1
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. Nat Commun 2024; 15:6130. [PMID: 39033128 PMCID: PMC11271278 DOI: 10.1038/s41467-024-50387-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1, ETV1, CRKL, and ID4. Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC, on the same complex amplicons such as ecDNA. We characterized a MYC-ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
Affiliation(s)
- Katelyn L Mortenson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Courtney Dawes
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Emily R Wilson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nathan E Patchen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Hailey E Johnson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Swneke D Bailey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Surgery and Human Genetics, McGill University, Montreal, QC, Canada
| | - Yang Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Xiaoyang Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Mortenson KL, Dawes C, Wilson ER, Patchen NE, Johnson HE, Gertz J, Bailey SD, Liu Y, Varley KE, Zhang X. 3D genomic analysis reveals novel enhancer-hijacking caused by complex structural alterations that drive oncogene overexpression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576965. [PMID: 38328209 PMCID: PMC10849656 DOI: 10.1101/2024.01.23.576965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cancer genomes are composed of many complex structural alterations on chromosomes and extrachromosomal DNA (ecDNA), making it difficult to identify non-coding enhancer regions that are hijacked to activate oncogene expression. Here, we describe a 3D genomics-based analysis called HAPI (Highly Active Promoter Interactions) to characterize enhancer hijacking. HAPI analysis of HiChIP data from 34 cancer cell lines identified enhancer hijacking events that activate both known and potentially novel oncogenes such as MYC, CCND1 , ETV1 , CRKL , and ID4 . Furthermore, we found enhancer hijacking among multiple oncogenes from different chromosomes, often including MYC , on the same complex amplicons such as ecDNA. We characterized a MYC - ERBB2 chimeric ecDNA, in which ERBB2 heavily hijacks MYC 's enhancers. Notably, CRISPRi of the MYC promoter led to increased interaction of ERBB2 with MYC enhancers and elevated ERBB2 expression. Our HAPI analysis tool provides a robust strategy to detect enhancer hijacking and reveals novel insights into oncogene activation.
Collapse
|
3
|
Hayat A, Carter EP, King HW, Ors A, Doe A, Teijeiro SA, Charrot S, Godinho S, Cutillas P, Mohammed H, Grose RP, Ficz G. Low HER2 expression in normal breast epithelium enables dedifferentiation and malignant transformation via chromatin opening. Dis Model Mech 2023; 16:dmm049894. [PMID: 36661191 PMCID: PMC9922733 DOI: 10.1242/dmm.049894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Overexpression of the HER2 protein in breast cancer patients is a predictor of poor prognosis and resistance to therapies. We used an inducible breast cancer transformation system that allows investigation of early molecular changes. HER2 overexpression to similar levels as those observed in a subtype of HER2-positive breast cancer patients induced transformation of MCF10A cells and resulted in gross morphological changes, increased anchorage-independent growth of cells, and altered the transcriptional programme of genes associated with oncogenic transformation. Global phosphoproteomic analysis during HER2 induction predominantly detected an increase in protein phosphorylation. Intriguingly, this correlated with chromatin opening, as measured by ATAC-seq on acini isolated from 3D cell culture. HER2 overexpression resulted in opening of many distal regulatory regions and promoted reprogramming-associated heterogeneity. We found that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely candidates for malignant transformation. Our data show that this population of cells, which counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin accessibility, possesses transformational drive, resulting in increased anchorage-independent growth in vitro compared to cells not displaying a stem-like phenotype.
