FZD8 and activating Wnt signaling pathway by targeting miR-370-3p.
Collapse
Affiliation(s)
- Fukun Chen
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Zhiping Feng
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Jialun Zhu
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Pengjie Liu
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Chuanzhou Yang
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Rongkai Huang
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| | - Zhiyong Deng
- a Department of Nuclear Medicine , Yunnan Tumor Hospital, the Third Affiliated Hospital of Kunming Medical University , Kunming Yunnan , China
| |
Collapse
|
17
|
The novel 19q13 KRAB zinc-finger tumour suppressor ZNF382 is frequently methylated in oesophageal squamous cell carcinoma and antagonises Wnt/β-catenin signalling. Cell Death Dis 2018; 9:573. [PMID: 29760376 PMCID: PMC5951945 DOI: 10.1038/s41419-018-0604-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 01/16/2023]
Abstract
Zinc finger proteins (ZFPs) are the largest transcription factor family in mammals. About one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs and involved in the regulation of cell differentiation/proliferation/apoptosis and neoplastic transformation. We recently identified ZNF382 as a novel KRAB-ZFP epigenetically inactivated in multiple cancers due to frequent promoter CpG methylation. However, its epigenetic alterations, biological functions/mechanism and clinical significance in oesophageal squamous cell carcinoma (ESCC) are still unknown. Here, we demonstrate that ZNF382 expression was suppressed in ESCC due to aberrant promoter methylation, but highly expressed in normal oesophagus tissues. ZNF382 promoter methylation is correlated with ESCC differentiation levels. Restoration of ZNF382 expression in silenced ESCC cells suppressed tumour cell proliferation and metastasis through inducing cell apoptosis. Importantly, ZNF382 suppressed Wnt/β-catenin signalling and downstream target gene expression, likely through binding directly to FZD1 and DVL2 promoters. In summary, our findings demonstrate that ZNF382 functions as a bona fide tumour suppressor inhibiting ESCC pathogenesis through inhibiting the Wnt/β-catenin signalling pathway.
Collapse
|
18
|
Wang Y, Pan T, Li L, Wang H, Li J, Zhang D, Yang H. Knockdown of TGIF attenuates the proliferation and tumorigenicity of EC109 cells and promotes cisplatin-induced apoptosis. Oncol Lett 2017; 14:6519-6524. [PMID: 29344116 PMCID: PMC5754828 DOI: 10.3892/ol.2017.7009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022] Open
Abstract
A previous study has reported that frequent amplifications of the TG-interacting factor (TGIF) were observed in esophageal squamous cell carcinoma. The aim of the present study was to investigate the potential role of TGIF in the proliferation and tumorigenicity of the esophageal cancer cell line EC109 and cisplatin-induced apoptosis. Stable TGIF-knockdown EC109 cell line was established by infecting short hairpin RNA (shRNA) lentiviral particles. Soft agar and tumor xenograft assays were applied in nude mice. Flow cytometry was employed to evaluate the cell cycle and apoptosis. Western blot analysis was used to detect the expression of proteins. TGIF knockdown suppressed EC109 cell proliferation, colony formation in soft agar and tumor growth in nude mice, induced cell cycle arrest in the G1 phase, and promoted cisplatin-induced apoptosis. In addition, TGIF knockdown significantly reduced the expression of phospho-Rb in EC109 cells. The reduced level of full length PARP expression and the increased level of cleaved caspase-3 expression were observed in EC109 cells with the treatment of cisplatin and TGIF knockdown. The results suggest that knockdown of TGIF attenuated the proliferation and tumorigenicity of EC109 cells, and promoted cisplatin-induced apoptosis.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Teng Pan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyu Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Jiangmin Li
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Ding Zhang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
19
|
Tan Y, Li QM, Huang N, Cheng S, Zhao GJ, Chen H, Chen S, Tang ZH, Zhang WQ, Huang Q, Cheng Y. Upregulation of DACT2 suppresses proliferation and enhances apoptosis of glioma cell via inactivation of YAP signaling pathway. Cell Death Dis 2017; 8:e2981. [PMID: 28796248 PMCID: PMC5596571 DOI: 10.1038/cddis.2017.385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 01/01/2023]
Abstract
DACT2, one of the Dact gene family members, was shown to function as a tumor suppressor. However, its function in gliomas remains largely unknown. In this study, we investigated the role of DACT2, underlying molecular mechanisms and its clinical significance in glioma patients. Downexpression of DACT2 in gliomas compared with adjacent normal brain tissues was correlated with glioma grade and poor survival. Cox regression analysis revealed that the DACT2 is an independent prognostic indicator for glioma patients. Overexpression of DACT2 in glioma cells inhibited proliferation, cell cycle and enhanced apoptosis, sensitivity to temozolomide in vitro and suppressed tumor growth in vivo. Whereas knockdown of DACT2 induce opposite reaction. Mechanistically, overexpression of DACT2 resulted in upregulation of important signaling molecules such as p-YAP and p-β-catenin, and prevent YAP translocating into nucleus and sequestering in the cytoplasm to degrade. The study further proved that DACT2 can suppress YAP through Wnt/β-catenin signaling pathway. Collectively, these data indicate that DACT2 has a tumor suppressor function via inactivation of YAP pathway, providing a promising target for the treatment of gliomas.
