1
|
Wu Y, Liu M, Zhou H, He X, Shi W, Yuan Q, Zuo Y, Li B, Hu Q, Xie Y. COX-2/PGE 2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs. Cytokine 2023; 161:156058. [PMID: 36209650 DOI: 10.1016/j.cyto.2022.156058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
Understanding the crosstalk between endothelial cells (ECs) and bone-marrow mesenchymal stem cells (BMSCs) in response to hypoxic environments and deciphering of the underlying mechanisms are of great relevance for better application of BMSCs in tissue engineering. Here, we demonstrated that hypoxia promoted BMSCs proliferation, colony formation, osteogenic markers expression, mineralization, and extracellular signal-regulated protein kinase (ERK) phosphorylation, and that PD98059 (ERK inhibitor) blocked hypoxia-induced osteogenic differentiation. Hypoxia enhanced ECs migration, cyclooxygenase 2 (COX-2) and integrin αvβ3 expression, and prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) secretion. NS398 (selective COX-2 inhibitor) and LM609 (integrin αvβ3 specific inhibitor) impaired the ECs response to hypoxia, and exogenous PGE2 partially reversed the effects of NS398. BMSCs: ECs co-culture under hypoxia upregulated BMSCs osteogenesis and ERK phosphorylation, as well as ECs migration, integrin αvβ3 expression, and PGE2 and VEGF secretion. NS398 (pretreated ECs) lessened PGE2, VEGF concentrations of the co-culture system. NS398-treated ECs and AH6809 (combined EP1/2 antagonist)/L-798106 (selective EP3 antagonist)/L-161982 (selective EP4 antagonist)/SU5416 [VEGF receptor (VEGFR) inhibitor]-treated BMSCs impaired the co-cultured ECs-induced enhancement of BMSCs osteogenic differentiation. In conclusion, hypoxia enhances BMSCs proliferation and ERK-mediated osteogenic differentiation, and augments the COX-2-dependent PGE2 and VEGF release, integrin αvβ3 expression, and migration of ECs. COX-2/PGE2/VEGF signaling is involved in intercellular BMSCs: ECs communication under hypoxia.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wei Shi
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
2
|
Allen A, Gau D, Francoeur P, Sturm J, Wang Y, Martin R, Maranchie J, Duensing A, Kaczorowski A, Duensing S, Wu L, Lotze MT, Koes D, Storkus WJ, Roy P. Actin-binding protein profilin1 promotes aggressiveness of clear-cell renal cell carcinoma cells. J Biol Chem 2020; 295:15636-15649. [PMID: 32883810 PMCID: PMC7667959 DOI: 10.1074/jbc.ra120.013963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.
Collapse
Affiliation(s)
- Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Francoeur
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan Sturm
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Martin
- Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jodi Maranchie
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anette Duensing
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Kaczorowski
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Lily Wu
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael T. Lotze
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - David Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Walter J. Storkus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA,Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Wang X, Lopez R, Luchtel RA, Hafizi S, Gartrell B, Shenoy N. Immune evasion in renal cell carcinoma: biology, clinical translation, future directions. Kidney Int 2020; 99:75-85. [PMID: 32949550 DOI: 10.1016/j.kint.2020.08.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Targeted therapies and immune checkpoint inhibitors have advanced the treatment landscape of Renal Cell Carcinoma (RCC) over the last decade. While checkpoint inhibitors have demonstrated survival benefit and are currently approved in the front-line and second-line settings, primary and secondary resistance is common. A comprehensive understanding of the mechanisms of immune evasion in RCC is therefore critical to the development of effective combination treatment strategies. This article reviews the current understanding of the different, yet coordinated, mechanisms adopted by RCC cells to evade immune killing; summarizes various aspects of clinical translation thus far, including the currently registered RCC clinical trials exploring agents in combination with checkpoint inhibitors; and provides perspectives on the current landscape and future directions for the field.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medicine, Albert Einstein College of Medicine, Jacobi Medical Center, New York, New York, USA
| | - Robert Lopez
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Rebecca A Luchtel
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Sassan Hafizi
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Benjamin Gartrell
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; Department of Urology, Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA
| | - Niraj Shenoy
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, New York, USA; School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK; Experimental Therapeutics Program, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Klausz K, Cieker M, Kellner C, Rösner T, Otte A, Krohn S, Lux A, Nimmerjahn F, Valerius T, Gramatzki M, Peipp M. Fc-engineering significantly improves the recruitment of immune effector cells by anti-ICAM-1 antibody MSH-TP15 for myeloma therapy. Haematologica 2020; 106:1857-1866. [PMID: 32499243 PMCID: PMC8252953 DOI: 10.3324/haematol.2020.251371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/30/2022] Open
Abstract