Collapse
Affiliation(s)
- Ateequllah Hayat
- Institute of Medical and Biomedical Education, St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P. Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Hamish W. King
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Royal Parade, Parkville, VIC 3052, Australia
| | - Aysegul Ors
- Knight Cancer Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Aaron Doe
- Knight Cancer Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Saul A. Teijeiro
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sarah Charrot
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Susana Godinho
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Pedro Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Hisham Mohammed
- Knight Cancer Institute, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
4
|
Wang N, Li R, Jia H, Xie H, Liu C, Jiang S, Zhang K, Lin P, Yu X. Apaf-1 interacting protein, a new target of microRNA-146a-3p, promotes prostate cancer cell development via the ERK1/2 pathway. Cell Biol Int 2022; 46:1156-1168. [PMID: 35293661 DOI: 10.1002/cbin.11796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/06/2022]
Abstract
The Apaf-1 interacting protein APIP, a ubiquitously expressed anti-apoptotic molecule, is aberrantly expressed and of great significance in various cancers. However, little is known regarding the potential value and underlying mechanisms of APIP in prostate cancer. Here, we demonstrated that APIP expression is significantly upregulated in prostate cancer cell lines. APIP overexpression promoted tumor cell proliferation and migration and induced ERK1/2 activation. Pharmacological inhibition of ERK1/2 signaling reversed APIP-induced increase in cell proliferation and migration induced by APIP overexpression. Expression of APIP was hampered by miR-146a-3p. A dual luciferase reporter gene assay identified the regulatory relationship between APIP and miR-146a-3p in prostate cancer, suggesting that APIP is a direct target of miR-146a-3p. miR-146a-3p reduced cell proliferation and migration in prostate cancer. Furthermore, miR-146a-3p inhibited ERK1/2 activation. Application of an ERK1/2 inhibitor reversed the increase in cell proliferation and migration induced by miR-146a-3p inhibition. In summary, this study focused on the role of APIP in regulating cell growth and migration, and proposes a theoretical basis for APIP as a promising biomarker in prostate cancer development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nan Wang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Rou Li
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Huizhen Jia
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Hui Xie
- Teaching Experiment Center of Biotechnology, Harbin Medical University, Harbin, Heilongjiang, 150001, P.R. China
| | - Chi Liu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Shan Jiang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ke Zhang
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Ping Lin
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| | - Xiaoguang Yu
- Department of Biochemistry & Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150086, P.R. China
| |
Collapse
|
5
|
Hafeez U, Parslow AC, Gan HK, Scott AM. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 2020; 20:1057-1074. [PMID: 32981377 DOI: 10.1080/14737140.2020.1829485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The importance of ErbB3 receptor tyrosine kinase in cancer progression, primary and acquired drug resistance, has become steadily evident since its discovery in 1989. ErbB3 overexpression in various solid organ malignancies is associated with shorter survival of patients. However, initial strategies to therapeutically target ErbB3 have not been rewarding. AREAS COVERED Here, we provide an overview of ErbB3 biology in carcinogenesis. We outline the role of ErbB3 as a critical pathway for resistance to other anti-cancer drugs. We focus on emerging clinical data, which will steer the potential future development of ErbB3 directed therapies. EXPERT OPINION Initial approaches to ErbB3 targeting have been challenging. However, the lack of success of anti-ErbB3 therapies in ongoing clinical trials may relate more to the complex biology of the receptor and challenges with the biomarkers used to date. Furthermore, it seems certain that the expression of the receptor per se is necessary but not sufficient for the response to ErbB3 therapies. Emerging data suggest that more sophisticated biomarkers are needed. Nonetheless, it is also likely that ErbB3 therapies may have the most efficacy in combination therapy, and their favorable toxicity profile makes this feasible.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health , Melbourne, Australia
| |
Collapse
|
6
|
Han W, Zhang C, Shi CT, Gao XJ, Zhou MH, Shao QX, Shen XJ, Wu CJ, Cao F, Hu YW, Yuan JL, Ding HZ, Wang QH, Wang HN. Roles of eIF3m in the tumorigenesis of triple negative breast cancer. Cancer Cell Int 2020; 20:141. [PMID: 32368187 PMCID: PMC7191806 DOI: 10.1186/s12935-020-01220-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Background Without targets, triple negative breast cancer (TNBC) has the worst prognosis in all subtypes of breast cancer (BC). Recently, eukaryotic translation initiation factor 3 m (eIF3m) has been declared to be involved in the malignant progression of various neoplasms. The aim of this study is to explore biological functions of eIF3m in TNBC. Methods Multiple databases, including Oncomine, KM-plotter and so on, were performed to analyze prognosis and function of eIF3m in TNBC. After transfection of eIF3m-shRNA lentivirus, CCK-8, colony formation assay, cell cycle analysis, wound healing assay, transwell assays, mitochondrial membrane potential assay and cell apoptosis analysis were performed to explore the roles of eIF3m in TNBC cell bio-behaviors. In addition, western blotting was conducted to analyze the potential molecular mechanisms of eIF3m. Results In multiple databases, up-regulated eIF3m had lower overall survival, relapse-free survival and post progression survival in BC. EIF3m expression in TNBC was obviously higher than in non-TNBC or normal breast tissues. Its expression in TNBC was positively related to differentiation, lymph node invasion and distant metastasis. After knockdown of eIF3m, cell proliferation, migration, invasion and levels of mitochondrial membrane potential of MDA-MB-231 and MDA-MB-436 were all significantly suppressed, while apoptosis rates of them were obviously increased. In addition, eIF3m could regulate cell-cycle, epithelial–mesenchymal transition and apoptosis-related proteins. Combined with public databases and RT-qPCR, 14 genes were identified to be modulated by eIF3m in the development of TNBC. Conclusions eIF3m is an unfavorable indicator of TNBC, and plays a vital role in the process of TNBC tumorigenesis.