Collapse
Affiliation(s)
- Ying Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiu-Meng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan-Jian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao-Hua Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Qian Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Li J, Zhang M, He T, Li H, Cao T, Zheng L, Guo M. Methylation of DACT2 promotes breast cancer development by activating Wnt signaling. Sci Rep 2017; 7:3325. [PMID: 28607412 PMCID: PMC5468316 DOI: 10.1038/s41598-017-03647-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women worldwide. To explore the role of DACT2 in breast cancer, 5 cell lines and 153 cases of primary cancer were studied. The expression of DACT2 was detected in BT474, MDA-MB-231 and BT549 cells, while no expression was found in MDA-MB-468 and HBL100 cells. Complete methylation of DACT2 was found in MDA-MB-468 and HBL100 cells, partial methylation was observed in BT474 and BT549 cells, and no methylation was detected in MDA-MB-231 cells. Restoration of DACT2 expression was induced by 5-Aza in MDA-MB-468 and HBL100 cells. DACT2 was methylated in 49.7% (76/153) of primary breast cancer samples. Methylation of DACT2 was significantly associated with tumor size (P < 0.05). Reduced DACT2 expression was significantly associated with promoter region methylation in primary breast cancer (P < 0.05). DACT2 suppressed breast cancer cell growth and induced G1/S phase arrest in breast cancer cells. DACT2 inhibited Wnt/β-catenin signaling in human breast cancer cells and suppressed breast cancer cell tumor growth in xenograft mice. In conclusion, our results demonstrate that DACT2 is frequently methylated in human breast cancer, methylation of DACT2 activates Wnt signaling, and DACT2 suppresses breast cancer cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Medical College of NanKai University, Tianjin, 300071, China
| | - Tao He
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongxia Li
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Colloge of Life Science and Bioengineering, Beijing University of Technology, 100124, Beijing, China
| | - Tingting Cao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.,Colloge of Life Science and Bioengineering, Beijing University of Technology, 100124, Beijing, China
| | - Lili Zheng
- Department of Endocrinology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
21
|
Yang W, Yang S, Zhang M, Gao D, He T, Guo M. ZNF545 suppresses human hepatocellular carcinoma growth by inhibiting NF-kB signaling. Genes Cancer 2017; 8:528-535. [PMID: 28680537 PMCID: PMC5489650 DOI: 10.18632/genesandcancer.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and the second leading cause of cancer related death worldwide. ZNF545 is located in the chromosome 19q13.13, which is frequent loss of heterozygosity in human astrocytoma. Methylation of ZNF545 was found frequently in a few kinds of cancers. While the function of ZNF545 in human HCC remains unclear. The purpose of this study is to explore the function and mechanism of ZNF545 in human HCC. Restoration of ZNF545 expression suppressed cell proliferation, migration and invasion, induced G1/S arrest and apoptosis in SNU449 and Huh7 cells. Further study suggested that ZNF545 suppressed HCC cell growth by inhibiting NF-kB signaling. These results were further validated by siRNA knocking down technique in ZNF545 highly expressed HXBF344 cells. In vivo, ZNF545 suppressed tumor growth in SNU449 cell xenograft mice. In conclusion, ZNF545 suppresses human HCC growth by inhibiting NF-kB signaling.