Despite several therapeutic advances, patients with multiple myeloma (MM) require additional treatment options since no curative therapy exists yet. In search of a novel therapeutic antibody, we previously applied phage display with myeloma cell screening and developed TP15, a scFv targeting intercellular adhesion molecule 1 (ICAM-1/CD54). To more precisely evaluate the antibody's modes of action, fully human IgG1 antibody variants were generated bearing wild-type (MSH-TP15) or mutated Fc to either enhance (MSH-TP15 Fc-eng.) or prevent (MSH-TP15 Fc k.o.) Fc gamma receptor binding. Especially MSH-TP15 Fc-eng. induced potent antibody-dependent cell-mediated cytotoxicity (ADCC) against malignant plasma cells by efficiently recruiting NK cells and engaged macrophages for antibody-dependent cellular phagocytosis (ADCP) of tumor cells. Binding studies with truncated ICAM-1 demonstrated MSH-TP15 binding to ICAM-1 domain 1-2. Importantly, MSH-TP15 and MSH-TP15 Fc-eng. both prevented myeloma cell engraftment and significantly prolonged survival of mice in an intraperitoneal xenograft model. In the subcutaneous model MSH-TP15 Fc-eng. was superior to MSH-TP15, whereas MSH-TP15 Fc k.o. was not effective in both models - reflecting the importance of Fc-dependent mechanisms of action also in vivo. The efficient recruitment of immune cells and the potent anti-tumor activity of the Fc-engineered MSH-TP15 antibody hold significant potential for myeloma immunotherapy.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Michael Cieker
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Anna Otte
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nurnberg, Erlangen, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein and Christian-Albrechts-University, Kiel,MATTHIAS PEIPP
| |
Collapse
|
5
|
Robinson RL, Sharma A, Bai S, Heneidi S, Lee TJ, Kodeboyina SK, Patel N, Sharma S. Comparative STAT3-Regulated Gene Expression Profile in Renal Cell Carcinoma Subtypes. Front Oncol 2019; 9:72. [PMID: 30863721 PMCID: PMC6399114 DOI: 10.3389/fonc.2019.00072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinomas (RCC) are heterogeneous and can be further classified into three major subtypes including clear cell, papillary and chromophobe. Signal transducer and activator of transcription 3 (STAT3) is commonly hyperactive in many cancers and is associated with cancer cell proliferation, invasion, migration, and angiogenesis. In renal cell carcinoma, increased STAT3 activation is associated with increased metastasis and worse survival outcomes, but clinical trials targeting the STAT3 signaling pathway have shown varying levels of success in different RCC subtypes. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we compared expression of 32 STAT3 regulated genes in 3 RCC subtypes. Our results indicate that STAT3 activation plays the most significant role in clear cell RCC relative to the other subtypes, as half of the evaluated genes were upregulated in this subtype. MMP9, BIRC5, and BCL2 were upregulated and FOS was downregulated in all three subtypes. Several genes including VEGFA, VIM, MYC, ITGB4, ICAM1, MMP1, CCND1, STMN1, TWIST1, and PIM2 had variable expression in RCC subtypes and are potential therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Rebekah L Robinson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Saleh Heneidi
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
6
|
Zhang M, He J, Jiang C, Zhang W, Yang Y, Wang Z, Liu J. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy. Int J Nanomedicine 2017; 12:533-558. [PMID: 28144137 PMCID: PMC5245982 DOI: 10.2147/ijn.s124252] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core-shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium-macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of mediating cellular cholesterol efflux.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Zhiyu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Boissard F, Tosolini M, Ligat L, Quillet-Mary A, Lopez F, Fournié JJ, Ysebaert L, Poupot M. Nurse-like cells promote CLL survival through LFA-3/CD2 interactions. Oncotarget 2016; 8:52225-52236. [PMID: 28881725 PMCID: PMC5581024 DOI: 10.18632/oncotarget.13660] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022] Open
Abstract
In the tumoral micro-environment (TME) of chronic lymphocytic leukemia (CLL), nurse-like cells (NLC) are tumor-associated macrophages which play a critical role in the survival and chemoresistance of tumoral cells. This pro-survival activity is known to involve soluble factors, but few data are available on the relative role of cells cross-talk. Here, we used a transcriptome-based approach to systematically investigate the expression of various receptor/ligand pairs at the surface of NLC/CLL cells. Their relative contribution to CLL survival was assessed both by fluorescent microscopy to identify cellular interactions and by the use of functional tests to measure the impact of uncoupling these pairs with blocking monoclonal antibodies. We found for the first time that lymphocyte function-associated antigen 3 (LFA-3), expressed in CLL at significantly higher levels than in healthy donor B-cells, and CD2 expressed on NLC, were both key for the specific pro-survival signals delivered by NLC. Moreover, we found that NLC/CLL interactions induced the shedding of soluble LFA-3. Importantly, in an exploratory cohort of 60 CLL patients receiving frontline immunochemotherapy, increased levels of soluble LFA-3 were found to correlate with shorter overall survival. Altogether, these data suggest that LFA-3/CD2 interactions promote the survival of CLL cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Frédéric Boissard
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France
| | - Marie Tosolini
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France
| | - Laetitia Ligat
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France.,Pole Technologique CRCT, Plateau Imagerie, Toulouse, France
| | - Anne Quillet-Mary
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France
| | - Frederic Lopez
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France.,Pole Technologique CRCT, Plateau Imagerie, Toulouse, France
| | - Jean-Jacques Fournié
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France
| | - Loic Ysebaert
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France.,IUCT-Oncopole, Toulouse, France
| | - Mary Poupot
- CRCT UMR1037 INSERM-ERL 5294 CNRS-Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|