Collapse
Affiliation(s)
- Wei Han
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Cong Zhang
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Jiangsu, 215300 People's Republic of China
| | - Chun-Tao Shi
- Department of General Surgery, Wuxi Xishan People's Hospital, Kunshan Wuxi Jiangsu, 214000 People's Republic of China
| | - Xiao-Jiao Gao
- 4Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Ming-Hui Zhou
- 5Centralab, Kunshan First People's Hospital Affiliated to Jiangsu University, Jiangsu, 215300 Kunshan People's Republic of China
| | - Qi-Xiang Shao
- 6Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang Jiangsu, 212013 People's Republic of China
| | - Xiao-Jun Shen
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Cheng-Jiang Wu
- 7Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000 People's Republic of China
| | - Fang Cao
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Yong-Wei Hu
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Jian-Liang Yuan
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Hou-Zhong Ding
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Qing-Hua Wang
- 1Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, 215300 People's Republic of China
| | - Hao-Nan Wang
- Oncology Department, Wuxi Fifth People's Hospital, Wuxi Jiangsu, 214000 People's Republic of China
| |
Collapse
|
7
|
Cardioprotective role of APIP in myocardial infarction through ADORA2B. Cell Death Dis 2019; 10:511. [PMID: 31263105 PMCID: PMC6602929 DOI: 10.1038/s41419-019-1746-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
In ischemic human hearts, the induction of adenosine receptor A2B (ADORA2B) is associated with cardioprotection against ischemic heart damage, but the mechanism underlying this association remains unclear. Apaf-1-interacting protein (APIP) and ADORA2B transcript levels in human hearts are substantially higher in patients with heart failure than in controls. Interestingly, the APIP and ADORA2B mRNA levels are highly correlated with each other (R = 0.912). APIP expression was significantly increased in primary neonatal cardiomyocytes under hypoxic conditions and this induction reduced myocardial cell death via the activation of the AKT-HIF1α pathway. Accordingly, infarct sizes of APIP transgenic mice after left anterior descending artery ligation were significantly reduced compared to those of wild-type mice. Strikingly, knockdown of APIP expression impaired the cytoprotective effects of ADORA2B during hypoxic damage. Immunoprecipitation and proximity ligation assays revealed that APIP interacts with ADORA2B, leading to the stabilization of both proteins by interfering with lysosomal degradation, and to the activation of the downstream PKA-CREB signaling pathways. ADORA2B levels in the hearts of APIPTg/Tg, APIPTg/+, and Apip+/- mice were proportionally downregulated. In addition, ADORA2B D296G derived from the rs200741295 polymorphism failed to bind to APIP and did not exert cardioprotective activity during hypoxia. Moreover, Adora2b D296G knock-in mice were more vulnerable than control mice to myocardial infarction and intentional increases in APIP levels overcame the defective protection of the ADORA2B SNP against ischemic injury. Collectively, APIP is crucial for cardioprotection against myocardial infarction by virtue of binding to and stabilizing ADORA2B, thereby dampening ischemic heart injury.