Collapse
Affiliation(s)
- Weili Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
- Medical College of NanKai University, Tianjin, China
| | - Shuai Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
- Medical College of NanKai University, Tianjin, China
| | - Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
- Medical College of NanKai University, Tianjin, China
| | - Tao He
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Guo YL, Shan BE, Guo W, Dong ZM, Zhou Z, Shen SP, Guo X, Liang J, Kuang G. Aberrant methylation of DACT1 and DACT2 are associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. J Biomed Sci 2017; 24:6. [PMID: 28077137 PMCID: PMC5225534 DOI: 10.1186/s12929-016-0308-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The DACT (Dishevelled-associated antagonist of β-catenin) family of scaffold proteins may play important roles in tumorigenesis. However, the epigenetic changes of DACT1, 2, 3 and their effect on esophageal squamous cell carcinoma (ESCC) have not been investigated so far. The aim of this study was to investigate the promoter methylation and expression of DACT family, in order to elucidate more information on the role of DACT with regard to the progression and prognosis of ESCC. METHODS MSP and BGS methods were respectively applied to examine the methylation status of DACT; RT-PCR, Western blot and immunohistochemistry methods were respectively used to determine the mRNA and protein expression of DACT; MTT, Colony-formation and Wound-healing assay were performed to assess the effect of DACT1 and DACT2 on proliferation and migration of esophageal cancer cells. RESULTS Frequent reduced expression of DACT1, DACT2 and DACT3 were found in esophageal cancer cell lines and the expression levels of DACT1 and DACT2 were reversed by 5-Aza-Dc. Decreased mRNA and protein expression of DACT1 and DACT2 were observed in ESCC tumor tissues and were associated with the methylation status of transcription start site (TSS) region. The hypermethylation of CpG islands (CGI) shore region in DACT1 was observed both in tumor and corresponding adjacent tissues but wasn't related to the transcriptional inhibition of DACT1. The methylation status of TSS region in DACT1 and DACT2 and the protein expression of DACT2 were independently associated with ESCC patients' prognosis. CONCLUSIONS The TSS region hypermethylation may be one of the main mechanisms for reduced expression of DACT1 and DACT2 in ESCC. The simultaneous methylation of DACT1 and DACT2 may play important roles in progression of ESCC and may serve as prognostic methylation biomarkers for ESCC patients.
Collapse
Affiliation(s)
- Yan-li Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Bao-En Shan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Zhi-Ming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Zhen Zhou
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Su-Peng Shen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Xin Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Jia Liang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| | - Gang Kuang
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankanglu 12, Shijiazhuang, 050011 Hebei China
| |
Collapse
|
23
|
Liu Y, Zhou Q, Zhou D, Huang C, Meng X, Li J. Secreted frizzled-related protein 2-mediated cancer events: Friend or foe? Pharmacol Rep 2017; 69:403-408. [PMID: 28273499 DOI: 10.1016/j.pharep.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023]
Abstract
Secreted frizzled-related protein (SFRP)2, an identified member of the SFRPs family of molecules, is often methylated in human cancers and its down-regulation is closely related to Wnt signaling activity and tumor progression. Although the blocker of the Wnt signaling has not been fully used in clinical trial, interest has been further enhanced by the realization of SFRPs' potential as targets to modulate Wnt signaling and cancer cell growth. Emerging evidence showed that SFRP2 was an anti-oncogene, however, a steady flow of research has indicated that it may also have tumor promotion effects in some cancer types. Furthermore, SFRP2 methylation was shown to accelerate cancer cell invasion and growth in tumor progression. In this review, we define recent understanding of the diverse roles of SFRP2 in tumorigenesis, and it might promote the development of novel drugs for curing cancer by targeting SFRP2.
Collapse
Affiliation(s)
- Yanhui Liu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Qun Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Dexi Zhou
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China; Anhui Institute of Innovative Drugs, Hefei 230032, China.
| |
Collapse
|
24
|
Identification of the Key Genes and Pathways in Esophageal Carcinoma. Gastroenterol Res Pract 2016; 2016:2968106. [PMID: 27818681 PMCID: PMC5080515 DOI: 10.1155/2016/2968106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Objective. Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods. 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results. A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion. The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.
Collapse
|
25
|
Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F. Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World J Gastroenterol 2016; 22:7486-7499. [PMID: 27672271 PMCID: PMC5011664 DOI: 10.3748/wjg.v22.i33.7486] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.
Collapse
|
26
|
Kit O, Vodolazhskiy D, Kolesnikov E, Timoshkina N. Epigenetic markers of esophageal cancer: DNA methylation. ACTA ACUST UNITED AC 2016; 62:520-526. [DOI: 10.18097/pbmc20166205520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adenocarcinoma and squamous cell carcinoma are the most common types of esophageal cancer with a constant tendency to increase the incidence of growth on the background of the high mortality, which makes particularly the development of new biomarkers that complement and improve the early diagnosis of this disease. Despite the impressive number of studies in routine clinical practice is used only marker of esophageal cancer – ERBB2/HER2 status. This review summarizes data on the identified epigenetic markers of the aberrant methylation of the genome, which may be useful for early detection of esophageal cancer, prognosis estimation and / or prediction of response to treatment. The development of new high-tech genome-wide screening, such as beadarray and immunoprecipitation sequencing method used for the wideband genotyping, but for the analysis of transcriptome and metilom, provides a comprehensive picture of genetic and epigenetic changes during tumorigenesis. Note the need to verify the most biomarkers on large representative samples for the development of valid diagnostic panels, suitable for large-scale screening of risk groups.
Collapse
Affiliation(s)
- O.I. Kit
- Rostov Cancer Research Institute, Rostov-on-Don, Russia
| | | | | | | |
Collapse
|