Collapse
|
8
|
Zeng CP, Lin X, Peng C, Zhou L, You HM, Shen J, Deng HW. Identification of novel genetic variants for type 2 diabetes, childhood obesity, and their pleiotropic loci. J Hum Genet 2019; 64:369-377. [PMID: 30816286 PMCID: PMC6712986 DOI: 10.1038/s10038-019-0577-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Obesity has result in increased prevalence of type 2 diabetes (T2D) in children. The genetic mechanisms underlying their relationship, however, are not fully understood. Here, we aim to identify novel SNPs associated with T2D and childhood obesity (CO), especially their pleiotropic loci. We integrated the summary statistics for two independent GWASs of T2D (n = 149,821) and childhood body mass index (CBMI) (n = 35,668) using the pleiotropy-informed conditional false discovery rate (cFDR) method. By leveraging the information of different levels of association for CBMI, we observed a strong enrichment of genetic variants associated with T2D. We identified 139 T2D-associated SNPs with 125 novel ones (cFDR < 0.05). Conditioned on T2D, we identified 37 significant SNPs for CBMI (cFDR < 0.05), including 25 novel ones. The conjunctional cFDR (ccFDR) analysis showed ten novel pleiotropic loci for T2D and CBMI (ccFDR < 0.05). Interestingly, the novel SNP rs1996023 is located at protein coding gene GNPDA2 (ccFDR = 1.28E-02), which has been reported to influence the risk of T2D and CO through central nervous system. Our findings may help to explain a greater proportion of the heritability for human traits and advance the understanding of the common pathophysiology between T2D and CO.
Collapse
Affiliation(s)
- Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, PR China
| | - Lin Zhou
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Min You
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
- School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| |
Collapse
|
9
|
The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine. Cell Death Dis 2019; 10:240. [PMID: 30858354 PMCID: PMC6411897 DOI: 10.1038/s41419-019-1486-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
The 5′-methylthioadenosine (MTA) cycle-participating human acireductone dioxygenase 1 (ADI1) has been implicated as a tumor suppressor in prostate cancer, yet its role remains unclear in hepatocellular carcinoma (HCC). Here, we demonstrated a significant reduction of ADI1, either in protein or mRNA level, in HCC tissues. Additionally, higher ADI1 levels were associated with favorable postoperative recurrence-free survival in HCC patients. By altering ADI1 expression in HCC cells, a negative correlation between ADI1 and cell proliferation was observed. Cell-based and xenograft experiments were performed by using cells overexpressing ADI1 mutants carrying mutations at the metal-binding sites (E94A and H133A, respectively), which selectively disrupted differential catalytic steps, resulting in staying or leaving the MTA cycle. The results showed that the growth suppression effect was mediated by accelerating the MTA cycle. A cDNA microarray analysis followed by verification experiments identified that caveolin-1 (CAV1), a growth-promoting protein in HCC, was markedly decreased upon ADI1 overexpression. Suppression of CAV1 expression was mediated by an increase of S-adenosylmethionine (SAMe) level. The methylation status of CAV1 promoter was significantly altered upon ADI1 overexpression. Finally, a genome-wide methylation analysis revealed that ADI1 overexpression altered promoter methylation profiles in a set of cancer-related genes, including CAV1 and genes encoding antisense non-coding RNAs, long non-coding RNAs, and microRNAs, resulting in significant changes of their expression levels. In conclusion, ADI1 expression promoted MTA cycle to increase SAMe levels, which altered genome-wide promoter methylation profiles, resulting in altered gene expression and HCC growth suppression.
Collapse
|
10
|
Karachaliou N, Lazzari C, Verlicchi A, Sosa AE, Rosell R. HER3 as a Therapeutic Target in Cancer. BioDrugs 2017; 31:63-73. [PMID: 28000159 DOI: 10.1007/s40259-016-0205-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Targeting members of the human epidermal growth factor receptor family, especially EGFR and HER2, has been an established strategy for the treatment of tumors with abnormally activated receptors due to overexpression, mutation, ligand-dependent receptor dimerization and ligand-independent activation. Less attention has been paid to the oncogenic activity of HER3, although there is growing evidence that it mediates resistance to EGFR and HER2 pathway directed therapies. The main caveat for the development of effective HER3 targeted therapies is the absence of a strong enzymatic activity to target, as well as the limited potential for single-agent activity. In this review, we highlight the role of HER3 in cancer and, more specifically, in lung cancer. The basis for HER3 involvement in HER2 resistance and EGFR inhibition is discussed, as well as current pharmacologic strategies to combat HER3 inhibition.
Collapse
Affiliation(s)
- Niki Karachaliou
- Medical Oncology Department, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, C/Viladomat 288, 08029, Barcelona, Spain.
| | - Chiara Lazzari
- Departmemt of Oncology, Division of Experimental Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Aaron E Sosa
- Medical Oncology Department, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, C/Viladomat 288, 08029, Barcelona, Spain
| | - Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona, Spain.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|